The majority of empirical research in economics ignores the potential benefits of nonparametric methods, while the majority of advances in nonparametric theory ignore the problems faced in applied econometrics. This book helps bridge this gap between applied economists and theoretical nonparametric econometricians. It discusses – in terms that someone with one year of graduate econometrics can understand – basic to advanced nonparametric methods. The analysis starts with density estimation and moves through familiar methods and on to kernel regression, estimation with discrete data, and advanced methods such as estimation with panel data and instrumental variables models. The book addresses issues that arise with programming, computing speed, and application. In each chapter, the methods are applied to actual data, paying attention to presentation of results and potential pitfalls.

Daniel J. Henderson is the J. Weldon and Delores Cole Faculty Fellow at the University of Alabama and a research Fellow at the Institute for the Study of Labor (IZA) in Bonn, Germany and at the Wang Yanan Institute for Studies in Economics, Xiamen University, in Xiamen, China. Formerly an associate and assistant professor of economics at the State University of New York at Binghamton, he has held visiting appointments at the Institute of Statistics, Université Catholique de Louvain, in Louvain-la-Neuve, Belgium, and in the department of economics at Southern Methodist University in Dallas, Texas. He received his PhD in economics from the University of California, Riverside. His work has been published in the Economic Journal, the European Economic Review, the International Economic Review, the Journal of Applied Econometrics, the Journal of Business and Economic Statistics, the Journal of Econometrics, the Journal of Human Resources, the Journal of the Royal Statistical Society, and Review of Economics and Statistics.

Christopher F. Parmeter is an associate professor at the University of Miami. He was formerly an assistant professor in the department of agricultural and applied economics at Virginia Polytechnic Institute and State University and a visiting scholar in Dipartimento di Studi su Politica, Diritto e Società at the University of Palermo. He received his PhD in economics from the State University of New York at Binghamton. His research focuses on applied econometrics across an array of fields, including economic growth, microfinance, international trade, environmental economics, and health economics. His work has been published in the Economic Journal, the European Economic Review, Health Economics, the Journal of Applied Econometrics, the Journal of Econometrics, the Journal of Environmental Economics and Management, and Statistica Sinica.
Applied Nonparametric Econometrics

DANIEL J. HENDERSON
University of Alabama

CHRISTOPHER F. PARMETER
University of Miami
In memory of Susan Marie Henderson
 – D. J. H.

To my grandfather, Frank Samson Berch
 – C. F. P.
Contents

1 Introduction
1.1 Overview
1.2 Birth of the text
1.3 Who will benefit
1.4 Why this book is relevant
1.5 Examples
1.5.1 CO\textsubscript{2} emissions
1.5.2 Age earnings
1.5.3 Hedonic price function
1.6 Examples in the text
1.6.1 Density
1.6.2 Regression
1.7 Outline of the remainder of the book
1.8 Supplemental materials
1.9 Acknowledgments

2 Univariate density estimation
2.1 Smoothing preliminaries
2.2 Estimation
2.2.1 A crude estimator
2.2.2 Naïve estimator
2.2.3 Kernel estimator
2.3 Kernel selection
2.4 Kernel efficiency
2.5 Bandwidth selection
2.5.1 Optimal selection
2.5.2 Data-driven methods
2.5.3 Plug-in or cross-validation?
2.6 Density derivatives
2.6.1 Bias and variance
2.6.2 Bandwidth selection
2.6.3 Relative efficiency
2.7 Application
2.7.1 Histograms
2.7.2 Kernel densities
Contents

3 Multivariate density estimation 59
3.1 Joint densities 59
3.2 Bias, variance, and AMISE 62
3.3 The curse of dimensionality 64
3.4 Bandwidth selection 68
3.4.1 Rule-of-thumb bandwidth selection 70
3.4.2 Cross-validation bandwidth selection 70
3.5 Conditional density estimation 72
3.5.1 Bias, variance, and AMSE 73
3.5.2 Bandwidth selection 74
3.5.3 Inclusion of irrelevant variables 75
3.6 Application 76

4 Inference about the density 83
4.1 Fundamentals 84
4.1.1 Consistent test 86
4.1.2 Distance measures 87
4.1.3 Centering terms 89
4.1.4 Degenerate U-statistics 89
4.1.5 Bootstrap 91
4.2 Equality 92
4.3 Parametric specification 97
4.4 Independence 99
4.5 Symmetry 101
4.6 Silverman test for multimodality 102
4.7 Testing in practice 105
4.7.1 Bootstrap versus asymptotic distribution 106
4.7.2 Role of bandwidth selection on reliability of tests 106
4.8 Application 108
4.8.1 Equality 108
4.8.2 Correct parametric specification 109
4.8.3 Independence 110
4.8.4 Symmetry 111
4.8.5 Modality 112

5 Regression 113
5.1 Smoothing preliminaries 114
5.2 Local-constant estimator 117
5.2.1 Derivation from density estimators 117
5.2.2 An indicator approach 118
5.2.3 Kernel regression on a constant 118
5.3 Bias, variance, and AMISE of the LCLS estimator 120
5.4 Bandwidth selection 121
5.4.1 Univariate digression 121
5.4.2 Optimal bandwidths in higher dimensions 123
5.4.3 Least-squares cross-validation 124
Contents

5.4.4 Cross-validation based on Akaike information criteria 125
5.4.5 Interpretation of bandwidths for LCLS 126
5.5 Gradient estimation 127
5.6 Limitations of LCLS 128
5.7 Local-linear estimation 130
 5.7.1 Choosing LLLS over LCLS 131
 5.7.2 Efficiency of the local-linear estimator 132
5.8 Local-polynomial estimation 133
5.9 Gradient-based bandwidth selection 135
5.10 Standard errors and confidence bounds 137
 5.10.1 Pairs bootstrap 137
 5.10.2 Residual bootstrap 138
 5.10.3 Wild bootstrap 139
5.11 Displaying estimates 139
5.12 Assessing fit 141
5.13 Prediction 141
5.14 Application 142
 5.14.1 Data 143
 5.14.2 Results 144

6 Testing in regression 159
 6.1 Testing preliminaries 160
 6.1.1 Goodness-of-fit tests 160
 6.1.2 Conditional-moment test 161
 6.2 Correct parametric specification 162
 6.2.1 Goodness-of-fit test 163
 6.2.2 Conditional-moment test 166
 6.3 Irrelevant regressors 168
 6.3.1 Goodness-of-fit test 168
 6.3.2 Conditional-moment test 169
 6.4 Heteroskedasticity 171
 6.5 Testing in practice 174
 6.5.1 Bootstrap versus asymptotic distribution 174
 6.5.2 Role of bandwidth selection on reliability of tests 175
 6.6 Application 177
 6.6.1 Correct functional form 177
 6.6.2 Relevance 180
 6.6.3 Heteroskedasticity 180
 6.6.4 Density tests 182

7 Smoothing discrete variables 187
 7.1 Estimation of a density 188
 7.1.1 Kernels for smoothing discrete variables 188
 7.1.2 Generalized product kernel 190
 7.2 Finite sample properties 191
 7.2.1 Discrete-only bias 191
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.2 Discrete-only variance 192</td>
</tr>
<tr>
<td>7.2.3 Discrete-only MSE 192</td>
</tr>
<tr>
<td>7.2.4 Mixed-data bias 193</td>
</tr>
<tr>
<td>7.2.5 Mixed-data variance 193</td>
</tr>
<tr>
<td>7.2.6 Mixed-data MSE 193</td>
</tr>
<tr>
<td>7.3 Bandwidth estimation 194</td>
</tr>
<tr>
<td>7.3.1 Discrete-data only 195</td>
</tr>
<tr>
<td>7.3.2 Mixed data 196</td>
</tr>
<tr>
<td>7.4 Why the faster rate of convergence? 197</td>
</tr>
<tr>
<td>7.5 Alternative discrete kernels 198</td>
</tr>
<tr>
<td>7.6 Testing 199</td>
</tr>
<tr>
<td>7.7 Application 201</td>
</tr>
<tr>
<td>8 Regression with discrete covariates 205</td>
</tr>
<tr>
<td>8.1 Estimation of the conditional mean 206</td>
</tr>
<tr>
<td>8.1.1 Local-constant least-squares 206</td>
</tr>
<tr>
<td>8.1.2 Local-linear least-squares 208</td>
</tr>
<tr>
<td>8.2 Estimation of gradients 209</td>
</tr>
<tr>
<td>8.2.1 Continuous covariates 209</td>
</tr>
<tr>
<td>8.2.2 Discrete covariates 210</td>
</tr>
<tr>
<td>8.3 Bandwidth selection 212</td>
</tr>
<tr>
<td>8.3.1 Automatic bandwidth selection 213</td>
</tr>
<tr>
<td>8.3.2 Upper and lower bounds for discrete bandwidths 214</td>
</tr>
<tr>
<td>8.4 Testing 215</td>
</tr>
<tr>
<td>8.4.1 Correct parametric specification 215</td>
</tr>
<tr>
<td>8.4.2 Significance of continuous regressors 216</td>
</tr>
<tr>
<td>8.4.3 Significance of discrete regressors 217</td>
</tr>
<tr>
<td>8.5 All discrete regressors 220</td>
</tr>
<tr>
<td>8.6 Application 222</td>
</tr>
<tr>
<td>8.6.1 Bandwidths 222</td>
</tr>
<tr>
<td>8.6.2 Elasticities 223</td>
</tr>
<tr>
<td>8.6.3 Numerical gradients 223</td>
</tr>
<tr>
<td>8.6.4 Testing 225</td>
</tr>
<tr>
<td>9 Semiparametric methods 227</td>
</tr>
<tr>
<td>9.1 Semiparametric efficiency 228</td>
</tr>
<tr>
<td>9.2 Partially linear models 228</td>
</tr>
<tr>
<td>9.2.1 Estimation 229</td>
</tr>
<tr>
<td>9.2.2 Bandwidth selection 232</td>
</tr>
<tr>
<td>9.2.3 Testing 233</td>
</tr>
<tr>
<td>9.3 Single-index models 238</td>
</tr>
<tr>
<td>9.3.1 Estimation 239</td>
</tr>
<tr>
<td>9.3.2 Bandwidth selection 244</td>
</tr>
<tr>
<td>9.3.3 Testing 245</td>
</tr>
<tr>
<td>9.4 Semiparametric smooth coefficient models 247</td>
</tr>
<tr>
<td>9.4.1 Estimation 249</td>
</tr>
</tbody>
</table>
9.4.2 Bandwidth selection 252
9.4.3 Testing 252
9.5 Additive models 254
 9.5.1 Estimation 255
 9.5.2 Bandwidth selection 258
 9.5.3 Testing 259
9.6 Application 261
 9.6.1 Bandwidths 261
 9.6.2 Plotting estimates 263
 9.6.3 Specification testing 264

10 Instrumental variables 267
 10.1 The ill-posed inverse problem 268
 10.2 Tackling the ill-posed inverse 270
 10.3 Local-polynomial estimation of the control-function model 272
 10.3.1 Multiple endogenous regressors 274
 10.3.2 Bandwidth selection 275
 10.3.3 Choice of polynomial order 276
 10.3.4 Simulated evidence of the counterfactual simplification 278
 10.3.5 A valid bootstrap procedure 279
 10.4 Weak instruments 280
 10.4.1 Weak identification 282
 10.4.2 Estimation in the presence of weak instruments 284
 10.4.3 Importance of nonlinearity in the first stage 286
 10.5 Discrete endogenous regressor 286
 10.6 Testing 287
 10.7 Application 288

11 Panel data 293
 11.1 Pooled models 294
 11.2 Random effects 295
 11.2.1 Local-linear weighted least-squares 297
 11.2.2 Wang’s iterative estimator 298
 11.3 Fixed effects 301
 11.3.1 Additive individual effects 302
 11.3.2 Discrete individual effects 305
 11.4 Dynamic panel estimation 306
 11.5 Semiparametric estimators 308
 11.6 Bandwidth selection 309
 11.7 Standard errors 309
 11.7.1 Pairs bootstrap 310
 11.7.2 Residual bootstrap 310
 11.8 Testing 311
 11.8.1 Poolability 311
 11.8.2 Functional form specification 313
 11.8.3 Nonparametric Hausman test 315
Contents

11.9 Application 316
 11.9.1 Bandwidths 317
 11.9.2 Estimation 318
 11.9.3 Testing 318

12 Constrained estimation and inference 321
 12.1 Rearrangement 322
 12.1.1 Imposing convexity 324
 12.1.2 Existing literature 325
 12.2 Motivating alternative shape-constrained estimators 326
 12.3 Implementation methods via reweighting 330
 12.3.1 Constraint-weighted bootstrapping 330
 12.3.2 Data sharpening 330
 12.4 Practical issues 331
 12.4.1 Selecting the distance metric 331
 12.4.2 Choice of smoothing parameter 332
 12.4.3 Linear in \(p \) implementation issues 333
 12.4.4 Imposing additive separability 336
 12.5 Hypothesis testing on shape constraints 337
 12.6 Further extensions 338
 12.7 Application 339
 12.7.1 Imposing positive marginal product 339
 12.7.2 Imposing constant returns to scale 340

Bibliography 343

Index 359