The idea that spatial cognition provides the foundation of linguistic meanings, even highly abstract meanings, has been put forward by a number of linguists in recent years. This book takes this proposal into new dimensions and develops a theoretical framework based on simple geometric principles. All speakers are conceptualisers who have a point of view both in a literal and in an abstract sense, choosing their perspective in space, time and the real world. The book examines the conceptualising properties of verbs, including tense, aspect, modality and transitivity, as well as the conceptual workings of grammatical constructions associated with counterfactuality, other minds and the expression of moral force. It makes links to the cognitive sciences throughout, and concludes with a discussion of the relationships between language, brain and mind.

Paul Chilton is Emeritus Professor of Linguistics at Lancaster University.
Language, Space and Mind

The Conceptual Geometry of Linguistic Meaning

Paul Chilton
To my children, Jonathan and Emily
Contents

List of figures ix
List of tables xiii
Preface xv
Acknowledgements xviii

1 Introduction: space, geometry, mind 1
 1.1 Language and mind 2
 1.2 Formalisation 4
 1.3 Using geometry 7
 1.4 Space, situation and deixis 9

2 Viewpoint, reference frames and transformations 15
 2.1 Physical space: prepositions, deixis and reference frames 16
 2.2 The abstract deictic space 29
 2.3 Further characteristics of the deictic space 42

3 Distance, direction and verbs 50
 3.1 Vectors, discourse entities and reference frames 52
 3.2 Displacement vectors and verbs of motion 60
 3.3 Force vectors and transitivity 71

4 Event types and cognitive operators 106
 4.1 Temporal aspects of happenings: event types 108
 4.2 Tense forms as cognitive operators: instancing and presencing 116
 4.3 Instancing and presencing in the past 131

5 Times, tenses and reference frames 133
 5.1 A present of present things 135
 5.2 A present of past things 140
 5.3 A present of future things 143
 5.4 The putative future: a reference frame solution 151

6 Counterfactual reflections 157
 6.1 Counterfactuality 158
 6.2 If-sentences and counterfactual conceptions 159
 6.3 Tense in the modal mirror 163
 6.4 The geometry of if-sentences 167
6.5 Through the looking glass: counterfactual *if*-sentences 173
6.6 Concluding reflections 176

7 Reference frames and other minds 178
 7.1 Epistemic reference frames 179
 7.2 *That-*ness and other-*ness 180
 7.3 Other minds as reference frames 183
 7.4 Connections and disconnections across parallel worlds 200

8 Mental distance and complement clauses 210
 8.1 Verb meanings and clausal complements 210
 8.2 The meaning of *that, to, ing* and zero 215
 8.3 Constructions with the verb *seem* 221
 8.4 Further notes on seeming 227

9 Verbs, complements and their conceptual effects 229
 9.1 *to* constructions and grammatical subjects 229
 9.2 Modelling *ing* constructions 239
 9.3 Modelling *zero* constructions 243
 9.4 Overview of alternations and restrictions 248

10 The deontic dimension 256
 10.1 Deontic meanings presuppose epistemic meanings 256
 10.2 Deontic reflections 260
 10.3 The deontic source 274
 10.4 Thoughts on *ought* 277

11 Concluding perspectives 281
 11.1 Questions 282
 11.2 Space, the brain and language 284
 11.3 Deictic Space Theory and the brain 290
 11.4 Deictic Space Theory and the mind 305
 11.5 In conclusion: Deictic Space Theory and metaphor 311

Appendix 313
References 315
Index 330
Figures

Figure 2.1	in front of: analysis (i)	Page 21
Figure 2.2	in front of: analysis (ii)	22
Figure 2.3a	in front of as translation	24
Figure 2.3b	in front of as translation plus rotation	25
Figure 2.3c	in front of as reflection	26
Figure 2.4	Prepositions as vectors (after O'Keefe 2003: 79)	27
Figure 2.5	The fundamental coordinate configuration	30
Figure 2.6	Relative distance from S on d-axis	31
Figure 2.7	Attentional distance metaphorically projects onto temporal distance	34
Figure 2.8	The fundamental deictic space	41
Figure 2.9a	Example (6) John does not own the car	46
Figure 2.9b	Example (7) John does not own a car	47
Figure 3.1a	Example (1) John is in front of the tree	53
Figure 3.1b	Example (2) The tree is in front of John	54
Figure 3.2	Example (7) The linguist is in a good humour	57
Figure 3.3	Possession as position	58
Figure 3.4	Property and entity relation as position vector	59
Figure 3.5	Example (11) Li travelled	62
Figure 3.6a	Example (12) from Beijing to Guangzhou	64
Figure 3.6b	Example (13) to Guangzhou from Beijing	64
Figure 3.7a	Example (14) Li travelled from Beijing to Guangzhou	66
Figure 3.7b	Example (15) Li travelled to Guangzhou from Beijing	67
Figure 3.8	Example (16) From Beijing Li travelled to Guangzhou	68
Figure 3.9	Example (27) The sky reddened	71
Figure 3.10a	Example (33a) Jake gave the code to Bert	77
Figure 3.10b	Example (34a) inactive Bert received/got the code from Jake	78
Figure 3.10c	Example (34a) active Bert got the code from Jake	79
Figure 3.11	Example (37c) James wiped the counter clean	81
Figure 3.12a	Example (38a) John broke the vase	84
Figure 3.12b	Example (38b) The vase broke	84
x List of figures

Figure 3.13a Conceptual structure of event in (47b) 95
Figure 3.13b Combining the vectors in Figure 3.13a 96
Figure 3.14a Example (48a) The lads loaded logs onto the lorry 97
Figure 3.14b Example (48b) The lads loaded the lorry with logs 98
Figure 3.14c Combining vectors in Figures 3.14a and 3.14b 98
Figure 3.15a Passive construction as refocusing of entities 101
Figure 3.15b Passive construction after vector combination 101
Figure 3.15c State ascription reading of (49c) The vase was broken 102
Figure 3.16 Role of the m-axis in modelling build-verbs 104
Figure 4.1 Geometric schema for states 109
Figure 4.2 Semelfactive event 112
Figure 4.3 Homogeneous activity 113
Figure 4.4 Process type: accomplishment 114
Figure 4.5 Process type: achievement, sentence (5) Hillary reached the summit 116
Figure 4.6 Instancing (simple present operator) operating on a state schema 120
Figure 4.7 Instancing (simple present operator) operating on (i) a stative schema and (ii) a process (accomplishment) schema, resulting in (iii) an ‘instance’ or ‘instant’ corresponding to the simple present tense form 122
Figure 4.8 Presencing in the (d, t) plane, applied to a process event 125
Figure 4.9 Effect of ing presencing operator on a state event schema 128
Figure 4.10 Insertion of process schema and application of presencing operator 130
Figure 4.11 Progressive (presencing) in the past relative to S 132
Figure 5.1 Timeless simple present for (1a) and (1b) 138
Figure 5.2 Transforming of reference frame for historical present: (5b) In June 1520 Henry sails to Calais 141
Figure 5.3 Present progressive in the past: (6) In 1520 Henry is sailing to Calais 143
Figure 5.4 Example (7a) Henry visits Calais this Thursday 147
Figure 5.5 Frame shift for (8a) Henry is visiting Calais this Thursday 149
Figure 5.6 Example (11) Henry is going to/gonna visit Calais this Thursday 151
Figure 5.7 Example (7) Henry will be visiting Calais this Thursday [non-putative] 153
Figure 5.8 Example (14) Henry will be visiting Calais (now) [putative] 153
Figure 5.9 Example (15) Henry will have visited Calais [putative reading] 155
Figure 6.1 Reflection of time onto modality 164
List of figures

Figure 6.2a Conditional sentence (1) present tense 169
Figure 6.2b Conditional sentence (2) past tense 170
Figure 6.3 Modalised apodosis: sentence (7) 171
Figure 6.4 Counterfactual sentence (3): first approximation 174
Figure 6.5 Examples (3) and (12) 175
Figure 7.1 Possibility within probability: (1) John probably has children and it’s possible his children are bald 180
Figure 7.2 Example (2a) John knows that Mary wrote the report 185
Figure 7.3 Example (2b) John knows that Mary might have written the report 188
Figure 7.4 Example (3a) John might know that Mary wrote the report 190
Figure 7.5 Example (3b) John might know that Mary might have written the report 191
Figure 7.6 Example (4) John does not know that Mary wrote the report (= it is not the case that John knows that Mary wrote the report) 192
Figure 7.7 Example (5a) John believes that Mary wrote the report 194
Figure 7.8 Example (5b) John believes that Mary might have written the report 196
Figure 7.9 Example (6a) John might believe that Mary wrote the report 197
Figure 7.10 Example (7b) John disbelieves that Mary wrote the report 198
Figure 7.11a Example (8) Hob believes that a witch has blighted Bob’s mare 202
Figure 7.11b Part of sentence (8) Nob believes she has killed Cob’s cow 203
Figure 7.11c Coordinated spaces: (8) Hob believes that a witch has blighted Bob’s mare, and Nob believes she has killed Cob’s cow 204
Figure 7.12a Normal representation of other mind communication 207
Figure 7.12b Possible autistic representation of other mind communication 208
Figure 8.1 It seems that construction: (5) It seems that Mary wrote the report 224
Figure 8.2 Seem to construction: (6) Mary seems to have written the report 226
Figure 9.1 Subject-control structure (equi NP, subject): (1) John expects to write the report 231
Figure 9.2 Object-control structure (equi NP, object): (2) John urged Mary to write the report 234
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 9.3</td>
<td>Example (3) John persuaded Mary to write the report</td>
<td>236</td>
</tr>
<tr>
<td>Figure 9.4</td>
<td>Raising to object: (4) John expects Mary to write the report</td>
<td>238</td>
</tr>
<tr>
<td>Figure 9.5</td>
<td>Example (5) John imagined writing the report</td>
<td>241</td>
</tr>
<tr>
<td>Figure 9.6</td>
<td>Example (8) John imagined Mary writing the report</td>
<td>244</td>
</tr>
<tr>
<td>Figure 9.7</td>
<td>Example (10a) John saw Mary write the report</td>
<td>247</td>
</tr>
<tr>
<td>Figure 10.1</td>
<td>Base axis system and reflected copy</td>
<td>262</td>
</tr>
<tr>
<td>Figure 10.2</td>
<td>Obligation expressions</td>
<td>264</td>
</tr>
<tr>
<td>Figure 10.3</td>
<td>Permission and exemption: example (8)</td>
<td>270</td>
</tr>
<tr>
<td>Figure 10.4</td>
<td>Conceptual structure of may-prohibition: removal of prohibition</td>
<td>274</td>
</tr>
<tr>
<td>Figure 10.5</td>
<td>Example (1a) Mary must write the report</td>
<td>276</td>
</tr>
<tr>
<td>Appendix Figure</td>
<td>Two degrees of central embedding</td>
<td>314</td>
</tr>
</tbody>
</table>
Tables

Table 5.1 Correspondences between present-tense forms and deictic time reference page 134
Table 8.1 Syntactic description crossed with zero, to, ing and that constructions (sample) 212
This book explores a theoretical format I call deictic space. The term deictic comes from the Greek word that means ‘to point’. Humans are probably unique among primates in their ability to point. They point in order to establish joint attention with other humans. It is impossible to point meaningfully unless one is in a certain position, and one’s interlocutor is aware of that position. One’s pointing is relative to a spatial frame of reference. Deixis, shifting points of view, frames of reference, are fundamental to human communication.

Arrows conventionally stand for pointing in a certain direction. Linguists are always using arrows in their diagrams but often in highly abstract ways (as in the re-write rules of Phrase Structure Grammar). Mathematicians use arrows too, standing for vectors, which have distance and direction, within coordinate systems. Frames of reference are needed in order to navigate our environment. They are also needed for directing our actions on that environment using our limbs, primarily arms and hands. Reaching, grasping, pointing and the visual attention that guides them depend on frames of reference.

Abstractly, we can think of navigating, reaching, pointing and attention in terms of geometrical vectors in frames of reference. This is essentially what the book sets out to explore. The starting point for this exploration is in the conceptualisation of space as organised by language. The most obvious spatial expressions in language are prepositions but from there we can proceed to far more abstract conceptual spaces, speculating as to how far elementary structures and operations that geometry has developed can assist us. Basic Euclidean geometry can be regarded as embodied, related to human experience in relation to the space, earth, direction and motion.

The book is full of diagrams of coordinate systems that are meant to evoke the abstract three-dimensional space that I call deictic space and which I think may be the most fundamental part of our language ability. I hope these will not cause the reader too much double vision. I use them not only because the visual is sometimes clearer than the verbal but also because visual cognition (and its cross-modal versions) is so much a part of our spatial experience. The diagrams are based on very elementary geometrical ideas and these have
some standard logical implications that make it possible to explore the ways
in which spatial conceptualisation might – or might not – be part and parcel
of our language-based conceptualisation. But since I argue that simple spatial
representations can lead to abstract and complex meanings in language, some
of these diagrams do end up complicated. I can only beg the reader’s patience.
The difficulty of ‘reading’ some of the diagrams is a reminder that after all
these are mere attempts to model complex operations that our mind–brains
handle with unconscious fluidity.

Just how far we can go in this exploration of deictic space remains an open
question. But I suggest in this book that we can go a considerable distance in
relating some of our most abstract language-based conceptualisations to an
origin in physical space. Here is a rough route map for the book, and some
reasons why I take certain paths.

Linguistics has developed various formal metalanguages. Since the one
I develop in this book is unusual in some respects and is heavily dependent on
diagrams, Chapter 1 gives some initial motivations for adopting and adapting
the key geometrical notions of coordinates, transformations and simple
vectors. The most obvious application of geometrical description to language
concerns literal spatial expressions, primarily prepositions. Chapter 2
develops in more detail the basic geometrical ingredients of the book. It
opens with a survey of the geometrical element in spatial prepositions, though
geometry is certainly not all there is to their meaning. The chapter crosses an
important threshold – moving to a geometrical space that does not refer to
physical space but to three dimensions of the mind that are woven into
language – the three dimensions of attentional focus, time and reality assess-
ment. The subsequent chapters explore this space, moving into increasingly
abstract conceptual spaces that are linked with grammatical constructions.

Chapter 3 is at one level about the phenomenon of attention and the ways in
which linguistic constructions act to direct it. At another it is also about arrows
and axes, that is, vectors and coordinates, and the ways in which some of their
routine properties can be used to capture the schematic conceptual meanings
of predicates. The chapter again begins with the modelling of spatial expressions
and moves into progressively more abstract meanings of verbs and their
grammatical frames – a line of enquiry that returns in Chapters 8 and 9. First,
however, Chapters 4 and 5 look into two closely related characteristics of
verbal meaning – the conceptualisation of types of event over time and the
placement of events in a temporal frame of reference. The purpose in these two
chapters is to see if we can bring this area of linguistic enquiry into a unifying
geometrical approach, hoping that along the way this approach itself will shed
light on the linguistic phenomena themselves. Chapter 6 pursues this latter goal
by applying a key geometrical idea that is already found in the description
of some prepositional meanings – the mirror transformation of axes.
What happens if we look for such transformations in grammatical structure? Unexpectedly, it turns out that counterfactual conditionals can be so described, though controversially. Chapters 8 and 9 continue to explore transformations of axes – embedded translated axes – as a way of modelling the idiosyncratic behaviour of verbs in relation to types of complement clause. This line of argument broadly follows one line of cognitive linguistics that sees complementisers and complement clauses as conceptually motivated. Chapter 10 returns to the modelling of counterfactuals that was laid out in Chapter 6, entering into what is the furthest limit of abstraction I have chanced addressing in this book, deontic meaning. This is not the first time in cognitive linguistics that the abstractions of deontic meaning have been found to be rooted in the concrete, but I have attempted here to unify the account with the abstract-geometrical approach, with potentially controversial implications.

All this is based on the spatial hypothesis and some admittedly risky theoretical speculation. What is the theory doing? Is there any evidence that the linguistic mind–brain actually works this way? In Chapter 11, I briefly address some philosophical issues, or perhaps merely raise them for linguists to consider. I also take a snapshot of rapidly developing areas of neuroscience and neurolinguistics that may corroborate some of the theoretical speculations of the book, or at least provide further food for thought.
Acknowledgements

This book has been written over a number of years. I thank my family for their forbearance during absences both physical and mental during that time. Because the preparation and writing have been protracted, the final result reflects many sources, influences and encounters. In some cases a pointed question at a conference, a passing word of curiosity or an email enquiry has encouraged me to continue. I have also been fortunate to have colleagues and students who have engaged with me in what must have seemed peculiar linguistic ideas. I am especially grateful to colleagues at the University of East Anglia, the University of Lancaster, the University of Neuchâtel and the University of Łódź, and in particular to Bill Downes, Clive Matthews and Gabriella Rundblad for their ideas and critique. At Lancaster I benefitted from the knowledge, understanding and kindness of the late Anna Siewierska as well as from the interest shown by a number of other supportive colleagues and graduate students. I am also grateful to Louis de Saussure at Geneva and Neuchâtel, and to Piotr Cap at Łódź for ideas, insight and generosity. Vyv Evans has been supportive at various points in my explorations of spatial meanings. Thanks are due also to Bertie Kaal, Monika Kopytowska and Christopher Hart, who have discussed my ideas with me in detail and taken them further, and in different directions, in their own work. John O’Keefe, of UCL’s Institute of Cognitive Neuroscience, has been a source of inspiration through his pioneering work on spatial cognition. He proposed vector grammars some time before I embarked on DST and was kind enough to discuss my initial ideas with me.

Many other colleagues, too numerous to name, who work in various branches of cognitive linguistics, have given me time, ideas, encouraging comments and critical insights: I am grateful to them all for conference questions, passing comments, emails and conversations. A very early stage of the theory presented in this book focused on social discourse rather than linguistic structure and received interest from colleagues and good friends around the world in the field of discourse analysis. Although DST may not have turned out as they expected, I thank them for many helpful ideas and much personal support. I also wish to thank two anonymous reviewers of my
manuscript for their sharp eyes and advice, as well as my understanding copy-editor and the team of editors at Cambridge University Press. All remaining errors and blunders are mine.

In the preparation of the present book I revised portions of previous peer-reviewed publications and used them in certain chapters. I am grateful to the following publishers for granting permission to use these materials.

John Benjamins for permission to reuse of parts of ‘Vectors, viewpoint and viewpoint shift: toward a discourse space theory’, Annual Review of Cognitive Linguistics, 3, 2005: 78–116, in Chapter 1 (parts of Sections 1.2.1 and 1.4) in Chapter 2 (parts of Sections 2.1 and 2.2) and Chapter 3 (Section 3.1), and for the reuse of part of ‘Geometrical concepts at the interface of formal and cognitive models: Aktionsart, aspect and the English progressive’, Pragmatics and Cognition, 15(1), 2007: 91–114, in the first part of Chapter 4.

Oxford University Press for permission to reuse ‘Frames of reference and the linguistic conceptualization of time: present and future’, in Time: Language, Cognition and Reality, edited by K. Jaszczolt and L. de Saussure, 2013, pp. 236–58. Revised portions of this material appear by permission of the publisher in Chapter 2 (Section 2.3.1), Chapter 4 (Section 4.2) and Chapter 5 (Section 5.3).

I am also grateful to the following rights holders for granting permission to quote short extracts from various works as epigraphs to certain chapters.

Mercure de France for permission to use an extract from Pascal, Pensées, edited by Philippe Sellier, 1976.