Hilbert Space Methods in Signal Processing

This lively and accessible book describes the theory and applications of Hilbert spaces, and also presents the history of the subject to reveal the ideas behind theorems and the human struggle that led to them.

The authors begin by establishing the concept of “countably infinite,” which is central to the proper understanding of separable Hilbert spaces. Fundamental ideas such as convergence, completeness, and dense sets are first demonstrated through simple familiar examples and then formalized. Having addressed fundamental topics in Hilbert spaces, the authors then go on to cover the theory of bounded, compact, and integral operators at an advanced but accessible level. Finally, the theory is put into action, considering signal processing on the unit sphere, as well as reproducing kernel Hilbert spaces. The text is interspersed with historical comments about central figures in the development of the theory, which helps to bring the subject to life.

Rodney A. Kennedy is a Professor in the Research School of Engineering and the Head of the Applied Signal Processing research group at the Australian National University, Canberra. He has won a number of prizes in engineering and mathematics, including UNSW University and ATERB Medals. He has supervised more than 40 Ph.D. students and co-authored approximately 300 research papers. He is a Fellow of the IEEE.

Parastoo Sadeghi is a Fellow in the Research School of Engineering, at the Australian National University, Canberra. She has published around 90 refereed journal and conference papers, and received two IEEE Region 10 paper awards. She is a Senior Member of the IEEE.
“With the engineering research community in mind, the authors present a thoughtfully constructed, in-depth treatment of Hilbert spaces that includes a detailed coverage of signals-and-systems on the 2-sphere and a fresh perspective on reproducing kernel Hilbert spaces. This book provides a friendly, witty, and thorough introduction to this mathematically rich field and will likely become a mainstay of the engineering research literature.”

Phil Schniter, The Ohio State University

“A book of this mathematical sophistication shouldn’t be this fun to read – or teach from! Guilty pleasure aside, the treatment on Hilbert spaces and operator theory is remarkable in its lucidity and completeness – several other textbooks’ worth of material. More than half of the book consists of new insights into spherical data analysis cast in a general framework that will make any of us working in this and adjacent research areas reach for this book to properly understand what it is that we have done.”

Frederik J. Simons, Princeton University
Hilbert Space Methods in Signal Processing

RODNEY A. KENNEDY
Australian National University, Canberra

PARASTOO SADEGHI
Australian National University, Canberra
For our parents
Joan and William
Akram and Mostafa, and for our children
Lachlan, Kelan, and Aiden
Contents

Preface xv

I Hilbert Spaces 1

1 Introduction 2

1.1 Introduction to Hilbert spaces 2

1.1.1 The basic idea 2

1.1.2 Application domains 2

1.1.3 Broadbrush structure 4

1.1.4 Historical comments 7

1.2 Infinite dimensions 9

1.2.1 Why understand and study infinity? 9

1.2.2 Primer in transfinite cardinals 11

1.2.3 Uncountably infinite sets 17

1.2.4 Continuum as a power set 19

1.2.5 Countable sets and integration 20

2 Spaces 24

2.1 Space hierarchy: algebraic, metric, geometric 24

2.2 Complex vector space 24

2.3 Normed spaces and Banach spaces 26

2.3.1 Norm and normed space 26

2.3.2 Convergence concepts in normed spaces 28

2.3.3 Denseness and separability 29

2.3.4 Completeness of the real numbers 32

2.3.5 Completeness in normed spaces 33

2.3.6 Completion of spaces 35

2.3.7 Complete normed spaces — Banach spaces 35

2.4 Inner product spaces and Hilbert spaces 37

2.4.1 Inner product 37

2.4.2 Inner product spaces 38

2.4.3 When is a normed space an inner product space? 39
2.4.4 Orthonormal sets and sequences 43
2.4.5 The space l^2 47
2.4.6 The space $L^2(\Omega)$ 47
2.4.7 Inner product and orthogonality with weighting in $L^2(\Omega)$ 50
2.4.8 Complete inner product spaces — Hilbert spaces 52
2.5 Orthonormal polynomials and functions 52
 2.5.1 Legendre polynomials 53
 2.5.2 Hermite polynomials 57
 2.5.3 Complex exponential functions 59
 2.5.4 Associated Legendre functions 61
2.6 Subspaces ... 63
 2.6.1 Preamble ... 63
 2.6.2 Subsets, manifolds and subspaces 63
 2.6.3 Vector sums, orthogonal subspaces and projections 65
 2.6.4 Projection .. 66
 2.6.5 Completeness of subspace sequences 69
2.7 Complete orthonormal sequences 70
 2.7.1 Definitions ... 70
 2.7.2 Fourier coefficients and Bessel’s inequality 72
2.8 On convergence .. 74
 2.8.1 Strong convergence 74
 2.8.2 Weak convergence 75
 2.8.3 Pointwise convergence 78
 2.8.4 Uniform convergence 80
2.9 Examples of complete orthonormal sequences 82
 2.9.1 Legendre polynomials 82
 2.9.2 Bessel functions 82
 2.9.3 Complex exponential functions 85
 2.9.4 Spherical harmonic functions 87
2.10 Gram–Schmidt orthogonalization 90
 2.10.1 Legendre polynomial construction 90
 2.10.2 Orthogonalization procedure 92
2.11 Completeness relation 93
 2.11.1 Completeness relation with weighting 94
2.12 Taxonomy of Hilbert spaces 96
 2.12.1 Non-separable Hilbert spaces 97
 2.12.2 Separable Hilbert spaces 97
 2.12.3 The big (enough) picture 103
II Operators .. 105
3 Introduction to operators 106
 3.1 Preamble ... 106
 3.1.1 A note on notation 107
 3.2 Basic presentation and properties of operators 108
 3.3 Classification of linear operators 109
Contents

4 Bounded operators 112
4.1 Definitions 112
4.2 Invertibility 113
4.3 Boundedness and continuity 114
4.4 Convergence of a sequence of bounded operators . . 115
4.5 Bounded operators as matrices 117
4.6 Completing the picture: bounded operator identities 121
4.7 Archetype case: Hilbert-Schmidt integral operator 126
4.7.1 Some history and context 126
4.7.2 Hilbert-Schmidt integral operator definition 127
4.7.3 Matrix presentation and relations 127
4.8 Road map 130
4.9 Adjoint operators 131
4.9.1 Special forms of adjoint operators 135
4.10 Projection operators 136
4.10.1 Finite rank projection operators 137
4.10.2 Further properties of projection operators 139
4.11 Eigenvalues, eigenvectors and more 140

5 Compact operators 145
5.1 Definition 145
5.2 Compact operator: some explanation 145
5.3 Compact or not compact regions 147
5.4 Examples of compact and not compact operators 147
5.5 Limit of finite rank operators 149
5.6 Weak and strong convergent sequences 150
5.7 Operator compositions involving compact operators 152
5.8 Spectral theory of compact operators 153
5.9 Spectral theory of compact self-adjoint operators 155

6 Integral operators and their kernels 160
6.1 Kernel Fourier expansion and operator matrix representation . 160
6.2 Compactness 162
6.2.1 Approximating kernels with kernels of finite rank 162
6.3 Self-adjoint integral operators 163
6.3.1 Establishing self-adjointness 163
6.3.2 Spectral theory 164
6.3.3 Operator decomposition 164
6.3.4 Diagonal representation 166
6.3.5 Spectral analysis of self-adjoint integral operators ... 167
6.3.6 Synopsis 168

III Applications 173
7 Signals and systems on 2-sphere 174
7.1 Introduction 174
7.2 Preliminaries 175
Contents

7.2.1 2-sphere and spherical coordinates ... 175
7.2.2 Regions on 2-sphere ... 177
7.2.3 Understanding rotation .. 178
7.2.4 Single matrix representation of rotation 180
7.2.5 Single rotation along the x, y or z axes 182
7.2.6 Intrinsic and extrinsic successive rotations 182
7.2.7 Rotation convention used in this book 185
7.2.8 Three rotation angles from a single rotation matrix 186
7.3 Hilbert space $L^2(S^2)$... 189
7.3.1 Definition of Hilbert space $L^2(S^2)$... 189
7.3.2 Signals on 2-sphere ... 189
7.3.3 Definition of spherical harmonics ... 189
7.3.4 Orthonormality and other properties ... 191
7.3.5 Spherical harmonic coefficients ... 194
7.3.6 Shorthand notation ... 195
7.3.7 Enumeration ... 195
7.3.8 Spherical harmonic Parseval relation 196
7.3.9 Dirac delta function on 2-sphere ... 196
7.3.10 Energy per degree ... 198
7.3.11 Vector spectral representation ... 198
7.4 More on spherical harmonics ... 198
7.4.1 Alternative definition of complex spherical harmonics 198
7.4.2 Complex spherical harmonics: a synopsis 201
7.4.3 Real spherical harmonics .. 202
7.4.4 Unnormalized real spherical harmonics 205
7.4.5 Complex Hilbert space with real spherical harmonics 206
7.4.6 Real spherical harmonics: a synopsis 207
7.4.7 Visualization of spherical harmonics 208
7.4.8 Visual catalog of spherical harmonics 211
7.5 Useful subspaces of $L^2(S^2)$... 211
7.5.1 Subspace of bandlimited signals ... 211
7.5.2 Subspace of spacelimited signals .. 213
7.5.3 Subspace of azimuthally symmetric signals 213
7.6 Sampling on 2-sphere ... 214
7.6.1 Sampling distribution ... 214
7.6.2 Sampling theorem on 2-sphere .. 215
7.7 Bounded linear operators on 2-sphere .. 217
7.7.1 Systems on 2-sphere ... 217
7.7.2 Matrix representation .. 217
7.7.3 Kernel representation ... 218
7.7.4 Obtaining matrix elements from kernel 219
7.8 Spectral truncation operator ... 219
7.9 Spatial truncation operator .. 220
7.10 Spatial masking of signals with a window 221
7.10.1 Different operator representations ... 221
7.10.2 Wigner $3j$ symbols ... 223
7.10.3 Spherical harmonic coefficients of $B_h f$ 224
7.11 Rotation operator ... 226
Contents

7.11.1 Rotation operator matrix 227
7.11.2 Rotation operator kernel 229
7.11.3 Important relations pertaining to rotation operation ... 229
7.11.4 Wigner d-matrix and Wigner D-matrix properties 231
7.11.5 Wigner d-matrix symmetry relations 233
7.11.6 Fourier series representation of Wigner D-matrix 239
7.11.7 Spherical harmonics revisited 241
7.11.8 Fast computation 241
7.12 Projection into $H^0(S^2)$ 242
7.13 Rotation of azimuthally symmetric signals 244
7.14 Operator classification based on operator matrix 245
7.15 Quadratic functionals on 2-sphere 246
7.16 Classification of quadratic functionals 247
7.17 Comparison with time-frequency concentration problem ... 271
8 Advanced topics on 2-sphere 251
8.1 Introduction .. 251
8.2 Time-frequency concentration reviewed 251
8.2.1 Preliminaries 251
8.2.2 Problem statement 253
8.2.3 Answer to time concentration question Q1 254
8.2.4 Answer to frequency concentration question Q2 256
8.2.5 Answer to minimum angle question Q3 257
8.2.6 Answer to time-frequency concentration question Q4 ... 258
8.3 Introduction to concentration problem on 2-sphere 260
8.4 Optimal spatial concentration of bandlimited signals 261
8.4.1 Orthogonality relations 262
8.4.2 Eigenfunction kernel representation 264
8.5 Optimal spectral concentration of spacelimited signals ... 265
8.6 Area-bandwidth product or spherical Shannon number 266
8.7 Operator formulation 267
8.8 Special case: azimuthally symmetric polar cap region 268
8.9 Azimuthally symmetric concentrated signals in polar cap 270
8.10 Uncertainty principle for azimuthally symmetric functions 271
8.11 Comparison with time-frequency concentration problem ... 271
8.12 Franks generalized variational framework on 2-sphere 274
8.12.1 Variational problem formulation 274
8.12.2 Stationary points of Lagrange functional $G(f)$ 277
8.12.3 Elaborating on the solution 277
8.13 Spatio-spectral analysis on 2-sphere 279
8.13.1 Introduction and motivation 279
8.13.2 Procedure and SLSHT definition 280
8.13.3 SLSHT expansion 281
8.13.4 SLSHT distribution and matrix representation 282
8.13.5 Signal inversion 282
8.14 Optimal spatio-spectral concentration of window function 284
8.14.1 SLSHT on Mars topographic data 286
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Convolution on 2-sphere</td>
</tr>
<tr>
<td>9.1 Introduction</td>
</tr>
<tr>
<td>9.2 Convolution on real line revisited</td>
</tr>
<tr>
<td>9.3 Spherical convolution of type 1</td>
</tr>
<tr>
<td>9.3.1 Type 1 convolution operator matrix and kernel</td>
</tr>
<tr>
<td>9.4 Spherical convolution of type 2</td>
</tr>
<tr>
<td>9.4.1 Characterization of type 2 convolution</td>
</tr>
<tr>
<td>9.4.2 Equivalence between type 1 and 2 convolutions</td>
</tr>
<tr>
<td>9.5 Spherical convolution of type 3</td>
</tr>
<tr>
<td>9.5.1 Alternative characterization of type 3 convolution</td>
</tr>
<tr>
<td>9.6 Commutative anisotropic convolution</td>
</tr>
<tr>
<td>9.6.1 Requirements for convolution on 2-sphere</td>
</tr>
<tr>
<td>9.6.2 A starting point</td>
</tr>
<tr>
<td>9.6.3 Establishing commutativity</td>
</tr>
<tr>
<td>9.6.4 Graphical depiction</td>
</tr>
<tr>
<td>9.6.5 Spectral analysis</td>
</tr>
<tr>
<td>9.6.6 Operator matrix elements</td>
</tr>
<tr>
<td>9.6.7 Special case — one function is azimuthally symmetric</td>
</tr>
<tr>
<td>9.7 Alt-azimuth anisotropic convolution on 2-sphere</td>
</tr>
<tr>
<td>9.7.1 Background</td>
</tr>
<tr>
<td>10 Reproducing kernel Hilbert spaces</td>
</tr>
<tr>
<td>10.1 Background to RKHS</td>
</tr>
<tr>
<td>10.1.1 Functions as sticky-note labels</td>
</tr>
<tr>
<td>10.1.2 What is wrong with $L^2(\Omega)$?</td>
</tr>
<tr>
<td>10.2 Constructing Hilbert spaces from continuous functions</td>
</tr>
<tr>
<td>10.2.1 Completing continuous functions</td>
</tr>
<tr>
<td>10.3 Fourier weighted Hilbert spaces</td>
</tr>
<tr>
<td>10.3.1 Pass the scalpel, nurse</td>
</tr>
<tr>
<td>10.3.2 Forming a new inner product</td>
</tr>
<tr>
<td>10.3.3 Inner product conditions</td>
</tr>
<tr>
<td>10.3.4 Finite norm condition</td>
</tr>
<tr>
<td>10.3.5 Setting up an isomorphism</td>
</tr>
<tr>
<td>10.3.6 Function test condition</td>
</tr>
<tr>
<td>10.3.7 Fundamental operator</td>
</tr>
<tr>
<td>10.3.8 Weighting sequence considerations</td>
</tr>
<tr>
<td>10.3.9 Orthonormal sequences</td>
</tr>
<tr>
<td>10.3.10 Isomorphism equations</td>
</tr>
<tr>
<td>10.4 O Kernel, Kernel, wherefore art thou Kernel?</td>
</tr>
<tr>
<td>10.4.1 Kernel of an integral operator</td>
</tr>
<tr>
<td>10.4.2 Mercer’s theorem</td>
</tr>
<tr>
<td>10.4.3 Square summable weighting</td>
</tr>
<tr>
<td>10.5 Reproducing kernel Hilbert spaces</td>
</tr>
<tr>
<td>10.5.1 Complete orthonormal functions</td>
</tr>
<tr>
<td>10.5.2 Completeness relation and Dirac delta functions</td>
</tr>
<tr>
<td>10.5.3 Reproducing kernel property</td>
</tr>
<tr>
<td>10.5.4 Feature map and kernel trick</td>
</tr>
<tr>
<td>10.6 RKHS on 2-sphere</td>
</tr>
</tbody>
</table>
Contents

10.6.1 RKHS construction 352
10.6.2 Isomorphism ... 354
10.6.3 Two representation of vectors 354
10.6.4 Closed-form isotropic reproducing kernels 356
10.7 RKHS synopsis ... 359

Answers to problems in Part I
Answers to problems in Chapter 1 362
Answers to problems in Chapter 2 364

Answers to problems in Part II
Answers to problems in Chapter 3 371
Answers to problems in Chapter 4 371
Answers to problems in Chapter 5 377
Answers to problems in Chapter 6 377

Answers to problems in Part III
Answers to problems in Chapter 7 379
Answers to problems in Chapter 8 386
Answers to problems in Chapter 9 388
Answers to problems in Chapter 10 391

Bibliography .. 395
Notation ... 402
Index ... 414
Preface

This is our book on the theory of Hilbert spaces, its methods and usefulness in signal processing research. It is pitched at a graduate student level, but relies only on undergraduate background material. There are many fine books on Hilbert spaces and our intention is not to generate another book to stick on the pile or to be used to level a desk. So from the onset, we have sought to synthesize the book with special goals in mind.

The needs and concerns of researchers in engineering differ from those of the pure sciences. It is difficult to put the finger on what distinguishes the engineering approach that we take. In the end, if a potential use emerges from any result, however abstract, then an engineer would tend to attach greater value to that result. This may serve to distinguish the emphasis given by a mathematician who may be interested in the proof of a foundational concept that links deeply with other areas of mathematics or is part of a long-standing human intellectual endeavor — not that engineering, in comparison, concerns less intellectual pursuits. As an example, Carleson in 1966 proved a conjecture by Luzin in 1915 concerning the almost-everywhere convergence of Fourier series of continuous functions. Carleson’s theorem, as it is called, has its roots in the questions Fourier asked himself, in French presumably, about the nature of convergence of the series named after him. As a result it is important for mathematics, but less clear for engineers.

However, there is an important observation to be made here in that from the time of Fourier’s first results in 1807 to Carleson’s results in 1966, it was more than 150 years and from Fourier to today it is more than 200 years. In these long intervals of time, a lot of very bright people have been thinking about and refining ideas. So to learn any new topic, such as Hilbert spaces, is rather unnatural because it hides the human struggle to understand. Most mathematical treatments have the technical material laid out in a very concise and logical form. As a result the material comes across as a bit dry, at least to many people wanting or needing to learn. It does need livening up. So this book makes an attempt to inject a bit of life into the learning process. There are some mildly risqué characterizations of the founders of the theory and the style of writing is intentionally light and more reflective of the lecturing style than a written discourse. Of these founders we have immense admiration.
As said above, learning is a human endeavor and the material we are learning is the culmination of centuries of efforts of significant people who will be remembered and revered in future centuries, much more than celebrities and world leaders of today. Therefore it is of considerable interest to know why the ideas took so long and what were the stumbling blocks on the way. So one of the special goals of the book is to become comfortable with ideas and get a feeling for how to think about Hilbert spaces in the right way. Armed with the right elementary notions, self-study and taking on more advanced material and extensions are possible. An example is the theory on sets and infinity that Cantor laid down starting in 1873. This led to a proper understanding of the important constructions in Fourier series and generalizations to Hilbert spaces. So in this book we do spend some time on the nature of infinity, which might seem a very non-engineering concern. We defend this because countable infinity is a pillar of the theory, at least to better understand in what sense a Fourier series can represent a function, to understand separability of a space, to understand what breaks when we combine an infinite number of very smooth functions and end up with something unexpected. Cantor’s work is important because of the influence it had on Hilbert and subsequent developments. In addition, we have been intrigued by Cantor’s personal struggles and confrontations with other mathematicians, which contributed to him spending some time in an asylum. And this tends to be true of a number of the central figures that we meet on our journey, such as Cauchy, Bessel, Schmidt and Hilbert. They have an otherworldliness to their personalities and tend to have amusing anecdotes supporting their eccentricities.

Another goal in the book is to not let rigor dominate the material and look to reveal the nub of each result. Once an idea or concept is formulated, then the more technical results can follow, but often we direct the reader to two beautiful books more suited to mathematicians, the elegant (Helmberg, 1969) and the sublime classic (Riesz and Sz.-Nagy, 1990). Mathematician Weyl Hermann (1885–1955) was quoted as saying:

“My work always tried to unite the truth with the beautiful, but when I had to choose one or the other, I usually chose the beautiful.”

This reveals a lot about Weyl — a student of Hilbert, his successor at Göttingen, and a leading mathematician of the twentieth century — and what really motivated his work and his fallibility. We are not in his league, nor aspire to be, but we have a similar weakness for revealing intuitive and direct demonstrations for results even when the approach might lack absolute rigor or skip some technicalities.

The book comes in three parts as revealed in the table of contents. As an alternative to the contents, in engineering terms, Part I is mostly about signals, Part II is about systems and Part III puts the theory into action. Part III reflects material closer to our research interests, but distinguishes itself from the standard time domain signals and systems which are a feature of many engineering texts. We provide quite a lengthy treatment of signals and systems where the domain is the 2-sphere where the power of Hilbert spaces lays bare strong analogies with time domain signal processing. The final chapter of the book, Chapter 10, provides an accessible, somewhat original, treatment on reproducing kernel Hilbert
spaces (RKHS) which draws on many theoretical aspects developed in all other chapters.

Some of the research results presented in Part III, especially in Chapter 8 and Chapter 9, have stemmed from joint work with our former and current PhD students. This research was supported under Australian Research Council’s Discovery Projects funding scheme (project number DP1094350). We are also grateful to Zubair Khalid for proofreading many parts of the book and providing useful feedback and for some simulation results in Chapter 8. We acknowledge the support and encouragement of our colleagues and students at the Australian National University. Last, but not least, special thanks go to Andrew Hore, our cartoonist/illustrator, http://funnyworksoz.com/, who did a wonderful job with the illustration of characters that you see throughout the book. We do hope that, like us, you enjoy these lively and detailed illustrations.