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Synopsis

This book studies the mathematical aspect of path integrals and Hamiltonians –
which emerge from the formulation of quantum mechanics. The theoretical frame-
work of quantum mechanics provides the mathematical tools for studying both
quantum indeterminacy and classical randomness. Many problems arising in quan-
tum mechanics as well as in vastly different fields such as finance and economics
can be addressed by the mathematics of quantum mechanics, or quantum mathe-
matics in short. All the topics and subjects in the various chapters have been specif-
ically chosen to illustrate the structure of quantum mathematics, and are not tied to
any specific discipline, be it quantum mechanics or stochastic systems.

The book is divided into the following six parts, in accordance with the Chapter
dependency flowchart given below.

• Part one addresses the Fundamental principles of path integrals and (Hamilto-
nian) operators and consists of five chapters. Chapter 2 is on the Mathematical
structure of quantum mechanics and introduces the mathematical framework that
emerges from the quantum principle. Chapters 3 to 6 discuss the mathematical
pillars of quantum mathematics, starting from the Feynman path integral, sum-
marizing Hamiltonian mechanics and introducing path integral quantization.

• Part two is on Stochastic processes. Stochastic systems are dissipative and are
shown to be effectively modeled by the path integral. Chapter 7 is focused on the
application of quantum mathematics to classical random systems and to stochas-
tic processes.

• Part three discusses Discrete degrees of freedom. Chapters 8 and 9 discuss the
simplest quantum mechanical degree of freedom, namely the double valued
Ising spin. The Ising model is discussed in some detail as this model contains all
the essential ideas that unfold later for more complex degrees of freedom. The
general properties of path integrals and Hamiltonians are discussed in the con-
text of the Ising spin. Chapter 10 on Fermions introduces a degree of freedom
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that is essentially discrete – but is represented by fermionic variables that are dis-
tinct from real variables. The calculus of fermions, including the key structures
of quantum mathematics such as the Hamiltonian, state space, and path integrals
are discussed in some detail.

• Part four covers Quadratic path integrals. Chapter 11 is on the simple harmonic
oscillator – one of the prime exemplars of quantum mechanics – and it is studied
using both the Hamiltonian and path integral approach. In Chapter 12 different
types of Gaussian path integrals are evaluated using techniques that are useful
for analyzing and solving path integrals.

• Part five is on the Acceleration action. An action with an acceleration term is
defined for Euclidean time and is shown to have a novel structure not present in
usual quantum mechanics. In Chapter 13, the Lagrangian and path integral are
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Synopsis 3

analyzed and shown to be equivalent to a constrained system. The Hamiltonian
is obtained using the Dirac constraint method. In Chapter 14, the acceleration
Hamiltonian is shown to be pseudo-Hermitian and its state space and propagator
are derived. Chapter 15 examines a critical point of the acceleration action and
the Hamiltonian is shown to be essentially non-Hermitian, being block diagonal
and with each block being a Jordan block.

• Part six is on Nonlinear path integrals. Chapter 16 studies the nonlinear quartic
Lagrangian to illustrate the qualitatively new features that nonlinear path inte-
grals exhibit. The double well potential is studied in some detail as an exemplar
of nonlinear path integrals that can be analyzed using the semi-classical expan-
sion. And lastly, in Chapter 17 degrees of freedom are analyzed that take values
in a compact manifold; these systems have a nonlinearity that arises from the
nature of the degree of freedom itself – rather than from a nonlinear piece in
the Lagrangian. Semi-classical expansions of the path integral about multiple
classical solutions, classified by a winding number and path integrals on curved
manifolds, are briefly touched upon.
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Part one

Fundamental principles
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2

The mathematical structure of quantum mechanics

An examination of the postulates of quantum mechanics reveals a number of
fundamental mathematical constructs that form its theoretical underpinnings.
Many of the results that are summarized in this Chapter will only become clear
after reading the rest of the book and a re-reading may be in order.

The dynamical variables of classical mechanics are superseded by the quantum
degree of freedom. An exhaustive and complete description of the indeterminate
degree of freedom is given by its state function, which is an element of a state space
that, in general, is an infinite-dimensional linear vector space. The properties of
the indeterminate degree of freedom are extracted from its state vector by the linear
action of operators representing experimentally observable quantities. Repeated
applications of the operators on the state function yield the average value of the
operator for the state [Baaquie (2013e)].

The conceptual framework of quantum mechanics is discussed in Section 2.1.
The concepts of degree of freedom, state space and operators are briefly reviewed
in Sections 2.3–2.5. Three distinct formulations of quantum mechanics emerge
from the superstructure of quantum mechanics and these are briefly summarized in
Sections 2.7–2.9.

2.1 The Copenhagen quantum postulate

The Copenhagen interpretation of quantum mechanics, pioneered by Niels Bohr
and Werner Heisenberg, provides a conceptual framework for the interpretation of
the mathematical constructs of quantum mechanics and is the standard interpreta-
tion that is followed by the majority of practicing physicists [Stapp (1963), Dirac
(1999)].

The Copenhagen interpretation is not universally accepted by the physics com-
munity, with many alternative explanations being proposed for understanding
quantum mechanics [Baaquie (2013e)]. Instead of entering this debate, this book
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8 The mathematical structure of quantum mechanics

is based on the Copenhagen interpretation, which can be summarized by the
following postulates:

• The quantum entity consists of its degree of freedom F and its state vector
ψ(t,F), where t is a real number parameterizing time. The foundation of the
quantum entity is its degree of freedom, which takes a range of values and con-
stitutes a space F . The quantum degree of freedom is completely described by
the quantum state ψ(t,F), a complex valued function of the degree of freedom
that is an element of state space V(F).

• The quantum entity is an inseparable pair, namely, the degree of freedom and
its state vector.

• All physically observable quantities are obtained by applying Hermitian opera-
tors O(F) on the state ψ(t,F).

• Experimental observations collapse the quantum state and repeated observations
yield Eψ [O(F)], which is the expectation value of the operator O(F) for the
state ψ(t,F).

• The Schrödinger equation determines the time dependence of the state vector,
namely of ψ(t,F), but does not determine the process of measurement.

It needs to be emphasized that the state vector ψ(t,F) provides only statistical
information about the quantum entity; the result of any particular experiment is
impossible to predict.1

The organization of the theoretical superstructure of quantum mechanics is
shown in Figure 2.1.

The quantum state ψ(t,F) is a complex number that describes the degree of
freedom and is more fundamental than the observed probabilities, which are always
real positive numbers. The scheme of assigning expectation values to operators,
such as Eψ [O(F)], leads to a generalization of classical probability to quantum
probability and is discussed in detail in Baaquie (2013e).

To give a concrete realization of the Copenhagen quantum postulate, consider a
quantum particle moving in one dimension; the degree of freedom is the real line,
namely F = � = {x|x ∈ (−∞,+∞)} with state ψ(t,�). Consider the position
operator O(x);2 a measurement projects the state to a point x ∈ � and collapses
the quantum state to yield, after repeated measurements

P(t, x) ≡ Eψ [O(x)] = |ψ(t, x)|2, P (t, x) > 0,
∫ +∞

−∞
dxP (t, x) = 1. (2.1)

1 There are special quantum states called eigenstates for which one can exactly predict the outcome of some
experiments. But for even this special case the degree of freedom is indeterminate and can never be directly
observed.

2 The position projection operator O(x) = |x〉〈x|; see Chapter 3.
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2.1 The Copenhagen quantum postulate 9
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Figure 2.1 The theoretical superstructure of quantum mechanics; the quantum
entity is constituted by the degree of freedom F and its state vector, which is an
element of state space V(F); operators O(F) act on the state vector to extract
information about the degree of freedom and lead to the final result EV [O(F)];
only the final result, which is furthest from the quantum entity, is empirically
observed.

Note from Eq. 2.1 that P(t, x) obeys all the requirements to be interpreted as
a probability distribution. A complete description of a quantum system requires
specifying the probability P(t, x) for all the possible projection operators of the
quantum system. For a quantum particle in space, these are labeled by the different
positions x ∈ [−∞,+∞].

The position of the quantum particle is indeterminate and P(t, x) = |ψ(t, x)|2
is the probability of the state vector collapsing at time t and at O(x) – the pro-
jection operator at position x. The moment that the state ψ(t,�) is observed at
specific projection operator O(x), the state ψ(t,�) instantaneously becomes zero
everywhere else. The transition from ψ(t,�) to |ψ(t, x)|2 is an expression of the
collapse of the quantum state. It needs to be emphasized that no classical wave un-
dergoes a collapse on being observed; the collapse of the state ψ(t,�) is a purely
quantum phenomenon.

The pioneers of quantum mechanics termed it as “wave mechanics” since the
Newtonian description of the particle by its trajectory x(t) was replaced by the
state ψ(t,�) that looked like a classical wave that is spread over (all of) space �.
Hence the term “wave function” is used by many physicists for denoting ψ(t,�).

The state ψ(t,F) of a quantum particle is not a classical wave; rather, the only
thing it has in common with a classical wave is that it is sometimes spread over
space. However, there are quantum states that are not spread over space. For ex-
ample, the up and down spin states of a quantum particle exist at a single point;
such quantum states are described by a state that has no dependence on space and
hence is not spread over space.
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10 The mathematical structure of quantum mechanics

In the text, the terms state, quantum state, state function, or state vector are
henceforth used for ψ(t,F), as these are more precise terms than the term wave
function.

The result given in Eq. 2.1 is an expression of the great discovery of quantum
theory, namely, that behind what is directly observed – the outcome of experiments
from which one can compute the probabilities P(t, x) = |ψ(t, x)|2 – there lies
an unobservable world of the probability amplitude that is fully described by the
quantum state ψ(t,F).

2.2 The superstructure of quantum mechanics

The description and dynamics of a quantum entity require an elaborate theoretical
framework. The quantum entity is the foundation of the mathematical superstruc-
ture that consists of five main constructs:

• The quantum degree of freedom space F .
• The quantum state vector ψ(t,F), which is an element of the linear vector state

space V(F).
• The time evolution of ψ(t,F), given by the Schrödinger equation.
• Operators O(F) that act on the state space V(F).
• The process of measurement, with repeated observations yielding the expecta-

tion value of the operators, namely Eψ [O(F)].

The five mathematical pillars of quantum mechanics are shown in Figure 2.2.

2.3 Degree of freedom space F
Recall that in classical mechanics a system is described by dynamical variables,
and its time dependence is given by Newton’s equations of motion. In quantum
mechanics, the description of a quantum entity starts with the generalization of the
classical dynamical variables and, following Dirac (1999), is called the quantum
degree of freedom.

Degree of freedom

 V()

State space Operators Observation

O () [O ()]Eψ

Dynamics

ψ∂ (t, )
∂t

Figure 2.2 The five mathematical pillars of quantum mechanics.
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