Epistemic Game Theory

In everyday life we must often reach decisions while knowing that the outcome will not only depend on our own choice, but also on the choices of others. These situations are the focus of epistemic game theory. Unlike classical game theory, it explores how people may reason about their opponents before they make their final choice in a game. Packed with examples and practical problems based on stories from everyday life, this is the first textbook to explain the principles of epistemic game theory. Each chapter is dedicated to one particular, natural way of reasoning. The book then shows how each of these ways of reasoning will affect the final choices that can rationally be made, and how these choices can be found by iterative procedures. Moreover, it does so in a way that uses elementary mathematics and does not presuppose any previous knowledge of game theory.

Andrés Perea is Associate Professor in the Department of Quantitative Economics, Maastricht University, The Netherlands. He has taught courses on epistemic game theory at several European universities and is the author of Rationality in Extensive Form Games (2001).
Epistemic Game Theory

Reasoning and Choice

Andrés Perea
To my children Maria and Lucas
Contents

List of figures xi
List of tables xiii
Acknowledgments xvii

1 Introduction 1

Part I Standard beliefs in static games

2 Belief in the opponents’ rationality 13
 2.1 Beliefs about the opponent’s choice 13
 2.2 Utility functions 17
 2.3 More than two players 21
 2.4 Choosing rationally 25
 2.5 Strictly dominated choices 30
 2.6 Belief in the opponents’ rationality 37
 2.7 Graphical method 45
 2.8 Algorithm 46
 2.9 Proofs 50
Practical problems 56
Theoretical problems 62
Literature 63

3 Common belief in rationality 68
 3.1 Beliefs about the opponents’ beliefs 68
 3.2 Belief hierarchies 80
 3.3 Epistemic model 85
 3.4 Common belief in rationality 91
 3.5 Graphical method 95
 3.6 Existence 98
 3.7 Algorithm 102
Contents

3.8 Order independence 110
3.9 Proofs 112
Practical problems 118
Theoretical problems 123
Literature 124

4 Simple belief hierarchies 134
4.1 Simple belief hierarchies 134
4.2 Nash equilibrium 146
4.3 Computational method 150
4.4 Belief that opponents hold correct beliefs 161
4.5 Proofs 167
Practical problems 171
Theoretical problems 175
Literature 177

Part II Lexicographic beliefs in static games

5 Primary belief in the opponent’s rationality 187
5.1 Cautious reasoning about the opponent 187
5.2 Lexicographic beliefs 190
5.3 Belief hierarchies and types 195
5.4 Cautious types 199
5.5 Primary belief in the opponent’s rationality 200
5.6 Common full belief in “primary belief in rationality” 202
5.7 Existence 210
5.8 Weakly dominated choices 213
5.9 Algorithm 215
5.10 Proofs 220
Practical problems 234
Theoretical problems 239
Literature 241

6 Respecting the opponent’s preferences 250
6.1 Respecting the opponent’s preferences 250
6.2 Common full belief in “respect of preferences” 253
6.3 Existence 258
6.4 Why elimination of choices does not work 261
6.5 Preference restrictions and likelihood orderings 263
6.6 Algorithm 269
6.7 Order independence 276
6.8 Proofs 278
Practical problems 292

© in this web service Cambridge University Press
www.cambridge.org
Contents

<table>
<thead>
<tr>
<th>Part</th>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical problems</td>
<td>ix</td>
<td>ix</td>
<td>296</td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td></td>
<td>298</td>
</tr>
<tr>
<td>7 Assuming the opponent’s rationality</td>
<td></td>
<td></td>
<td>301</td>
</tr>
<tr>
<td>7.1</td>
<td>Assuming the opponent’s rationality</td>
<td></td>
<td>301</td>
</tr>
<tr>
<td>7.2</td>
<td>Common assumption of rationality</td>
<td></td>
<td>305</td>
</tr>
<tr>
<td>7.3</td>
<td>Algorithm</td>
<td></td>
<td>314</td>
</tr>
<tr>
<td>7.4</td>
<td>Order dependence</td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>7.5</td>
<td>Proofs</td>
<td></td>
<td>321</td>
</tr>
<tr>
<td>Practical problems</td>
<td></td>
<td></td>
<td>332</td>
</tr>
<tr>
<td>Theoretical problems</td>
<td></td>
<td></td>
<td>337</td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td></td>
<td>339</td>
</tr>
<tr>
<td>Part III Conditional beliefs in dynamic games</td>
<td></td>
<td></td>
<td>347</td>
</tr>
<tr>
<td>8 Belief in the opponents’ future rationality</td>
<td></td>
<td></td>
<td>347</td>
</tr>
<tr>
<td>8.1</td>
<td>Belief revision</td>
<td></td>
<td>347</td>
</tr>
<tr>
<td>8.2</td>
<td>Dynamic games</td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>8.3</td>
<td>Conditional beliefs</td>
<td></td>
<td>358</td>
</tr>
<tr>
<td>8.4</td>
<td>Epistemic model</td>
<td></td>
<td>366</td>
</tr>
<tr>
<td>8.5</td>
<td>Belief in the opponents’ future rationality</td>
<td></td>
<td>369</td>
</tr>
<tr>
<td>8.6</td>
<td>Common belief in future rationality</td>
<td></td>
<td>375</td>
</tr>
<tr>
<td>8.7</td>
<td>Existence</td>
<td></td>
<td>379</td>
</tr>
<tr>
<td>8.8</td>
<td>Algorithm</td>
<td></td>
<td>383</td>
</tr>
<tr>
<td>8.9</td>
<td>Order independence</td>
<td></td>
<td>392</td>
</tr>
<tr>
<td>8.10</td>
<td>Backwards order of elimination</td>
<td></td>
<td>397</td>
</tr>
<tr>
<td>8.11</td>
<td>Backward induction</td>
<td></td>
<td>410</td>
</tr>
<tr>
<td>8.12</td>
<td>Games with unobserved past choices</td>
<td></td>
<td>419</td>
</tr>
<tr>
<td>8.13</td>
<td>Bayesian updating</td>
<td></td>
<td>424</td>
</tr>
<tr>
<td>8.14</td>
<td>Proofs</td>
<td></td>
<td>428</td>
</tr>
<tr>
<td>Practical problems</td>
<td></td>
<td></td>
<td>447</td>
</tr>
<tr>
<td>Theoretical problems</td>
<td></td>
<td></td>
<td>453</td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td></td>
<td>454</td>
</tr>
<tr>
<td>9 Strong belief in the opponents’ rationality</td>
<td></td>
<td></td>
<td>468</td>
</tr>
<tr>
<td>9.1</td>
<td>Strong belief in the opponents’ rationality</td>
<td></td>
<td>468</td>
</tr>
<tr>
<td>9.2</td>
<td>Common strong belief in rationality</td>
<td></td>
<td>473</td>
</tr>
<tr>
<td>9.3</td>
<td>Algorithm</td>
<td></td>
<td>483</td>
</tr>
<tr>
<td>9.4</td>
<td>Comparison with backward dominance procedure</td>
<td></td>
<td>493</td>
</tr>
<tr>
<td>9.5</td>
<td>Order dependence</td>
<td></td>
<td>501</td>
</tr>
<tr>
<td>9.6</td>
<td>Rationality orderings</td>
<td></td>
<td>503</td>
</tr>
<tr>
<td>9.7</td>
<td>Bayesian updating</td>
<td></td>
<td>514</td>
</tr>
<tr>
<td>9.8</td>
<td>Proofs</td>
<td></td>
<td>515</td>
</tr>
</tbody>
</table>
Contents

Practical problems 537
Theoretical problems 543
Literature 545

Bibliography 552
Index 559
Figures

1.1 Logical connection between the chapters
2.1 Where to locate my pub?
2.2 A beliefs diagram for “Where to locate my pub?”
2.3 A beliefs diagram for “Going to a party”
2.4 Beliefs diagram for “Waiting for a friend”
2.5 A probabilistic belief in “Waiting for a friend”
2.6 A beliefs diagram for “The traveler’s dilemma”
2.7 A beliefs diagram for “Where to locate my pub?” (II)
2.8 A beliefs diagram for “Going to a party” (II)
2.9 An alternative beliefs diagram for “Going to a party”
2.10 A beliefs diagram for “Waiting for a friend” (II)
2.11 Map for “Where to locate a supermarket?”
2.12 The big race
3.1 A beliefs diagram for “Where to locate my pub?” (III)
3.2 A beliefs diagram for “Going to a party” (III)
3.3 An alternative beliefs diagram for “Going to a party” (II)
3.4 A beliefs diagram for “Going to a party” with new utilities for Barbara
3.5 A beliefs diagram for “Waiting for a friend” (III)
3.6 An extended beliefs diagram for “Where to locate my pub”?
3.7 An extended beliefs diagram for “Waiting for a friend”
3.8 An extended beliefs diagram for “Going to a party” with utilities from Table 3.3
3.9 An alternative extended beliefs diagram for “Going to a party”
3.10 Common belief in rationality is always possible
3.11 Houses for sale in “The mother-in-law”
4.1 A beliefs diagram for “Teaching a lesson”
4.2 A beliefs diagram for “Going to a party” (IV)
4.3 A beliefs diagram for “Movie or party?”
4.4 Suppose that t_i assigns positive probability to t_j and t'_j
4.5 Type t_i must assign probability 1 to a single type t_j for player j
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>A walk through the forest</td>
<td>236</td>
</tr>
<tr>
<td>5.2</td>
<td>Stealing an apple</td>
<td>239</td>
</tr>
<tr>
<td>6.1</td>
<td>Possible hiding places in “Runaway bride”</td>
<td>266</td>
</tr>
<tr>
<td>6.2</td>
<td>Arrangement of tables in “Take a seat”</td>
<td>274</td>
</tr>
<tr>
<td>6.3</td>
<td>Street in “Planting a tree”</td>
<td>293</td>
</tr>
<tr>
<td>6.4</td>
<td>Castle in “Lasergame”</td>
<td>295</td>
</tr>
<tr>
<td>8.1</td>
<td>Painting Chris’ house</td>
<td>348</td>
</tr>
<tr>
<td>8.2</td>
<td>Example of a dynamic game</td>
<td>352</td>
</tr>
<tr>
<td>8.3</td>
<td>Player 1 does not know player 2’s previous choice</td>
<td>353</td>
</tr>
<tr>
<td>8.4</td>
<td>Player 1 forgets information he previously had</td>
<td>356</td>
</tr>
<tr>
<td>8.5</td>
<td>Strategy combinations that lead to an information set</td>
<td>362</td>
</tr>
<tr>
<td>8.6</td>
<td>Painting Chris’ house with restricted price sets</td>
<td>370</td>
</tr>
<tr>
<td>8.7</td>
<td>Painting Chris’ house with an initial offer for you</td>
<td>371</td>
</tr>
<tr>
<td>8.8</td>
<td>Graphical representation of “Two friends and a treasure”</td>
<td>398</td>
</tr>
<tr>
<td>8.9</td>
<td>Round 5 of “The shrinking treasure”</td>
<td>412</td>
</tr>
<tr>
<td>8.10</td>
<td>Round 4 of “The shrinking treasure”</td>
<td>413</td>
</tr>
<tr>
<td>8.11</td>
<td>Round 1 of “The shrinking treasure”</td>
<td>414</td>
</tr>
<tr>
<td>8.12</td>
<td>Reduced decision problem for round 1 of “The shrinking treasure”</td>
<td>415</td>
</tr>
<tr>
<td>8.13</td>
<td>Graphical representation of “Bargaining with unobserved past choices”</td>
<td>420</td>
</tr>
<tr>
<td>8.14</td>
<td>The role of Bayesian updating</td>
<td>427</td>
</tr>
<tr>
<td>8.15</td>
<td>Selling ice cream</td>
<td>449</td>
</tr>
<tr>
<td>9.1</td>
<td>Painting Chris’ house (II)</td>
<td>469</td>
</tr>
<tr>
<td>9.2</td>
<td>Watching TV with Barbara</td>
<td>474</td>
</tr>
<tr>
<td>9.3</td>
<td>The heat of the fight</td>
<td>496</td>
</tr>
<tr>
<td>9.4</td>
<td>A map of the airport in “Time to say goodbye”</td>
<td>542</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Number of customers you would obtain if you believe that Barbara chooses a</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Number of customers you would obtain if you believe that Barbara chooses f</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Your utilities in “Going to a party”</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Alternative utilities in “Going to a party”</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Alternative utilities in “Going to a party” (II)</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Expected utilities for you in “Waiting for a friend”</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Compensation you receive in “The traveler’s dilemma”</td>
<td>36</td>
</tr>
<tr>
<td>2.8</td>
<td>Your expected compensation if you choose price 100 with probability 0.45 and price 300 with probability 0.55</td>
<td>37</td>
</tr>
<tr>
<td>2.9</td>
<td>Utilities for you and Barbara in “Going to a party”</td>
<td>40</td>
</tr>
<tr>
<td>2.10</td>
<td>Reduced game after step 1 in “The traveler’s dilemma”</td>
<td>51</td>
</tr>
<tr>
<td>2.11</td>
<td>Utilities for Barbara, Chris and you in “Going to a party”</td>
<td>59</td>
</tr>
<tr>
<td>2.12</td>
<td>New utilities for Chris in “Going to a party”</td>
<td>60</td>
</tr>
<tr>
<td>3.1</td>
<td>Number of customers you would obtain if you believe that Barbara will only choose from ${c, d, e}$</td>
<td>70</td>
</tr>
<tr>
<td>3.2</td>
<td>Utilities for you and Barbara in “Going to a party” (II)</td>
<td>72</td>
</tr>
<tr>
<td>3.3</td>
<td>New utilities for Barbara in “Going to a party”</td>
<td>74</td>
</tr>
<tr>
<td>3.4</td>
<td>An epistemic model for “Going to a party” with utilities from Table 3.3</td>
<td>88</td>
</tr>
<tr>
<td>3.5</td>
<td>An epistemic model for “Waiting for a friend”</td>
<td>89</td>
</tr>
<tr>
<td>3.6</td>
<td>An alternative epistemic model for “Going to a party”</td>
<td>93</td>
</tr>
<tr>
<td>3.7</td>
<td>Epistemic model for “Going to a party,” deduced from the cycle of arrows in Figure 3.10</td>
<td>100</td>
</tr>
<tr>
<td>3.8</td>
<td>Compensation that you and Barbara receive in “The traveler’s dilemma”</td>
<td>108</td>
</tr>
<tr>
<td>3.9</td>
<td>Reduced game after step 1 in “The traveler’s dilemma” (II)</td>
<td>108</td>
</tr>
<tr>
<td>3.10</td>
<td>Reduced game obtained after step 2 in “The traveler’s dilemma”</td>
<td>108</td>
</tr>
<tr>
<td>4.1</td>
<td>Utilities for you and the teacher in “Teaching a lesson”</td>
<td>135</td>
</tr>
</tbody>
</table>
List of tables

4.2 Utilities for Barbara and you in “Going to a party” 139
4.3 Utilities for you and the teacher in “Teaching a lesson” (II) 153
4.4 Utilities for Barbara and you in “Going to a party” (bis) 155
4.5 Utilities for you, Barbara and Chris in “Movie or party?” 159
4.6 Utilities in “Summer holiday” 174
5.1 Utilities for you and Barbara in “Should I call or not?” 188
5.2 Utilities for you and Barbara in “Where to read my book?” 190
5.3 Some lexicographic beliefs you can hold about Barbara’s choice in “Where to read my book?” 192
5.4 An epistemic model with lexicographic beliefs for “Where to read my book?” 198
5.5 An epistemic model with lexicographic beliefs for “Should I call or not?” 205
5.6 An epistemic model with lexicographic beliefs for “Where to read my book?” (II) 206
5.7 Utilities for you and the teacher in “Teaching a lesson” (III) 207
5.8 Reduced game after eliminating your irrational choice Wed 207
5.9 Reduced game after eliminating the teacher’s choice Thu 208
5.10 Reduced game after eliminating your choice Tue 208
5.11 Reduced game after eliminating the teacher’s choice Wed 209
5.12 Reduced game after eliminating your choice Mon 209
5.13 Reduced game after eliminating the teacher’s choice Tue 209
5.14 An epistemic model with lexicographic beliefs for “Teaching a lesson” 210
5.15 Utilities for you and Barbara in “Hide-and-seek” 211
5.16 “Teaching a lesson” with an additional choice Thu for you 219
6.1 Utilities for you and Barbara in “Where to read my book?” (II) 251
6.2 An epistemic model for “Where to read my book?” 251
6.3 Utilities for you and Barbara in “Dividing a pizza” 256
6.4 An epistemic model for “Dividing a pizza” 257
6.5 Utilities for you and Barbara in “Hide-and-seek” (II) 259
6.6 Utilities for you and Barbara in “Spy game” 262
6.7 An epistemic model for “Spy game” 262
6.8 Utilities for you and Barbara in “Runaway bride” 267
6.9 An epistemic model for “Runaway bride” 268
6.10 Utilities for you and Barbara in “Take a seat” 275
6.11 An epistemic model for “Take a seat” 276
6.12 Utilities for you and Barbara in “A historical trip” 294
7.1 Utilities for you and Barbara in “Spy game” (II) 302
7.2 An epistemic model for “Spy game” (II) 304
7.3 An epistemic model for “Spy game” (III) 304
7.4 Utilities for you and Barbara in “Dividing a pizza” (II) 307
7.5 An epistemic model for “Dividing a pizza” (II) 309
List of tables

7.6 An epistemic model for “Spy game” (IV) 313
7.7 Utilities for you and Barbara in “Take a seat” (II) 319
7.8 Utilities for you and Barbara in “Where to read my book?” (III) 321
7.9 On self-admissible pairs of choice sets 339
8.1 An epistemic model for “Painting Chris’ house” 368
8.2 An epistemic model for the game in Figure 8.2 369
8.3 An epistemic model for the game in Figure 8.7 372
8.4 An alternative epistemic model for “Painting Chris’ house” 377
8.5 An alternative epistemic model for the game in Figure 8.7 379
8.6 Full decision problems in the game of Figure 8.7 384
8.7 Decision problems after step 1 in the game of Figure 8.7 385
8.8 Decision problems after step 2 in the game of Figure 8.7 386
8.9 Decision problems after step 3 in the game of Figure 8.7 387
8.10 Full decision problems in the game of Figure 8.1 391
8.11 Decision problems after step 1 in the game of Figure 8.1 391
8.12 Decision problems after step 2 in the game of Figure 8.1 392
8.13 Decision problems after step 3 in the game of Figure 8.1 392
8.14 Changing the order of elimination in the game of Figure 8.1 393
8.15 Changing the order of elimination in the game of Figure 8.1 (II) 394
8.16 Full decision problem at h_4 in “Two friends and a treasure” 399
8.17 Simplified full decision problem at h_4 in “Two friends and a treasure” 400
8.18 Full decision problem at h_2 in “Two friends and a treasure” 400
8.19 Full decision problem at h_1 in “Two friends and a treasure” 400
8.20 Reduced decision problem at h_1 in “Two friends and a treasure” after first round of elimination 401
8.21 Final decision problem at h_1 in “Two friends and a treasure” 401
8.22 Final decision problem at h_3 in “Two friends and a treasure” 402
8.23 Reduced decision problem at \emptyset in “Two friends and a treasure” after first round of elimination 402
8.24 Final decision problem at \emptyset in “Two friends and a treasure” 403
8.25 Stage 1 of “Bargaining with commitment” 408
8.26 Reduced decision problem at \emptyset in “Bargaining with commitment” 410
8.27 Decision problems at h_1, h_2, h_3 and h_4 in “Bargaining with unobserved past choices” 422
8.28 Reduced decision problems at h_1, h_2, h_3 and h_4 in “Bargaining with unobserved past choices” 423
8.29 Decision problem at \emptyset in “Bargaining with unobserved past choices” 424
8.30 Reduced decision problem at \emptyset in “Bargaining with unobserved past choices” 424
8.31 Final decision problem at \emptyset in “Bargaining with unobserved past choices” 424
List of tables

8.32 An epistemic model for the game in Figure 8.14 427
8.33 The utilities for you and Barbara in “Two parties in a row” 448
9.1 An epistemic model for “Painting Chris’ house” (II) 471
9.2 Another epistemic model for “Painting Chris’ house” 473
9.3 An epistemic model for “Watching TV with Barbara” 476
9.4 Full decision problems in “Painting Chris’ house” 489
9.5 Reduced decision problems after step 1 in “Painting Chris’ house” 489
9.6 Final decision problems after step 2 in “Painting Chris’ house” 490
9.7 Full decision problems in “Watching TV with Barbara” 490
9.8 Reduced decision problems after step 1 in “Watching TV with Barbara” 491
9.9 Reduced decision problems after step 2 in “Watching TV with Barbara” 491
9.10 Reduced decision problems after step 3 in “Watching TV with Barbara” 492
9.11 Reduced decision problems after step 4 in “Watching TV with Barbara” 492
9.12 Final decision problems after step 5 in “Watching TV with Barbara” 493
9.13 Full decision problems in “The heat of the fight” 497
9.14 Reduced decision problems after step 1 of the iterated conditional dominance procedure in “The heat of the fight” 498
9.15 Final decision problems for the iterated conditional dominance procedure in “The heat of the fight” 499
9.16 Changing the order of elimination in “Painting Chris’ house”: Step 1 502
9.17 Changing the order of elimination in “Painting Chris’ house”: Step 2 502
9.18 Changing the order of elimination in “Painting Chris’ house”: Step 3 503
9.19 The reduced decision problems $\Gamma^k(\ell)$ for the example “Watching TV with Barbara” 505
9.20 Utilities for you, Barbara and Chris in “Dinner for three” 541
Acknowledgments

The idea for writing this book came to me during my Christmas holiday on Mallorca in 2006. A few weeks later, when I wrote up my first sentences, I was suddenly asked to give a mini-course on epistemic game theory at the Max Planck Institute of Economics in Jena. The lectures I prepared for that course have shaped this book in a very important way, as the structure of this book closely corresponds to the structure of that first mini-course. In fact, the course in Jena marked the beginning of a continuous and fruitful cross-fertilization between my book on the one hand, and my epistemic game theory course on the other hand – I have often used examples and ideas from the course for my book, whereas at other times I have used new ingredients from the book to improve the course. Moreover, the various courses I have given at universities across Europe have served as an extremely useful test case for the book. I would therefore like to thank the following universities and institutes for allowing me to give a course on epistemic game theory: the Max Planck Institute of Economics in Jena (Germany), Maastricht University (The Netherlands), Universidad Carlos III de Madrid (Spain), the University of Amsterdam (The Netherlands), the University of Lausanne (Switzerland) and Aarhus University (Denmark). The feedback I received from the various audiences at these places has helped me to substantially improve parts of this book. I would therefore like to thank all the students and researchers who have attended some of these courses.

Among the many people who have contributed to this book there are two who have played an extraordinary role. First, Geir Asheim, who introduced me to the wonderful world of epistemic game theory some thirteen years ago, and who guided me during my first steps on that planet. Without Geir, I would probably not have written this book. I am also very grateful to my colleague and dear friend Christian Bach, who has carefully read the entire book – and probably knows the book better than I do, who continuously provided me with fruitful comments and suggestions on the book, with whom I had the pleasure to teach the epistemic game theory course in Maastricht, and with whom I have had many inspiring discussions on epistemic game theory. Without Christian, the book would not have been the same.
xviii Acknowledgments

During the writing process I have received very valuable feedback from the following people who have read parts of the book (in alphabetical order): Luca Aberduci, Geir Asheim, Christian Bach, Pierpaolo Battigalli, Christine Clavien, János Flesch, Amanda Friedenberg, Herbert Gintis, Jens Harbecke, Aviad Heifetz, Willemien Kets, Simon Koesler, Jiwoong Lee, Topi Miettinen, Christian Sachse, Elias Tsakas, Leopoldo Vilcapoma, Alexander Vostroknutov and some anonymous referees for Cambridge University Press. Thank you all for your input! I am particularly indebted to Christian Bach and Aviad Heifetz for their very extensive and detailed remarks on the book.

The cooperation with Cambridge University Press has been a very happy one right from the beginning. A special word of appreciation goes to Chris Harrison for his support during and after the refereeing procedure, and for some valuable advice on the title of this book.

Last but not least I would like to thank the following people for giving me so much positive energy during the writing process: my dear friends Christian Bach, Frédérique Bracoud, Nadine Chlaß and János Flesch, my grandmother Tonnie, my brother Juan, my sister Toñita, my father Andrés, my mother Ans, my children Maria and Lucas, and of course my wife Cati. Thank you all for providing such a warm basis upon which I could build this book!