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Preface

Network information theory aims to establish the fundamental limits on information low

in networks and the optimal coding schemes that achieve these limits. It extends Shan-

non’s fundamental theorems on point-to-point communication and the Ford–Fulkerson

max-lowmin-cut theorem for graphical unicast networks to general networks with mul-

tiple sources and destinations and shared resources. Although the theory is far from com-

plete, many elegant results and techniques have been developed over the past forty years

with potential applications in real-world networks. his book presents these results in a

coherent and simpliied manner that should make the subject accessible to graduate stu-

dents and researchers in electrical engineering, computer science, statistics, and related

ields, as well as to researchers and practitioners in industry.

he irst paper on network information theory was on the two-way channel by Shan-

non (). his was followed a decade later by seminal papers on the broadcast channel

by Cover (), the multiple access channel by Ahlswede (, ) and Liao (),

and distributed lossless compression by Slepian and Wolf (a). hese results spurred

a lurry of research on network information theory from the mid s to the early s

withmanynew results and techniques developed; see the survey papers by van derMeulen

() and El Gamal and Cover (), and the seminal book by Csiszár and Körner

(b). However, many problems, including Shannon’s two-way channel, remained open

and there was little interest in these results from communication theorists or practition-

ers. he period from themid s to themid s represents a “lost decade” for network

information theory during which very few papers were published and many researchers

shited their focus to other areas. he advent of the Internet and wireless communica-

tion, fueled by advances in semiconductor technology, compression and error correction

coding, signal processing, and computer science, revived the interest in this subject and

there has been an explosion of activities in the ield since the mid s. In addition to

progress on old open problems, recent work has dealt with new network models, new

approaches to coding for networks, capacity approximations and scaling laws, and topics

at the intersection of networking and information theory. Some of the techniques devel-

oped in network information theory, such as successive cancellation decoding, multiple

description coding, successive reinement of information, and network coding, are being

implemented in real-world networks.
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xviii Preface

Development of the Book

he idea of writing this book started a long time ago when TomCover and the irst author

considered writing a monograph based on their aforementioned  survey paper. he

irst author then put together a set of handwritten lecture notes and used them to teach

a course on multiple user information theory at Stanford University from  to .

In response to high demand from graduate students in communication and information

theory, he resumed teaching the course in  and updated the early lecture notes with

recent results. hese updated lecture notes were used also in a course at EPFL in the

summer of . In  the second author, who was in the  class, started teaching a

similar course at UC San Diego and the authors decided to collaborate on expanding the

lecture notes into a textbook. Various versions of the lecture notes have been used since

then in courses at Stanford University, UC San Diego, the Chinese University of Hong

Kong, UC Berkeley, Tsinghua University, Seoul National University, University of Notre

Dame, and McGill University among others. he lecture notes were posted on arXiv in

January . his book is based on these notes. Although we have made an efort to

provide a broad coverage of the results in the ield, we do not claim to be all-inclusive.

he explosion in the number of papers on the subject in recent years makes it almost

impossible to provide a complete coverage in a single textbook.

Organization of the Book

We considered several high-level organizations of the material in the book, from source

coding to channel coding or vise versa, from graphical networks to general networks, or

along historical lines. We decided on a pedagogical approach that balances the intro-

duction of new network models and new coding techniques. We irst discuss single-hop

networks and then multihop networks. Within each type of network, we irst study chan-

nel coding settings, followed by their source coding counterparts, and then joint source–

channel coding. here were several important topics that did not it neatly into this or-

ganization, which we grouped under Extensions. he book deals mainly with discrete

memoryless and Gaussian network models because little is known about the limits on in-

formation low for more complexmodels. Focusing on these models also helps us present

the coding schemes and proof techniques in their simplest possible forms.

he irst chapter provides a preview of network information theory using selected ex-

amples from the book. he rest of the material is divided into four parts and a set of

appendices.

Part I. Background (Chapters  and ).We present the needed basic information theory

background, introduce the notion of typicality and related lemmas used throughout the

book, and review Shannon’s point-to-point communication coding theorems.

Part II. Single-hop networks (Chapters  through ).Wediscuss networks with single-

round one-way communication. Here each node is either a sender or a receiver. he

material is divided into three types of communication settings.

∙ Independent messages over noisy channels (Chapters  through ). We discuss noisy

www.cambridge.org/9781107008731
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single-hop network building blocks, beginning with multiple access channels (many-

to-one communication) in Chapter , followed by broadcast channels (one-to-many

communication) in Chapters  and , and interference channels (multiple one-to-one

communications) in Chapter . We split the discussion on broadcast channels for a

pedagogical reason—the study of general broadcast channels in Chapter  requires

techniques that are introduced more simply through the discussion of channels with

state in Chapter . In Chapter , we study Gaussian vector channels, which model

multiple-antenna (multiple-input multiple-output/MIMO) communication systems.

∙ Correlated sources over noiseless links (Chapters  through ). We discuss the source

coding counterparts of the noisy single-hop network building blocks, beginning with

distributed lossless compression in Chapter , followed by lossy compression with

side information in Chapter , distributed lossy compression in Chapter , and mul-

tiple description coding in Chapter . Again we spread the discussion on distributed

compression over three chapters to help develop new ideas gradually.

∙ Correlated sources over noisy channels (Chapter ). We discuss the general setting of

sending uncompressed sources over noisy single-hop networks.

Part III. Multihop networks (Chapters  through ). We discuss networks with

relaying and multiple rounds of communication. Here some of the nodes can act as both

sender and receiver. In an organization parallel to Part II, the material is divided into

three types of settings.

∙ Independent messages over graphical networks (Chapter ).Wediscuss coding for net-

works modeled by graphs beyond simple routing.

∙ Independent messages over noisy networks (Chapters  through ). In Chapter , we

discuss the relay channel, which is a simple two-hop network with a sender, a receiver,

and a relay. We then discuss channelswith feedback and the two-way channel inChap-

ter . We extend results on the relay channel and the two-way channel to general noisy

networks in Chapter . We further discuss approximations and scaling laws for the

capacity of large wireless networks in Chapter .

∙ Correlated sources over graphical networks (Chapter ). We discuss source coding

counterparts of the channel coding problems in Chapters  through .

Part IV. Extensions (Chapters  through ). We study extensions of the theory

discussed in the irst three parts of the book to communication for computing in Chap-

ter , communication with secrecy constraints in Chapter , wireless fading channels in

Chapter , and to problems at the intersection of networking and information theory in

Chapter .

Appendices. To make the book as self-contained as possible, Appendices A, B, and E

provide brief reviews of the necessary background on convex sets and functions, probabil-

ity and estimation, and convex optimization, respectively. Appendices C and D describe

techniques for bounding the cardinality of auxiliary random variables appearing in many

www.cambridge.org/9781107008731
www.cambridge.org


Cambridge University Press
978-1-107-00873-1 — Network Information Theory
Abbas El Gamal , Young-Han Kim 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xx Preface

capacity and rate region characterizations, and the Fourier–Motzkin elimination proce-

dure, respectively.

Presentation of the Material

Each chapter typically contains both teaching material and advanced topics. Starred sec-

tions contain topics that are either too technical to be discussed in detail or are not essen-

tial to the main low of the material. he chapter ends with a bulleted summary of key

points and open problems, bibliographic notes, and problems on missing proof steps in

the text followed by exercises around the key ideas. Some of the more technical and less

central proofs are delegated to appendices at the end of each chapter in order to help the

reader focus on the main ideas and techniques.

he book follows the adage “a picture is worth a thousand words.” We use illustra-

tions and examples to provide intuitive explanations of models and concepts. he proofs

follow the principle of making everything as simple as possible but not simpler. We use

elementary tools and techniques, requiring only basic knowledge of probability and some

level of mathematical maturity, for example, at the level of a irst course on information

theory. he achievability proofs are based on joint typicality, which was introduced by

Shannon in his  paper and further developed in the s by Forney and Cover. We

take this approach one step further by developing a set of simple lemmas to reduce the

repetitiveness in the proofs. We show how the proofs for discrete memoryless networks

can be extended to their Gaussian counterparts by using a discretization procedure and

taking appropriate limits. Some of the proofs in the book are new and most of them are

simpliied—and in some cases more rigorous—versions of published proofs.

Use of the Book in Courses

As mentioned earlier, the material in this book has been used in courses on network in-

formation theory at several universities over many years. We hope that the publication of

the bookwill helpmake such a coursemore widely adopted. One of ourmainmotivations

for writing the book, however, is to broaden the audience for network information theory.

Current education of communication and networking engineers encompasses primarily

point-to-point communication and wired networks. At the same time, many of the inno-

vations in modern communication and networked systems concern more eicient use of

shared resources, which is the focus of network information theory. We believe that the

next generation of communication and networking engineers can beneit greatly from

having a working knowledge of network information theory. We have made every efort

to present some of the most relevant material to this audience as simply and clearly as

possible. In particular, the material on Gaussian channels, wireless fading channels, and

Gaussian networks can be readily integrated into an advanced course on wireless com-

munication.

he book can be used as a main text in a one-quarter/semester irst course on infor-

mation theory with emphasis on communication or a one-quarter second course on in-

formation theory, or as a supplementary text in courses on communication, networking,
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Dependence Graphs xxi

computer science, and statistics. Most of the teachingmaterial in the book can be covered

in a two-quarter course sequence. Slides for such courses are posted at http://arxiv.org/abs

/./.

Dependence Graphs

he following graphs depict the dependence of each chapter on its preceding chapters.

Each box contains the chapter number and lighter boxes represent dependence on pre-

vious parts. Solid edges represent required reading and dashed edges represent recom-

mended reading.

Part II.

,















 

2 Information measures and
typicality

3 Point-to-point information theory

4 Multiple access channels

5 Degraded broadcast channels

6 Interference channels

7 Channels with state

8 General broadcast channels

9 Gaussian vector channels

10 Distributed lossless compression

11 Lossy compression with side
information

12 Distributed lossy compression

13 Multiple description coding

14 Joint source–channel coding

Part III.
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15 Graphical networks 18 Discrete memoryless networks

16 Relay channels 19 Gaussian networks

17 Interactive channel coding 20 Compression over graphical networks
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xxii Preface

Part IV.

, 





  

21 Communication for computing 22 Information theoretic secrecy

23 Wireless fading channels 24 Networking and information theory

In addition to the dependence graphs for each part, we provide below some interest-

based dependence graphs.

Communication.
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Notation

We introduce the notation and terminology used throughout the book.

Sets, Scalars, and Vectors

We use lowercase letters x , y, . . . to denote constants and values of random variables. We

use x
j
i = (xi , xi+1 , . . . , x j) to denote an ( j − i + 1)-sequence/column vector for 1 ≤ i ≤ j.

When i = 1, we always drop the subscript, i.e., x j = (x1 , x2 , . . . , x j). Sometimes we write

x, y, . . . for constant vectors with speciied dimensions and x j for the j-th component of

x. Let x(i) be a vector indexed by time i and x j(i) be the j-th component of x(i). he

sequence of these vectors is denoted by xn = (x(1), x(2), . . . , x(n)). An all-one column

vector (1, . . . , 1) with a speciied dimension is denoted by 1.

Let α, β ∈ [0, 1]. hen ᾱ = (1 − α) and α ∗ β = αβ̄ + βᾱ.

Let xn , yn ∈ {0, 1}n be binary n-vectors. hen xn ⊕ yn is the componentwisemodulo-

sum of the two vectors.

Calligraphic letters X ,Y , . . . are used exclusively for inite sets and |X | denotes the
cardinality of the set X . he following notation is used for common sets:

∙ ℝ is the real line and ℝd is the d-dimensional real Euclidean space.

∙ �q is the inite ield GF(q) and �d
q is the d-dimensional vector space over GF(q).

Script letters C , R ,P , . . . are used for subsets of ℝd .

For a pair of integers i ≤ j, we deine the discrete interval [i : j] = {i , i + 1, . . . , j}.
More generally, for a ≥ 0 and integer i ≤ 2a, we deine

∙ [i : 2a) = {i , i + 1, . . . , 2⌊a⌋}, where ⌊a⌋ is the integer part of a, and
∙ [i : 2a] = {i , i + 1, . . . , 2⌈a⌉}, where ⌈a⌉ is the smallest integer ≥ a.

Probability and Random Variables

he probability of an event A is denoted by P(A) and the conditional probability of A

given B is denoted by P(A |B). We use uppercase letters X ,Y , . . . to denote random vari-

ables. he random variables may take values from inite sets X ,Y , . . . or from the real

line ℝ. By convention, X =  means that X is a degenerate random variable (unspeciied

constant) regardless of its support. he probability of the event {X ∈ A} is denoted by

P{X ∈ A}.
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xxvi Notation

In accordance with the notation for constant vectors, we use X
j
i = (Xi , . . . , X j) to de-

note a ( j − i + 1)-sequence/column vector of random variables for 1 ≤ i ≤ j. When i = 1,

we always drop the subscript and use X j = (X1 , . . . , X j).
Let (X1 , . . . , Xk) be a tuple of k random variables and J ⊆ [1 : k]. he subtuple of

random variables with indices from J is denoted by X(J ) = (X j : j ∈ J ). Similarly,

given k random vectors (Xn
1
, . . . , Xn

k ),
Xn(J ) = (Xn

j : j ∈ J ) = (X1(J ), . . . , Xn(J )).
Sometimes we writeX,Y, . . . for random (column) vectors with speciied dimensions

and X j for the j-th component of X. Let X(i) be a random vector indexed by time i

and X j(i) be the j-th component of X(i). We denote the sequence of these vectors by

Xn = (X(1), . . . ,X(n)).
he following notation is used to specify random variables and random vectors.

∙ Xn ∼ p(xn) means that p(xn) is the probability mass function (pmf) of the discrete

random vector Xn. he function pX�(x̃n) denotes the pmf of Xn with argument x̃n,

i.e., pX�(x̃n) = P{Xn = x̃n} for all x̃n ∈ X
n. he function p(xn) without subscript is

understood to be the pmf of the random vector Xn deined over X1 × ⋅ ⋅ ⋅ × Xn.

∙ Xn ∼ f (xn) means that f (xn) is the probability density function (pdf) of the contin-

uous random vector Xn.

∙ Xn ∼ F(xn)means that F(xn) is the cumulative distribution function (cdf) of Xn.

∙ (Xn ,Yn) ∼ p(xn , yn)means that p(xn , yn) is the joint pmf of Xn and Yn.

∙ Yn | {Xn ∈ A} ∼ p(yn |Xn ∈ A) means that p(yn |Xn ∈ A) is the conditional pmf of

Yn given {Xn ∈ A}.
∙ Yn | {Xn = xn} ∼ p(yn|xn) means that p(yn|xn) is the conditional pmf of Yn given{Xn = xn}.
∙ p(yn|xn) is a collection of (conditional) pmfs on Y

n, one for every xn ∈ X
n.

f (yn|xn) and F(yn|xn) are similarly deined.

∙ Yn ∼ pX�(yn)means that Yn has the same pmf as Xn, i.e., p(yn) = pX�(yn).
Similar notation is used for conditional probability distributions.

Given a random variable X, the expected value of its function д(X) is denoted by

EX(д(X)), or E(д(X)) in short. he conditional expectation of X given Y is denoted by

E(X|Y). We use Var(X) = E[(X − E(X))2] to denote the variance of X and Var(X|Y) =
E[(X − E(X|Y))2 |Y] to denote the conditional variance of X given Y .

For random vectors X = Xn and Y = Y k , KX = E[(X − E(X))(X − E(X))T ] denotes
the covariance matrix ofX, KXY = E[(X − E(X))(Y − E(Y))T ] denotes the crosscovariance
matrix of (X,Y), and KX|Y = E[(X − E(X|Y))(X − E(X|Y))T ] = KX−E(X|Y) denotes the con-

ditional covariance matrix of X given Y, that is, the covariance matrix of the minimum

mean squared error (MMSE) for estimating X given Y.
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Common Functions xxvii

We use the following notation for standard random variables and random vectors:

∙ X ∼ Bern(p): X is a Bernoulli random variable with parameter p ∈ [0, 1], i.e.,
X = �1 with probability p,

0 with probability 1 − p.

∙ X ∼ Binom(n, p): X is a binomial random variable with parameters n ≥ 1 and p ∈[0, 1], i.e.,
pX(k) = �n

k
�pk(1 − p)n−k , k ∈ [0 : n].

∙ X ∼ Unif(A): X is a discrete uniform random variable over a inite setA.

X ∼ Unif[i : j] for integers j > i: X is a discrete uniform random variable over [i : j].
∙ X ∼ Unif[a, b] for b > a: X is a continuous uniform random variable over [a, b].
∙ X ∼ N(μ, σ2): X is a Gaussian random variable with mean μ and variance σ2.

Q(x) = P{X > x}, x ∈ ℝ, where X ∼ N(0, 1).
∙ X = Xn ∼ N(μ, K): X is a Gaussian random vector withmean vector μ and covariance

matrix K , i.e.,

f (x) = 1

�(2π)n|K | e−
1

2
(x−μ)�K−1

(x−μ).

We use the notation {Xi} = (X1 , X2 , . . .) to denote a discrete-time random process.

he following notation is used for common random processes:

∙ {Xi} is a Bern(p) process means that (X1 , X2 , . . .) is a sequence of independent and
identically distributed (i.i.d.) Bern(p) random variables.

∙ {Xi} is a WGN(P) process means that (X1 , X2 , . . .) is a sequence of i.i.d. N(0, P) ran-
dom variables. More generally, {Xi ,Yi} is a -WGN(P , ρ) process means that (X1 ,Y1),(X2 ,Y2), . . . are i.i.d. jointly Gaussian random variable pairs with E(X1) = E(Y1) = 0,

E(X2

1
) = E(Y2

1
) = P, and correlation coeicient ρ = E(X1Y1)/P.

We say that X → Y → Z form aMarkov chain if p(x , y, z) = p(x)p(y|x)p(z|y). More

generally, we say that X1 → X2 → X3 → ⋅ ⋅ ⋅ formaMarkov chain if p(xi|x i−1) = p(xi|xi−1)
for i ≥ 2.

Common Functions

he following functions are used frequently. he logarithm function log is assumed to be

base  unless speciied otherwise.

∙ Binary entropy function: H(p) = −p log p − p̄ log p̄ for p ∈ [0, 1].
∙ Gaussian capacity function: C(x) = (1/2) log(1 + x) for x ≥ 0.

∙ Quadratic Gaussian rate function: R(x) = max{(1/2) log x , 0} = (1/2)[log x]+.
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xxviii Notation

є–δ Notation

Weuse є, є� > 0 exclusively to denote “small” constants such that є� < є. Weuse δ(є) > 0 to

denote a function of є that tends to zero as є → 0. When there aremultiple such functions

δ1(є), δ2(є), . . . , δk(є), we denote them all by a generic function δ(є) that tends to zero as
є → 0 with the understanding that δ(є) = max{δ1(є), δ2(є), . . . , δk(є)}. Similarly, we use

єn ≥ 0 to denote a generic function of n that tends to zero as n → ∞.

We say that an ≐ 2nb for some constant b if there exists some δ(є) (with є deined in

the context) such that for n suiciently large,

2n(b−δ(є)) ≤ an ≤ 2n(b+δ(є)).

Matrices

We use uppercase letters A, B , . . . to denote matrices. he entry in the i-th row and the

j-th column of a matrix A is denoted by A(i , j) or A i j . A transpose of a matrix A is

denoted by AT , i.e., AT (i , j) = A( j , i). We use diag(a1 , a2 , . . . , ad) to denote a d × d di-

agonal matrix with diagonal elements a1 , a2 , . . . , ad . he d × d identity matrix is denoted

by Id . he subscript d is omitted when it is clear from the context. For a square matrix A,|A| = det(A) denotes the determinant of A and tr(A) denotes its trace.
A symmetric matrix A is said to be positive deinite (denoted by A ≻ 0) if xTAx > 0

for all x ̸= 0. If instead xTAx ≥ 0 for all x ̸= 0, then the matrix A is said to be positive

semideinite (denoted by A ⪰ 0). For symmetricmatrices A and B of the same dimension,

A ≻ B means that A − B ≻ 0 and A ⪰ B means that A − B ⪰ 0.

A singular value decomposition of an r × t matrixG of rank d is given byG = ΦΓΨT ,

where Φ is an r × d matrix with ΦTΦ = Id , Ψ is a t × d matrix with ΨTΨ = Id , and

Γ = diag(γ1 , . . . , γd) is a d × d positive diagonal matrix.

For a symmetric positive semideinitematrixK with an eigenvalue decompositionK =
ΦΛΦT , we deine its symmetric square root as K1/2 = ΦΛ1/2ΦT , where Λ1/2 is a diagonal

matrix with diagonal elements �Λ ii . Note that K
1/2 is symmetric positive deinite with

K1/2K1/2 = K . We deine the symmetric square root inverseK−1/2 of a symmetric positive

deinite matrix K as the symmetric square root of K−1.

Order Notation

Let д1(N) and д2(N) be nonnegative functions on natural numbers.

∙ д1(N) = o(д2(N))means that д1(N)/д2(N) tends to zero as N → ∞.

∙ д1(N) = O(д2(N)) means that there exist a constant a and an integer n0 such that

д1(N) ≤ aд2(N) for all N > n0.

∙ д1(N) = Ω(д2(N))means that д2(N) = O(д1(N)).
∙ д1(N) = Θ(д2(N))means that д1(N) = O(д2(N)) and д2(N) = O(д1(N)).
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