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CHAPTER 1

Introduction

We introduce the general problem of optimal information low in networks, which is the

focus of network information theory. We then give a preview of the book with pointers

to where the main results can be found.

1.1 NETWORK INFORMATION FLOW PROBLEM

A networked system consists of a set of information sources and communication nodes

connected by a network as depicted in Figure .. Each node observes one or more sources

and wishes to reconstruct other sources or to compute a function based on all the sources.

To perform the required task, the nodes communicate with each other over the network.

∙ What is the limit on the amount of communication needed?

∙ How can this limit be achieved?

Communication network

Figure .. Elements of a networked system. he information sources (shaded cir-
cles) may be data, video, sensor measurements, or biochemical signals; the nodes
(empty circles) may be computers, handsets, sensor nodes, or neurons; and the net-
work may be a wired network, a wireless cellular or ad-hoc network, or a biological
network.
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2 Introduction

hese information low questions have been answered satisfactorily for graphical uni-

cast (single-source single-destination) networks and for point-to-point communication

systems.

1.2 MAX-FLOW MIN-CUT THEOREM

Consider a graphical (wired) network, such as the Internet or a distributed storage system,

modeled by a directed graph (N , E) with link capacitiesC jk bits from node j to node k as

depicted in Figure .. Assume a unicast communication scenario in which source node 

wishes to communicate an R-bit message M to destination node N . What is the network

capacity C , that is, the maximum number of bits R that can be communicated reliably?

he answer is given by themax-lowmin-cut theoremdue to Ford and Fulkerson ()

and Elias, Feinstein, and Shannon (). hey showed that the capacity (maximum low)

is equal to the minimum cut capacity, i.e.,

C = min
S⊂N :1∈S ,N∈S �

C(S),

where C(S) = ∑ j∈S , k∈S � C jk is the capacity of the cut (S , S c). hey also showed that the

capacity is achieved without errors using simple routing at the intermediate (relay) nodes,

that is, the incoming bits at each node are forwarded over its outgoing links. Hence, under

this networked system model, information can be treated as a commodity to be shipped

over a transportation network or electricity to be delivered over a power grid.
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Figure .. Graphical single-source single-destination network.

he max-low min-cut theorem is discussed in more detail in Chapter .

1.3 POINT-TO-POINT INFORMATION THEORY

he graphical unicast network model captures the topology of a point-to-point network

with idealized source and communication link models. At the other extreme, Shannon
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1.3 Point-to-Point Information Theory 3

(, ) studied communication and compression over a single link with more com-

plex source and link (channel) models. He considered the communication system archi-

tecture depicted in Figure ., where a sender wishes to communicate a k-symbol source

sequenceU k to a receiver over a noisy channel. To perform this task, Shannon proposed a

general block coding scheme, where the source sequence is mapped by an encoder into an

n-symbol input sequence Xn(U k) and the received channel output sequenceYn is mapped

by a decoder into an estimate (reconstruction) sequence Û k(Yn). He simpliied the anal-

ysis of this system by proposing simple discrete memoryless models for the source and

the noisy channel, and by using an asymptotic approach to characterize the necessary and

suicient condition for reliable communication.

U k

Encoder Channel Decoder
Xn Yn Û k

Figure .. Shannon’s model of a point-to-point communication system.

Shannon’s ingenious formulation of the point-to-point communication problem led

to the following four fundamental theorems.

Channel coding theorem. Suppose that the source is a maximally compressed k-bit mes-

sage M as in the graphical network case and that the channel is discrete and memoryless

with input X, output Y , and conditional probability p(y|x) that speciies the probability

of receiving the symbol y when x is transmitted. he decoder wishes to ind an estimate

M̂ of the message such that the probability of decoding error P{M̂ ̸= M} does not exceed

a prescribed value Pe . he general problem is to ind the tradeof between the number of

bits k, the block length n, and the probability of error Pe .

his problem is intractable in general. Shannon () realized that the diiculty lies

in analyzing the system for any given inite block length n and reformulated the problem

as one of inding the channel capacity C , which is the maximum communication rate

R = k/n in bits per channel transmissions such that the probability of error can be made

arbitrarily small when the block length n is suiciently large. He established a simple and

elegant characterization of the channel capacityC in terms of the maximum of the mutual

information I(X ;Y) between the channel input X and output Y :

C = max
p(x)

I(X ;Y) bits/transmission.

(See Section . for the deinition of mutual information and its properties.) Unlike the

graphical network case, however, capacity is achieved only asymptotically error-free and

using sophisticated coding.

Lossless source coding theorem. As a “dual” to channel coding, consider the following

lossless data compression setting. he sender wishes to communicate (store) a source

sequence losslessly to a receiver over a noiseless binary channel (memory) with the min-

imum number of bits. Suppose that the source U is discrete and memoryless, that is, it

www.cambridge.org/9781107008731
www.cambridge.org


Cambridge University Press
978-1-107-00873-1 — Network Information Theory
Abbas El Gamal , Young-Han Kim 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

generates an i.i.d. sequence U k . he sender encodes U k at rate R = n/k bits per source

symbol into an n-bit index M(U k) and sends it over the channel. Upon receiving the index

M, the decoder inds an estimate Û k(M) of the source sequence such that the probability

of error P{Û k ̸= U k} is less than a prescribed value. Shannon again formulated the prob-

lem as one of inding the minimum lossless compression rate R∗ when the block length

is arbitrarily large, and showed that it is characterized by the entropy of U :

R∗ = H(U) bits/symbol.

(See Section . for the deinition of entropy and its properties.)

Lossy source coding theorem. Now suppose U k is to be sent over the noiseless binary

channel such that the receiver can reconstruct it with some distortion instead of loss-

lessly. Shannon assumed the per-letter distortion (1/k) ∑
k
i=1 E(d(Ui , Ûi)), where d(u, û)

is a measure of the distortion between the source symbol u and the reconstruction sym-

bol û. He characterized the rate–distortion function R(D), which is the optimal tradeof

between the rate R = n/k and the desired distortion D, as the minimum of the mutual

information between U and Û :

R(D) = min
p(û|u):E(d(U ,Û))≤D

I(U ; Û) bits/symbol.

Source–channel separation theorem. Now we return to the general point-to-point com-

munication system shown in Figure .. Let C be the capacity of the discrete memory-

less channel (DMC) and R(D) be the rate–distortion function of the discrete memoryless

source (DMS), and assume for simplicity that k = n. What is the necessary and suicient

condition for communicating the DMS over the DMC with a prescribed distortion D?

Shannon () showed that R(D) ≤ C is necessary. Since R(D) < C is suicient by the

lossy source coding and channel coding theorems, separate source coding and channel

coding achieves the fundamental limit. Although this result holds only when the code

block length is unbounded, it asserts that using bits as a “universal” interface between

sources and channels—the basis for digital communication—is essentially optimal.

We discuss the above results in detail in Chapter . Shannon’s asymptotic approach to

network performance analysis will be adopted throughout the book.

1.4 NETWORK INFORMATION THEORY

he max-low min-cut theorem and Shannon’s point-to-point information theory have

had a major impact on communication and networking. However, the simplistic model

of a networked information processing system as a single source–destination pair com-

municating over a noisy channel or a graphical network does not capture many important

aspects of real-world networks:

∙ Networked systems have multiple sources and destinations.

∙ he task of the network is oten to compute a function or to make a decision.
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1.4 Network Information Theory 5

∙ Wireless communication uses a shared broadcast medium.

∙ Networked systems involve complex tradeofs between competition for resources and

cooperation for the common good.

∙ Many networks allow for feedback and interactive communication.

∙ Source–channel separation does not hold for networks in general.

∙ Network security is oten a primary concern.

∙ Data from the sources is oten bursty and network topology evolves dynamically.

Network information theory aims to answer the aforementioned information low ques-

tions while capturing some of these aspects of real-world networks. In the following, we

illustrate some of the achievements of this theory using examples from the book.

1.4.1 Multiple Sources and Destinations

Coding for networks with many sources and destinations requires techniques beyond

routing and point-to-point source/channel coding. Consider the following settings.

Graphicalmulticast network. Suppose we wish to send a movie over the Internet to mul-

tiple destinations (multicast). Unlike the unicast case, routing is not optimal in general

even if we model the Internet by a graphical network. Instead, we need to use coding of

incoming packets at the relay nodes.

We illustrate this fact via the famous “butterly network” shown in Figure ., where

source node  wishes to send a -bit message (M1 , M2) ∈ {0, 1}2 to destination nodes 

and . Assume link capacities C jk = 1 for all edges ( j , k). Note that using routing only,

both M1 and M2 must be sent over the edge (4, 5), and hence the message cannot be

communicated to both destination nodes.

However, if we allow the nodes to perform simple modulo- sum operations in ad-

dition to routing, the -bit message can be communicated to both destinations. As illus-

trated in Figure ., relay nodes , , and  forward multiple copies of their incoming bits,
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M̂6
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Figure .. Butterly network. he -bit message (M1 , M2) cannot be sent using
routing to both destination nodes  and .
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6 Introduction

and relay node  sends the modulo- sum of M1 and M2. Using this simple scheme, both

destination nodes  and  can recover the message error-free.
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Figure .. he -bit message can be sent to destination nodes  and  using linear
network coding.

In Chapter , we show that linear network coding, which is a generalization of this

simple scheme, achieves the capacity of an arbitrary graphical multicast network. Exten-

sions of this multicast setting to lossy source coding are discussed in Chapters  and .

Distributed compression. Suppose that a sensor network is used to measure the temper-

ature over a geographical area. he output from each sensor is compressed and sent to

a base station. Although compression is performed separately on each sensor output, it

turns out that using point-to-point compression is not optimal when the sensor outputs

are correlated, for example, because the sensors are located close to each other.

Consider the distributed lossless compression system depicted in Figure .. Two se-

quences Xn
1

and Xn
2

are drawn from correlated discrete memoryless sources (X1 , X2) ∼

p(x1 , x2) and compressed separately into an nR1-bit index M1 and an nR2-bit index M2,

respectively. A receiver (base station) wishes to recover the source sequences from the

index pair (M1 , M2). What is the minimum sum-rate R∗
sum

, that is, the minimum over

R1 + R2 such that both sources can be reconstructed losslessly?

If each sender uses a point-to-point code, then by Shannon’s lossless source coding

theorem, the minimum lossless compression rates for the individual sources are R∗
1
=

H(X1) and R∗
2
= H(X2), respectively; hence the resulting sum-rate is H(X1) + H(X2).

If instead the two sources are jointly encoded, then again by the lossless source coding

theorem, the minimum lossless compression sum-rate is H(X1 , X2), which can be much

smaller than the sum of the individual entropies. For example, let X1 and X2 be binary-

valued sources with pX1 ,X2
(0, 0) = 0.495, pX1 ,X2

(0, 1) = 0.005, pX1 ,X2
(1, 0) = 0.005, and

pX1 ,X2
(1, 1) = 0.495; hence, the sources have the same outcome . of the time. From

the joint pmf, we see that X1 and X2 are both Bern(1/2) sources with entropy H(X1) =

H(X2) = 1 bit per symbol. By comparison, their joint entropy H(X1 , X2) = 1.0808 ≪ 2

bits per symbol pair.

Slepian and Wolf (a) showed that R∗
sum

= H(X1 , X2) and hence that the minimum
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1.4 Network Information Theory 7

Xn
1

Xn
2

Encoder 

Encoder 

Decoder
X̂n
1

, X̂n
2

M1

M2

Figure .. Distributed lossless compression system. Each source sequence Xn
j ,

j = 1, 2, is encoded into an index M j(X
n
j ) ∈ [1 : 2nR � ), and the decoder wishes to

reconstruct the sequences losslessly from (M1 , M2).

sum-rate for distributed compression is asymptotically the same as for centralized com-

pression! his result is discussed in Chapter . Generalizations to distributed lossy com-

pression are discussed in Chapters  and .

Communication for computing. Now suppose that the base station in the tempera-

ture sensor network wishes to compute the average temperature over the geographical

area instead of the individual temperature values. What is the amount of communication

needed?

While in some cases the rate requirement for computing a function of the sources is the

same as that for recovering the sources themselves, it is sometimes signiicantly smaller.

As an example, consider an n-round online game, where in each round Alice and Bob

each select one card without replacement from a virtual hat with three cards labeled , ,

and . he one with the larger number wins. Let Xn and Yn be the sequences of numbers

on Alice and Bob’s cards over the n rounds, respectively. Alice encodes her sequence Xn

into an index M ∈ [1 : 2nR] and sends it to Bob so that he can ind out who won in each

round, that is, ind an estimate Ẑn of the sequence Zi = max{Xi ,Yi} for i ∈ [1 : n], as

shown in Figure .. What is the minimum communication rate R needed?

By the aforementioned Slepian–Wolf result, the minimum rate needed for Bob to re-

construct X is the conditional entropy H(X|Y) = H(X ,Y) − H(Y) = 2/3 bit per round.

By exploiting the structure of the function Z = max{X ,Y}, however, it can be shown that

only 0.5409 bit per round is needed.

his card game example as well as general results on communication for computing

are discussed in Chapter .

Xn

Yn

M Ẑn

Encoder Decoder
(Alice) (Bob)

Figure .. Online game setup. Alice has the card number sequence Xn and Bob
has the card number sequence Yn. Alice encodes her card number sequence into
an index M ∈ [1 : 2nR] and sends it to Bob, who wishes to losslessly reconstruct the
winner sequence Zn.
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8 Introduction

1.4.2 Wireless Networks

Perhaps the most important practical motivation for studying network information the-

ory is to deal with the special nature of wireless channels. We study models for wireless

communication throughout the book.

he irst and simplest wireless channel model we consider is the point-to-point Gauss-

ian channelY = дX + Z depicted in Figure ., where Z ∼ N(0, N0/2) is the receiver noise

and д is the channel gain. Shannon showed that the capacity of this channel under a

prescribed average transmission power constraint P on X, i.e., ∑
n
i=1 X

2

i ≤ nP for each

codeword Xn, has the simple characterization

C =
1

2
log(1 + S) = C(S),

where S = 2д2P/N0 is the received signal-to-noise ratio (SNR).

X
д

Y

Z ∼ N(0, N0/2)

Figure .. Gaussian point-to-point channel.

A wireless network can be turned into a set of separate point-to-point Gaussian chan-

nels via time or frequency division. his traditional approach to wireless communication,

however, does not take full advantage of the broadcast nature of the wireless medium as

illustrated in the following example.

Gaussian broadcast channel. he downlink of a wireless system is modeled by the Gauss-

ian broadcast channel

Y1 = д1X + Z1 ,

Y2 = д2X + Z2 ,

as depicted in Figure .. Here Z1 ∼ N(0, N0/2) and Z2 ∼ N(0, N0/2) are the receiver noise

components, and д2
1
> д2

2
, that is, the channel to receiver  is stronger than the channel to

receiver . Deine the SNRs for receiver j = 1, 2 as S j = 2д2jP/N0. Assume average power

constraint P on X.

he sender wishes to communicate a message M j at rate R j to receiver j for j = 1, 2.

What is the capacity region C of this channel, namely, the set of rate pairs (R1 , R2) such

that the probability of decoding error at both receivers can be made arbitrarily small as

the code block length becomes large?

If we send the messages M1 and M2 in diferent time intervals or frequency bands,

then we can reliably communicate at rate pairs in the “time-division region” R shown in

Figure .. Cover () showed that higher rates can be achieved by adding the code-

words for the two messages and sending this sum over the entire transmission block. he

www.cambridge.org/9781107008731
www.cambridge.org


Cambridge University Press
978-1-107-00873-1 — Network Information Theory
Abbas El Gamal , Young-Han Kim 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.4 Network Information Theory 9

stronger receiver  decodes for both codewords, while the weaker receiver  treats the

other codeword as noise and decodes only for its own codeword. Using this superposition

coding scheme, the sender can reliably communicate the messages at any rate pair in the

capacity region C shown in Figure .b, which is strictly larger than the time-division

region R.

X

д1

д2

Z1 ∼ N(0, N0/2)

Z2 ∼ N(0, N0/2)

Y1

Y2

R

C

R1

R2

C(S2)

C(S1)

(a) (b)

Figure .. (a) Gaussian broadcast channel with SNRs S1 = д2
1
P > д2

2
P = S2. (b) he

time-division inner bound R and the capacity region C .

his superposition scheme and related results are detailed in Chapter . Similar im-

provements in rates can be achieved for the uplink (multiple access channel) and the in-

tercell interference (interference channel), as discussed in Chapters  and , respectively.

Gaussian vector broadcast channel. Multiple transmitter and receiver antennas are com-

monly used to enhance the performance of wireless communication systems. Coding

for these multiple-input multiple-output (MIMO) channels, however, requires techniques

beyond single-antenna (scalar) channels. For example, consider the downlink of a MIMO

wireless system modeled by the Gaussian vector broadcast channel

Y1 = G1X + Z1 ,

Y2 = G2X + Z2 ,

where G1 , G2 are r-by-t channel gain matrices and Z1 ∼ N(0, Ir) and Z2 ∼ N(0, Ir) are

noise components. Assume average power constraint P on X. Note that unlike the single-

antenna broadcast channel shown in Figure ., in the vector case neither receiver is nec-

essarily stronger than the other. he optimum coding scheme is based on the following

writing on dirty paper result. Suppose we wish to communicate a message over a Gaussian

vector channel,

Y = GX + S + Z

where S ∼ N(0, KS) is an interference signal, which is independent of the Gaussian noise
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10 Introduction

Z ∼ N(0, Ir). Assume average power constraint P on X. When the interference sequence

Sn is available at the receiver, it can be simply subtracted from the received sequence and

hence the channel capacity is the same as when there is no interference. Now suppose that

the interference sequence is available only at the sender. Because of the power constraint,

it is not always possible to presubtract the interference from the transmitted codeword.

It turns out, however, that the efect of interference can still be completely canceled via

judicious precoding and hence the capacity is again the same as that with no interference!

his scheme is applied to the Gaussian vector broadcast channel as follows.

∙ To communicate the message M2 to receiver , consider the channel Y2 = G2X2 +

G2X1 + Z2 with input X2, Gaussian interference G2X1, and additive Gaussian noise

Z2. Receiver  recovers M2 while treating the interference signal G2X1 as part of the

noise.

∙ To communicate the message M1 to receiver , consider the channel Y1 = G1X1 +

G1X2 + Z1, with input X1, Gaussian interference G1X2, and additive Gaussian noise

Z1, where the interference sequence G1X
n
2
(M2) is available at the sender. By the writ-

ing on dirty paper result, the transmission rate of M1 can be as high as that for the

channel Y�
1
= G1X1 + Z1 without interference.

he writing on dirty paper result is discussed in detail in Chapter . he optimality of this

scheme for the Gaussian vector broadcast channel is established in Chapter .

Gaussian relay channel. An ad-hoc or a mesh wireless network is modeled by a Gaussian

multihop network in which nodes can act as relays to help other nodes communicate their

messages. Again reducing such a network to a set of links using time or frequency division

does not take full advantage of the shared wireless medium, and the rate can be greatly

increased via node cooperation.

As a canonical example, consider the -node relay channel depicted in Figure .a.

Here node  is located on the line between nodes  and  as shown in Figure .b. We

assume that the channel gain from node k to node j is д jk = r−3/2
jk

, where r jk is the distance

between nodes k and j. Hence д31 = r−3/2
31

, д21 = r−3/2
21

, and д32 = (r31 − r21)
−3/2. Assume

average power constraint P on each of X1 and X2.

Suppose that sender node  wishes to communicate a message M to receiver node 

with the help of relay node . On the one extreme, the sender and the receiver can commu-

nicate directly without help from the relay. On the other extreme, we can use a multihop

scheme where the relay plays a pivotal role in the communication. In this commonly used

scheme, the sender transmits the message to the relay in the irst hop and the relay recov-

ers the message and transmits it to the receiver concurrently in the second hop, causing

interference to the irst-hop communication. If the receiver is far away from the sender,

that is, the distance r31 is large, this scheme performs well because the interference due to

the concurrent transmission is weak. However, when r31 is not large, the interference can

adversely afect the communication of the message.

In Chapter , we present several coding schemes that outperform both direct trans-

mission and multihop.
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1.4 Network Information Theory 11

X1

д21

Z2 ∼ N(0, N0/2)

Y2 X2 д32

Z3 ∼ N(0, N0/2)

Y3д31

(a)

1 2 3

r21

r31

(b)

Figure .. (a) Gaussian relay channel. (b) Node placements: relay node  is placed
along the lines between sender node  and receiver node .

∙ Decode–forward. he direct transmission and multihop schemes are combined and

further enhanced via coherent transmission by the sender and the relay. he receiver

decodes for the signals from both hops instead of treating the transmission from the

irst hop as interference. Decode–forward performs well when the relay is closer to

the sender, i.e., r21 < (1/2)r31.

∙ Compress–forward. As an alternative to the “digital-to-digital” relay interface used

in multihop and decode–forward, the compress–forward scheme uses an “analog-to-

digital” interface in which the relay compresses the received signal and sends the com-

pression index to the receiver. Compress–forward performs well when the relay is

closer to the receiver.

∙ Amplify–forward. Decode–forward and compress–forward require sophisticated op-

erations at the nodes. he amplify–forward scheme provides a much simpler “analog-

to-analog” interface in which the relay scales the incoming signal and transmits it

to the receiver. In spite of its simplicity, amplify–forward can outperform decode–

forward when the relay is closer to the receiver.

he performance of the above relaying schemes are compared in Figure .. In general,

it can be shown that both decode–forward and compress–forward achieve rates within

1/2 bit of the capacity, while amplify–forward achieves rates within 1 bit of the capacity.

We extend the above coding schemes to general multihop networks in Chapters 

and . In particular, we show that extending compress–forward leads to a noisy network

coding scheme that includes network coding for graphical multicast networks as a special

case. When applied to Gaussian multihop multicast networks, this noisy network coding

scheme achieves within a constant gap of the capacity independent of network topology,
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Figure .. Comparison of the achievable rates for the Gaussian relay channel us-
ing direct transmission (RDT), multihop (RMH), decode–forward (RDF), compress–
forward (RCF), and amplify–forward (RAF) for N0/2 = 1, r31 = 1 and P = 10.

channel parameters, and power constraints, while extensions of the other schemes do not

yield such performance guarantees.

To study the efect of interference and path loss in large wireless networks, in Chap-

ter  we also investigate how capacity scales with the network size. We show that relaying

and spatial reuse of frequency/time can greatly increase the rates over naive direct trans-

mission with time division.

Wireless fading channels. Wireless channels are time varying due to scattering of signals

over multiple paths and user mobility. In Chapter , we study fading channel models

that capture these efects by allowing the gains in the Gaussian channels to vary randomly

with time. In some settings, channel capacity in the Shannon sense is not well deined.

We introduce diferent coding approaches and corresponding performance metrics that

are useful in practice.

1.4.3 Interactive Communication

Real-world networks allow for feedback and node interactions. Shannon () showed

that feedback does not increase the capacity of a memoryless channel. Feedback, how-

ever, can help simplify coding and improve reliability. his is illustrated in the following

example.

Binary erasure channel with feedback. he binary erasure channel is a DMC with binary

input X ∈ {0, 1} and ternary output Y ∈ {0, 1, e}. Each transmitted bit ( or ) is erased
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1.4 Network Information Theory 13

(Y = e) with probability p. he capacity of this channel is 1 − p and achieving it requires

sophisticated block coding. Now suppose that noiseless causal feedback from the receiver

to the sender is present, that is, the sender at each time i has access to all previous received

symbols Y i−1. hen we can achieve the capacity simply by retransmitting each erased

bit. Using this simple feedback scheme, on average n = k/(1 − p) transmissions suice to

reliably communicate k bits of information.

Unlike point-to-point communication, feedback can achieve higher rates in networks

with multiple senders/receivers.

Binary erasure multiple access channel with feedback. Consider the multiple access

channel (MAC) with feedback depicted in Figure ., where the channel inputs X1 and

X2 are binary and the channel output Y = X1 + X2 is ternary, i.e., Y ∈ {0, 1, 2}. Suppose

that senders  and  wish to communicate independent messages M1 and M2, respectively,

to the receiver at the same rate R. Without feedback, the symmetric capacity, which is the

maximum rate R, is maxp(x1)p(x2)
H(Y) = 3/4 bits/transmission.

Noiseless causal feedback allows the senders to cooperate in communicating their mes-

sages and hence to achieve higher symmetric rates than with no feedback. To illustrate

such cooperation, suppose that each sender irst transmits its k-bit message uncoded.

On average k/2 bits are “erased” (that is, Y = 0 + 1 = 1 + 0 = 1 is received). Since the

senders know through feedback the exact locations of the erasures as well as the corre-

sponding message bits from both messages, they can cooperate to send the erased bits

from the irst message (which is suicient to recover both messages). his cooperative

retransmission requires k/(2 log 3) transmissions. Hence we can increase the symmetric

rate to R = k/(k + k/(2 log 3)) = 0.7602. his rate can be further increased to 0.7911 by

using a more sophisticated coding scheme that sends new messages simultaneously with

cooperative retransmissions.

In Chapter , we discuss the iterative reinement approach illustrated in the binary

erasure channel example; the cooperative feedback approach for multiuser channels il-

lustrated in the binary erasure MAC example; and the two-way channel. In Chapters 

M1

M2

X1i

X2i

Encoder 

Encoder 

Decoder
Yi

Y i−1

Y i−1

M̂1 , M̂2

Figure .. Feedback communication over a binary erasure MAC. he channel
inputs X1i and X2i at time i ∈ [1 : n] are functions of (M1 ,Y i−1) and (M2 ,Y i−1),
respectively.
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through , we show that interaction can also help in distributed compression, distributed

computing, and secret communication.

1.4.4 Joint Source–Channel Coding

As we mentioned earlier, Shannon showed that separate source and channel coding is

asymptotically optimal for point-to-point communication. It turns out that such sepa-

ration does not hold in general for sending correlated sources over multiuser networks.

In Chapter , we demonstrate this breakdown of separation for lossless communication

of correlated sources over multiple access and broadcast channels. his discussion yields

natural deinitions of various notions of common information between two sources.

1.4.5 Secure Communication

Conidentiality of information is a crucial requirement in networking applications such

as e-commerce. In Chapter , we discuss several coding schemes that allow a legitimate

sender (Alice) to communicate a message reliably to a receiver (Bob) while keeping it

secret (in a strong sense) from an eavesdropper (Eve). When the channel from Alice

to Bob is stronger than that to Eve, a conidential message with a positive rate can be

communicated reliably without a shared secret key between Alice and Bob. By contrast,

when the channel from Alice to Bob is weaker than that to Eve, no conidential message

can be communicated reliably. We show, however, that Alice and Bob can still agree on a

secret key through interactive communication over a public (nonsecure) channel that Eve

has complete access to. his key can then be used to communicate a conidential message

at a nonzero rate.

1.4.6 Network Information Theory and Networking

Many aspects of real-world networks such as bursty data arrivals, random access, asyn-

chrony, and delay constraints are not captured by the standard models of network infor-

mation theory. In Chapter , we present several examples for which such networking

issues have been successfully incorporated into the theory. We present a simple model for

random medium access control (used for example in the ALOHA network) and show that

a higher throughput can be achieved using a broadcasting approach instead of encoding

the packets at a ixed rate. In another example, we establish the capacity region of the

asynchronous multiple access channel.

1.4.7 Toward a Unified Network Information Theory

he above ideas and results illustrate some of the key ingredients of network information

theory. he book studies this fascinating subject in a systematic manner, with the ultimate

goal of developing a uniied theory. We begin our journey with a review of Shannon’s

point-to-point information theory in the next two chapters.
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