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Preface

These notes grew out of a summer school on “Finite Groups and Related

Geometrical Structures” held in Venice from September 5th to September

15th 2007. The aim of the course was to introduce an audience consisting

mainly of PhD students and postdoctoral researchers working in finite group

theory and neighboring areas to results on the subgroup structure of linear

algebraic groups and the related finite groups of Lie type.

As will be seen in Part I, a linear algebraic group is an affine variety which

is equipped with a group structure in such a way that the binary group op-

eration and inversion are continuous maps. A connected (irreducible) linear

algebraic group has a maximal solvable connected normal subgroup such

that the quotient group is a central product of simple algebraic groups, a so-

called semisimple algebraic group. Thus, one is led to the study of semisimple

groups and connected solvable groups. A connected solvable linear algebraic

group is the semidirect product of the normal subgroup consisting of its

unipotent elements with an abelian (diagonalizable) subgroup (for example,

think of the group of invertible upper triangular matrices). While one cannot

expect to classify unipotent groups, remarkably enough this is possible for

the semisimple quotient.

The structure theory of semisimple groups was developed in the middle of

the last century and culminated in the classification of the semisimple linear

algebraic groups defined over an algebraically closed field, a result essentially

due to Chevalley, first made available via the Séminaire sur la classification

des groupes de Lie algébriques at the Ecole Normale Supérieure in Paris,

during the period 1956–1958 ([15]). Analogously to the work of Cartan and

Killing on the classification of the complex semisimple Lie algebras, Cheval-

ley showed that the semisimple groups are determined up to isomorphism

by a set of combinatorial data, based principally upon a root system (as for

the semisimple Lie algebras) and a dual root system. Moreover, the set of
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x Preface

possible combinatorial data does not depend on the characteristic of the un-

derlying field. Part I of this text is devoted to developing the tools necessary

for describing this classification. We have followed the development in two

very good texts ([32] and [66]) on linear algebraic groups, and we often refer

to these books for the proofs which we have omitted. Our aim is to give the

reader a feel for the group-theoretic ingredients of this classification, without

going into the details of the underlying algebraic geometric foundations, and

then to move on to the material of Parts II and III, which should perhaps

be seen as the distinguishing feature of this text.

The 20- to 30-year period following the classification was a productive time

in “semisimple” theory, during which many actors, notably Borel, Bruhat,

Springer, Steinberg and Tits, played a role in the further study of these

groups. The conjugacy classes, endomorphisms, representations, and sub-

group structure were among the topics of consideration, with the principal

aim of reducing their classification and the description of their structure to

combinatorial data related to the root system and the Weyl group of the

ambient group. Part II of this book treats some of these subjects. In partic-

ular, we describe the Tits BN -pair for a semisimple linear algebraic group

and obtain a Levi decomposition for the associated parabolic subgroups;

we discuss conjugacy classes of semisimple elements and their centralizers;

we describe the parametrization of the irreducible representations of these

groups and their automorphism groups. We leave the discussion of the gen-

eral endomorphisms of simple algebraic groups to Part III, where these are

used to construct the finite groups of Lie type.

In the last chapters of Part II, we turn to more recent developments in the

theory of semisimple algebraic groups, where we describe the classification of

their maximal positive-dimensional subgroups. These results can be seen as

an extension of the fundamental work of Dynkin on the maximal subalgebras

of the semisimple complex Lie algebras. It is the subject of several very long

research articles by Liebeck, Seitz and others and was completed in 2004.

In the course of the classification of finite simple groups, attention turned

to the analogues of algebraic groups over finite fields. These so-called fi-

nite groups of Lie type were eventually shown to comprise, together with

the alternating groups, almost all the finite simple groups. Steinberg found

a unified approach to constructing not only the well-known finite classical

groups, but also their twisted “Steinberg variations”, as well as further seem-

ingly sporadic examples, the Suzuki and Ree groups, as fixed point subgroups

of certain endomorphisms of simple linear algebraic groups defined over Fp.

There does not yet seem to be a generally accepted terminology for such

endomorphisms, and we call them “Steinberg endomorphisms” in this text.
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Preface xi

Part III is devoted to the definition and study of these finite groups. We

first classify the endomorphisms whose fixed point subgroups are finite, fol-

lowing the work of Steinberg, and hence are able to describe the full set of

finite groups “of Lie type” thus obtained. The theorem of Lang–Steinberg

then provides the necessary machinery for applying the results of Parts I

and II to the study of these fixed point subgroups. For example, we give the

proof of the existence of a BN -pair for these groups, which allows one to

deduce a formula for their order. Furthermore, we study their Sylow sub-

groups and touch on some other aspects of the subgroup structure. Finally,

we return to the question of the maximal subgroups, this time sketching a

proof of Aschbacher’s reduction theorem for the maximal subgroups of the

finite classical groups and indicating how it has been applied (by Kleidman,

Liebeck and others) and how it must still be applied if one hopes to deter-

mine the maximal subgroups of the finite classical groups. We conclude with

a discussion of what is known about the maximal subgroups of the excep-

tional finite groups of Lie type, including work of Liebeck, Saxl, Seitz and

others. We then come full-circle and sketch the proof of a result which en-

ables one to lift certain embeddings of finite groups of Lie type to embeddings

of algebraic groups, where one can apply the more complete information of

Part II.

The course is not self-contained in several aspects. First, in order to keep

the size manageable we assume the reader to be familiar with some ba-

sic notions of affine and projective algebraic varieties. In the development

of the general theory of algebraic groups we include those proofs of a more

group theoretical nature, or which just use the basic notions of connectedness

and dimension, and refer to the standard texts for the others which require

deeper methods from algebraic geometry, like properties of morphisms, tan-

gent spaces, etc. Secondly, we do not explain the Steinberg presentation of

semisimple algebraic groups, although some of its consequences are men-

tioned and needed in the text. Also, while we have included an appendix

with a self-contained development of the basic theory of root systems and

Weyl groups, as far as it is relevant for the development in the main text,

we haven’t repeated the proof of the classification of indecomposable root

systems, which has already been laid out in many texts. In any case we

give references to the results we need, and some statements form part of the

exercises.

We hope that this text will be useful to doctoral students and researchers

who are working in areas which rely upon a general knowledge of the groups
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xii Preface

of Lie type, without needing to understand every detail of the proof of the

classification of semisimple groups. In particular, Parts II and III should give

a good overview of much of what is known about the subgroup structure of

these groups and to a lesser extent their conjugacy classes and representation

theory. The numerous exercises are intended to supplement and illustrate the

theory, and should help the book fulfill its objective of serving as the basis

for a first-year graduate level course.

We began working on this project at the Mathematisches Forschungsin-

stitut at Oberwolfach even before the start of the summer school, and then

continued at various places, including the EPFL (Lausanne), the Isaac New-

ton Institute at Cambridge, and the Banff International Research Station.

We thank all these institutions for providing an inspiring atmosphere and

enough fresh air, and for their hospitality. The second author would also

like to acknowledge the support of the Swiss National Science Foundation

through grants numbers PP002-68710 and 200021-122267.

We are grateful to Clara Franchi, Maria Silvia Lucido, Enrico Jabara,

Mario Mainardis and John van Bon for organizing and inviting us to teach

at the Venice summer school. We also thank Stephen Clegg, Kivanc Ersoy,

Andreas Glang, Daniele Toller and Pinar Urgurlu, for providing TeX-files of

their notes taken during our classes, made available to us shortly afterwards,

and which constituted the basis for this manuscript. We thank Meinolf Geck

for many clarifying discussions on various topics, Olivier Brunat and Ulrich

Thiel for a careful reading of a preliminary version which lead to various

improvements, and Thomas Gobet, Claude Marion and Britta Späth for

proofreading parts of the manuscript.

Finally, we would like to dedicate this volume to Maria Silvia Lucido,

who died in an accident half a year after the summer school. We were both

impressed by her enthusiasm, energy and joyfulness during our brief acquain-

tance.
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Notation

We have tried to conform to standard notation whenever that exists. There

are a few key notions for which different conventions exist in the literature.

For us, a reductive group is not necessarily connected, while a semisimple

group always is. A simple algebraic group is a non-trivial semisimple group

with no proper positive dimensional normal subgroup. A root system which

cannot be decomposed into an orthogonal union of subroot systems will be

called indecomposable (sometimes the term irreducible is used in the lit-

erature). There does not seem to be an accepted standard notation for the

various orthogonal groups. Here, the full isometry group of a non-degenerate

quadratic form is denoted by GO, and its connected component of the iden-

tity by SO. In particular, in characteristic 2, SO is not the intersection of

GO with the special linear group SL. We have chosen the name Steinberg

endomorphisms for what some authors call (generalized) Frobenius maps,

to acknowledge Steinberg’s role in the study of these endomorphisms. Asch-

bacher gave a first subdivision of natural subgroups of classical groups over

finite fields into classes which he called Ci. Later, many of these classes were

redefined by various authors. We follow the notation of Liebeck and Seitz

in their paper [50] for these classes of subgroups. Finally, we write Zn for

the cyclic group of order n since Cn is already used for one of the root sys-

tems. We write N = {1, 2, . . .} for the set of positive natural numbers and

set N0 := N ∪ {0}.
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