Index

<table>
<thead>
<tr>
<th>Aberdeen 253</th>
<th>household adoption of efficiency measures 245</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS Project 12, 423–5</td>
<td>household satisfaction with services 242–5</td>
</tr>
<tr>
<td>active demand process architecture 434–8</td>
<td></td>
</tr>
<tr>
<td>interaction between participants 436–8</td>
<td></td>
</tr>
<tr>
<td>internal subprocesses 435–6</td>
<td></td>
</tr>
<tr>
<td>active demand services and products 428–31</td>
<td></td>
</tr>
<tr>
<td>architecture 425–7</td>
<td></td>
</tr>
<tr>
<td>example of market clearing process 438–40</td>
<td></td>
</tr>
<tr>
<td>need for aggregation 431–2</td>
<td></td>
</tr>
<tr>
<td>needs and expectations of power system participants 427–8</td>
<td></td>
</tr>
<tr>
<td>potential benefits and acceptance of active demand 441–2</td>
<td></td>
</tr>
<tr>
<td>value of active demand and its markets 432–4</td>
<td></td>
</tr>
<tr>
<td>market clearing of active demand 434</td>
<td></td>
</tr>
<tr>
<td>market valuation of active demand 433–4</td>
<td></td>
</tr>
<tr>
<td>Adeyemi, O.I. 120</td>
<td></td>
</tr>
<tr>
<td>Agenda 21 251</td>
<td></td>
</tr>
<tr>
<td>Albania</td>
<td></td>
</tr>
<tr>
<td>fuel poverty 313</td>
<td></td>
</tr>
<tr>
<td>Allen, R.C. 22</td>
<td></td>
</tr>
<tr>
<td>Allman, L. 274</td>
<td></td>
</tr>
<tr>
<td>Allwood, Julian 30</td>
<td></td>
</tr>
<tr>
<td>Ang, B.W. 119</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td></td>
</tr>
<tr>
<td>fuel poverty 312</td>
<td></td>
</tr>
<tr>
<td>Atkeson, A. 109</td>
<td></td>
</tr>
<tr>
<td>Atkinson, S.E. 114</td>
<td></td>
</tr>
<tr>
<td>attitudes 8, 232–6</td>
<td></td>
</tr>
<tr>
<td>energy policy preferences 240–2</td>
<td></td>
</tr>
<tr>
<td>energy price effects on households 242</td>
<td></td>
</tr>
<tr>
<td>EPRG survey design and implementation 236–9</td>
<td></td>
</tr>
<tr>
<td>general attitudes 239–40</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>smart meters 172, 176</td>
<td></td>
</tr>
<tr>
<td>Austria 260</td>
<td></td>
</tr>
<tr>
<td>smart meters 91</td>
<td></td>
</tr>
<tr>
<td>automated meter reading (AMR) 167</td>
<td></td>
</tr>
<tr>
<td>automatic load control 88</td>
<td></td>
</tr>
<tr>
<td>Baker, P. 111, 320</td>
<td></td>
</tr>
<tr>
<td>batteries for electric vehicles 216, 217</td>
<td></td>
</tr>
<tr>
<td>behavioural economics 32, 33</td>
<td></td>
</tr>
<tr>
<td>behavioural risks 93–4</td>
<td></td>
</tr>
<tr>
<td>Belgium 260</td>
<td></td>
</tr>
<tr>
<td>benchmarking 100, 383</td>
<td></td>
</tr>
<tr>
<td>Bennett, M. 307</td>
<td></td>
</tr>
<tr>
<td>Bento, A.M. 113</td>
<td></td>
</tr>
<tr>
<td>Bentzen, J. 118</td>
<td></td>
</tr>
<tr>
<td>Berndt, E.R. 108, 109</td>
<td></td>
</tr>
<tr>
<td>Betsil, M. 255</td>
<td></td>
</tr>
<tr>
<td>big transmission and distribution (’switch me on’) scenario 55–61, 82, 84, 85</td>
<td></td>
</tr>
<tr>
<td>Björner, T.B. 115</td>
<td></td>
</tr>
<tr>
<td>block tariffs 362</td>
<td></td>
</tr>
<tr>
<td>Bolivia</td>
<td></td>
</tr>
<tr>
<td>fuel poverty 312</td>
<td></td>
</tr>
<tr>
<td>bounded rationality 34</td>
<td></td>
</tr>
<tr>
<td>Broadstock, D.C. 116</td>
<td></td>
</tr>
<tr>
<td>Brundtland Commission 255</td>
<td></td>
</tr>
<tr>
<td>Brutscher, P.B. 32, 33</td>
<td></td>
</tr>
<tr>
<td>buildings 288</td>
<td></td>
</tr>
<tr>
<td>demand-side management and control in 129</td>
<td></td>
</tr>
<tr>
<td>drivers for 129–33</td>
<td></td>
</tr>
<tr>
<td>future uptake 157–8</td>
<td></td>
</tr>
<tr>
<td>household level 134–5</td>
<td></td>
</tr>
<tr>
<td>micro-level 136–48</td>
<td></td>
</tr>
<tr>
<td>operational level implementation 150–7</td>
<td></td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press
www.cambridge.org
buildings (cont.)
 strategic level implementation 148–50
 utility level 133–4
energy efficiency 12, 401
 demand for energy and supply choices and 417–19
energy efficiency gap 338
EU policy 401–4, 421
future 407–21
 improvement measures 408–12
UK policy and standards 404–7, 421
Bulgaria
 fuel poverty 313
Bulkeley, H. 255, 259
buses, electric 217
Busse, M.R. 116
Canada
 smart meters 165, 176, 179
 capacity building measures 364–7
 capital expenditure in electricity distribution networks 379, 384
 carbon dioxide 21, 24
 carbon capture and storage (CCS) 185
 carbon pricing 52
 costs and benefits of carbon mitigation 249
decarbonization target 1, 19
emissions trading scheme 266
energy efficiency in buildings and 413–14
centralized energy systems 9, 280, 283–4, 293–5
drivers for changes in scale 284
 broader social change 289, 291–3
 climate change 285–6
 energy security 286–7
 governance of energy markets 289–90
trends in technology 287–9
change acceptance 98
charging infrastructure for electric vehicles 216, 221–3
Christensen, L.R. 108
Cities for Climate Protection (CCP) 255
citizenship 8, 231, 246, 298–304
citizenship 8, 231, 246, 298–304
citizenship 8, 231, 246, 298–304
Climate Change 289, 291–3
climate change 1, 234, 251, 337
d as driver for changes in scale 285–6
UN Framework Convention 106
coal 300
combined heat and power (CHP) 281, 283
 with district heating (CHP-DH) 251, 264, 268, 270
commitment device theory 33
Committee on Climate Change (UK) 29, 32, 213, 233
community energy initiatives 251, 253
consumers 8, 231–2, 246–7, 298–304, 406–7
 acceptance of smart appliances 190–3
 adoption of electric vehicles 218–21
 participation 52, 231
 preferences 274
 for electric vehicles 218–21
 public attitudes, behaviour and energy
 policy 8, 232–6, 246
 energy policy preferences 240–2
 energy price effects on households 242
 EPRG survey design and implementation 236–9
 general attitudes 239–40
 household adoption of efficiency measures 245
 household satisfaction with services 242–5
critical peak pricing (CPP) 41, 347
crime 239
czech republic
 smart meters 91
Darby, S. 173
davis, L.W. 118
daylight saving time (DST) 12, 445, 459–60
daylight saving time (DST) 12, 445, 459–60
daylight saving time (DST) 12, 445, 459–60
 activity patterns of UK population 451–3
 analyzing potential for winter DST 453–5
daylight saving time (DST) 12, 445, 459–60
 background 445–6
 evidence and policy 446–50
 impact of advancing clock by an hour all
 year 457
 peak demand and cost effects 456–7
 Scottish and EU issues 457–9
 UK and US compared 450–1
 debts 303
decarbonization target 1, 19
decentralized energy systems 9, 281–2, 283, 293–5
drivers for changes in scale 284
 broader social change 289, 291–3
drivers for changes in scale 284
 climate change 285–6
drivers for changes in scale 284
 energy security 286–7
Index

governance of energy markets 289–90
 trends in technology 287–9
demand response (DR) 337
demand-side control (DSC) 142–7
 impacts 147
 high-level demand profile 147–8
 low-level demand profile 148
 method 144
parameters 144–7
 control duration 145
 control method 145
 load control 146
 load despatch 147
 load priority 144–5
 load recover 146
demand-side management (DSM) 6, 372–4
 in buildings 129
 future uptake 157–8
 household level 134–5
 micro-level 136–48
 operational level implementation 150–7
 strategic level implementation 148–50
 utility level 133–4
economic and market-based instruments 361–2
 financial/incentive-based measures 362–3
 household sector 10, 337–9, 363
 information and capacity-building measures 364–7
 integrated policy strategies 367–9, 373
 overview of DSM policies 347–8
 regulatory and control measures 348–61
 UK versus international experience 369–72
 voluntary action and public–private partnerships (PPPs) 363–4
demand-side participation (DSP) 5, 88–90, 102–3
constraints 5, 90
 behavioural risks 93–4
 price 5, 92–3
 technical limits 90–2
 incentivizing demand-side participation through incentive/payment schemes for end-user 98–9
 compensatory weights for disadvantaged end-users 101–2
 main features of scheme 99–100
 planning costs 100–1
 rate effects and value changes 101
 overview of European experiences 94–7
social aspects of flexibility in demand response 97–8; see also smart meters
Denmark 37, 260
demand-side management (DSM) 362, 369, 372, 373
 energy efficiency policies 338
 local government energy generation in 250, 263–4
 Devine-Wright, P. 252
direct load control (DLC) 143
distributed generation (DG) 251
distribution networks see electricity distribution networks
distribution system operators (Government Led Green Agenda) scenario 67–74, 82, 84, 85
district heating (DH) 251, 264, 268, 270
double glazing 27
drivers for changes in scale 284
 broader social change 289, 291–3
 climate change 285–6
 energy security 286–7
 governance of energy markets 289–90
 trends in technology 287–9
drivers of aggregate energy consumption 4, 19–25
drivers of fuel poverty 328–30
dynamic demand 88
 smart appliances and 193, 202–5
economic transitions
 energy prices and 4, 22
 economics of electricity demand 4, 17–19, 43–5
 macroeconomic context of energy demand 4
 aggregate expenditure on energy services in UK 4, 23–9
 drivers of aggregate energy consumption 4, 19–25
 microeconomic context of energy demand 5, 29
 apparent non-rationality of individual energy consumption 31–5
 physics of energy consumption and 29–31
 elasticity of demand 52, 319
 encouragement of energy efficiency and 38
 elderly people 320, 322
electric vehicles 7, 17, 30, 31, 36–8, 224–5
 consumer preferences and adoption rates 218–21
 impacts on demand for electricity 221–3
electric vehicles (cont.)
supporting policies 223–4
technological prospects 215–18
Electricity Demand Reduction Project (EDRP) 180, 366
electricity distribution networks 11, 379–80, 467
background 380–1
background 385–7
drivers of load-related investments 387
model description 387–8
disaggregated electricity demand growth 395–6
forecasting domestic electricity demand 388–90
forecasting non-domestic electricity demand 390–3
regional electricity demand growth 393–5
relevance of model for active network and demand 398–9
price control process 382–3
regulation of active network and demand 383–5
regulatory framework 381–2
electricity generation 381
local 250, 260–4
combined heat and power with district heating (CHP-DH) strategy 268
creative financial instruments strategy 272
energy from waste (EfW) strategy 268–70
establishing energy service company strategy 270–2
experience 266–8
opportunities for introducing local energy solutions 266–72
political realities 264–6
reconciling local government strategy with local energy solutions 256–60
microgeneration 131–2, 251
scale of see scale of electricity generation
Electricity Policy Research Group (EPRG) 236–9
electromechanical meters 96
energy conservation 235, 310
energy efficiency 29, 30, 31, 44, 319, 337
adoption of efficiency measures 245
buildings 12, 401
demand for energy and supply choices and 417–19
energy efficiency gap 338
EU policy 401–4, 421
future 407–21
improvement measures 408–12
UK policy and standards 404–7, 421
encouragement of 35
electrification of personal transport 36–8
raising prices 35–6
shifting electricity consumption across time and place 38–43, 44
size of elasticities 38
household sector 339–41
barriers to energy efficiency 344–7
micro-level demand-side management (DSM) techniques 139
modelling of energy demand and 116–18, 121
MURE II database
neo-classical economics and 31
non-rational behaviour and 31–5
policies on 338
energy labelling 134
energy performance contracting (EPC) 361
energy policy 231, 232–6
as driver for demand-side management (DSM) 130–1
public preferences 240–2
smart meters and 162–4
energy scenarios 5, 48–9, 52–3, 284
big transmission and distribution (‘switch me on’) scenario 55–61, 82, 84, 85
distribution system operators (government-led green agenda) scenario 67–74, 82, 84, 85
energy service companies (‘fix it for me’) scenario 61–7, 82, 84
future electricity demand and 80–3
implications and conclusions 84–6
Markal modelling 51–2, 82
microgrids (dynamic green markets) scenario 74–80, 82, 85
scenario development 49–50
energy security 300
as driver for changes in scale 286–7
energy service companies (ESCOs) ‘fix it for me’ scenario 61–7, 82, 84
establishment of 270–2
support for 361
energy supply contracting (ESC) 271
environmental concerns 52
Espey, J.A. 38
Espey, M. 38
Index

European Union (EU) 255, 312
ADDRESS Project see ADDRESS Project
daylight saving time (DST) and 457–9
demand-side management (DSM)
regulatory and control measures 361
energy efficiency in buildings and 401–4, 421
energy policy 130
smart meters and 161, 163
expectations theory 32
expenditure on energy 10, 25–9, 299, 318–19, 331–2
background and past studies 319–21
data on 323–4
expenditure fuel poverty 306–8
types of vulnerable households 321–3
vulnerable households 324–8
externalities 274

Faruqui, A. 174
financial crisis 236
financial incentives see incentives
financial instruments 272
Finland 260
local government energy generation in 250, 264
smart meters 90, 91
Fisher, F.M. 111
Fleming, P. 274
Foresight scenarios 284
Fouquet, R. 22, 23
France
ADDRESS Project 425
Agenda 21 and 255
local government in 260
smart meters 91, 169
Franklin, Benjamin 446
free-riding 249, 363
Fröndel, M. 120
fuel poverty 9, 33–4, 97, 298, 303, 314–15, 318, 320, 468
other countries 311–14
United Kingdom 305–6, 314, 325, 372
drivers of fuel poverty 328–30
elderly people 322
expenditure, fuel poverty 306–8
public response and policies for fuel poverty reduction 309–11
subjective concept of fuel poverty 308–9
future electricity demand 1
energy scenarios and 80–3
gas 300, 464
Geller, H. 338
Germany 260
demand-side management (DSM) 361, 369
electricity demand in 19
energy efficiency policies 338
expenditure on energy 321
smart meters 91, 163
goods vehicles, electric 217
governance see regulation
Greece 260
Green Deal 272, 362
Greening, L.A. 117
Gregory, P.R. 108, 109
Griffin, J.M. 108, 109, 120
Halvorsen, R. 110, 114
health 239
heat pumps 30, 419
Heng, H.Y. 43
Hess, S. 220, 221
household sector 2, 17, 27, 110–12, 288
adoption of efficiency measures 245
demand-side management (DSM) 10, 337–9, 363
energy efficiency and 339–41
barriers to energy efficiency 344–7
energy price effects 242
expenditure on energy 27, 299, 318–19
background and past studies 319–21
vulnerable households 324–8
forecasting domestic electricity demand 388–90
household level demand-side management (DSM) 134–5
analysis of potential for household appliances 137–8
improvement measures for energy efficiency of buildings 408–9
potential for demand reduction 341–4
smart domestic appliances see smart appliances
Hudson, K. 219, 221
Hunt, L.C. 110, 116, 120
hybrid vehicles 215
incentives
demand-side management (DSM)
financial/incentive-based measures 362–3
incentivizing demand-side participation through incentive/payment schemes for end-user 98–9
compensatory weights for disadvantaged end-users 101–2
474 Index

incentives (cont.)
 main features of scheme 99–100
 planning costs 100–1
 rate effects and value changes 101
industrial sector 17, 108–10
 change in industrial structure 118–19, 121
information and capacity building
measures 364–7
information and communications technology (ICT)
 as driver for demand-side management (DSM) 132–3
 smart meters and 167
input substitution 107–8, 121
 household sector energy demand 110–12
 industrial energy demand 108–10
 interfuel substitution 114–15
 transportation energy demand 112–14
institutional governance 52
insulation 27, 361
integrated policy strategies 367–9, 373
intentional load control 88
interfuel substitution 114–15
International Energy Agency (IEA) 51, 106, 338
Internet 132, 154–7
 surveys 237–9
interval meters 166
Ireland 260
 fuel poverty 313
 smart meters 180
Italy
 ADDRESS Project 425
 smart meters 7, 90, 91, 95, 99, 165, 169, 172, 176
Jamasb, T. 111, 320
Japan
 demand-side management (DSM) 360–1, 371, 372, 373
 energy efficiency policies 338
 local government in 262
Jensen, H.H. 115
Jones, C.T. 115
Kang, J.E. 222
Kaysen, C. 111
Kehoe, P.J. 109
Kern, K. 259
King Review 213
Kirklees district 266–7, 272
Korea (South)
 energy efficiency 342
 Kyoto Protocol 251
Lampaditou, E. 42
Leach, M. 42
Li, S. 116
 liberalization 465
Lineweber, D. 93
Linn, J. 120
lithium ion batteries 216
Liu, N. 119
load shifting 38–43, 44
 micro-level demand-side management (DSM) techniques 139–42
 local dimension of energy 8, 249–51, 275
 context for local energy solutions 254–6
 defining local energy 251–4
 lessons learned from localization of energy generation in Europe 260–4
 reconciling local government strategy with local energy solutions 256–60
United Kingdom 264–75
 combined heat and power with district heating (CHP-DH) strategy 268
 creative financial instruments strategy 272
 energy from waste (EfW) strategy 268–70
 establishing energy service company strategy 270–2
 local government experience 266–8
 opportunities for introducing local energy solutions 266–72
 political realities 264–6
 local energy systems 252, 253
 context 254–6
 reconciling local government strategy with local energy solutions 256–60
 local government 249–51, 255, 275
 energy generation and 8, 250, 260–4
 combined heat and power with district heating (CHP-DH) strategy 268
 creative financial instruments strategy 272
 energy from waste (EfW) strategy 268–70
 establishing energy service company strategy 270–2
 experience 266–8
 opportunities for introducing local energy solutions 266–72
 political realities 264–6
reconciling local government strategy with local energy solutions 256–60
locational prices 43
Long-Term Electricity Network Scenarios (LENS) 48, 52–3, 80–3, 284
big transmission and distribution (‘switch me on’) scenario 55–61, 82, 84, 85
distribution system operators (Government Led Green Agenda) scenario 67–74, 82, 84, 85
energy service companies (‘fix it for me’) scenario 61–7, 82, 84
implications and conclusions 84–6
Markal modelling 51–2, 82
microgrids (dynamic green markets) scenario 74–80, 82, 85
scenario development 49–50
loss aversion 32
Lynk, E.L. 110
Mackay, David 29
macroeconomic context of energy demand 4
aggregate expenditure on energy services in UK 4, 25–9
drivers of aggregate energy consumption 4, 19–25
maintenance
electricity distribution networks 379
marginal cost of abatement curve 32, 374
Markal modelling 51–2, 82
Meier, H. 111, 320
Metcalf, G.E. 116, 119
meters
electromechanical 96
prepayment meters 32–3, 41, 166, 303–4, 330
smart see smart meters
microeconomic context of energy demand 5, 29
apparent non-rationality of individual energy consumption 31–5
physics of energy consumption and 29–31
microgeneration 131–2, 251
microgrids (dynamic green markets) scenario 74–80, 82, 85
micro-level demand-side management (DMS) 136–48
analysis of potential for household appliances 137–8
techniques 138–48
demand-side control (DSC) 142–7
energy efficiency 139
load shifting 139–42
Mitsubishi 216
modelling of energy demand 6, 106–7, 121–2, 319
change in industrial structure 118–19, 121
electricity distribution networks 387–8
disaggregated electricity demand growth 395–6
forecasting domestic electricity demand 388–90
forecasting non-domestic electricity demand 390–3
regional electricity demand growth 393–5
relevance of model for active network and demand 398–9
energy efficiency 116–18, 121
input substitution 107–8, 121
household sector energy demand 110–12
industrial energy demand 108–10
interfuel substitution 114–15
transportation energy demand 112–14
smart appliances and 193–4
technological change 119–20, 122
monopolies 300
Mork, K.A. 120
motor vehicles 30
see also electric vehicles
Mount, T.D. 115
multi-national companies 255
nationalization 300
neo-classical economics 31
Netherlands 260
energy efficiency 342
smart meters 90, 163
network congestion management 196–7, 206–8
networked appliances 135
Neuhoff, K. 116, 118
Newbery, D.M. 26
Newell, R.G. 117
Niesten, E. 384
Nissan 216
No, J.A. 113
nodal prices 42
non-rationality of individual energy consumption 31–5
Index

Norway 260
 local government and energy generation 260

nuclear energy 185, 465

Ofgem (UK) 48, 281, 289, 291–3, 300, 302, 383, 384

oil 300

Palmer, G. 306, 311
Pearson, P.J.G. 22, 23

Peru
 fuel poverty 312
Peterborough City Council 267, 271

physics of energy consumption
relation to economics of energy consumption 29–31

Pindyck, R.S. 109, 114

planning costs for incentive schemes 100–1
Popp, D. 120
Portugal 260
postal services 28
poverty see fuel poverty
prepayment meters 32–3, 41, 166, 303–4, 330
prices 38, 246, 299, 302, 323, 467
 asymmetric price response 120
 block tariffs 362
 carbon pricing 52
 change in industrial structure and 118–19
 constraints on demand-side participation and 5, 92–3
 critical peak pricing 41, 347
daylight saving time (DST) and 456
 dynamic 173–4
economic transitions and 4, 22
effects on households 242
electricity demand and 19–25, 44
 energy efficiency in buildings and 414–15
financial crisis and 236
locational 43
nodal 42
price control process in electricity distribution networks 382–3
public preferences 240
raising prices for encouragement of energy efficiency 35–6
real-time pricing 41, 362
time-of-use pricing 41, 42, 92, 95, 347, 362
principal–agent problems 274
privatization 324
public–private partnerships (PPPs) 364
public sector 300
rail transport, electric 218
random utility models (RUMs) 218
real-time pricing (RTP) 41, 362
rebates 274
rebound effect 117–18, 359
Recker, W.W. 222
recycling 235
regulation 300–1
 demand-side management (DSM)
 regulatory and control measures 348–61
 as driver for changes in scale 289–90
 electricity distribution networks 381–2
 active network and demand 383–5
 price control 382–3
Reiss, P.C. 110
renewable energy sources 185
research and development (R&D) 465–6
ADDRESS Project see ADDRESS Project
residential sector see household sector
Rio Climate Change Summit (1992) 21
risks 274
 aversion 93
 behavioural 93–4
Rotemberg, J.J. 109
Saplacan, R. 384
satisfaction with services 242–5
scale of electricity generation 283–4, 293–5
drivers for changes in scale 284
 broader social change 289, 291–3
 climate change 285–6
 energy security 286–7
 governance of energy markets 289–90
trends in technology 287–9
scenarios see energy scenarios
Schmalensee, R. 113
Schmidt, C. 120
Schulman, C.T. 120
Schultz, D. 93
Scott, S. 313
Scottish Building Standards (SBS) 131
Serletis, A. 115
Shell 49
shifting see load shifting
signalling, price 92
single-parent households
 fuel poverty and 322
smart appliances 7, 185–6, 209–10
consumer acceptance 190–3
flexibility potential 190, 193
Index

modelling 193–4
network congestion 196–7, 206–8
system scheduling 195–6
implementation 186
technology 186–90
value 197

case study of dynamic demand 202–5

case study of network congestion management 206–8

case study of shifting appliances operation 198–201

in system scheduling and balancing 198–206
smart load reduction 427
smart meters 6, 33, 34, 44, 90, 98, 161–2, 180–1

benefits 172–4

contexts 162

policy context 162–4

technology 164–9

costs 169–72

distribution of costs and benefits 174–5

lessons from international experience 175–80

social change as driver for changes in scale 289, 291–3

social networks 34
Sorrell, S. 118, 235, 344
Spain 260
ADDRESS Project 425
smart meters 165
spinning reserve 40

standards

energy efficiency in buildings

EU 402–4

future 408–12

UK 404–7

standby 30
Steinbuks, J. 109, 115, 116, 118
Stoker, T.M. 113
storage systems 289
subsidies 21, 34, 274
Sue Wing, I. 116, 119
summer time see daylight saving time (DST)

SuperGen FlexNet consortium 48
Sweden 260
local government energy generation in 250, 264

smart meters 7, 90, 91, 169, 176
switching suppliers 244, 303
taxation 21, 26–7, 314, 362, 374
electric vehicles and 223
Taylor, P. 341
technology 52, 465–6, 467

as driver for changes in scale 287–9
electric vehicles 215–18

information technology see information and communications technology

(ICT)

smart appliances 186–90

smart meters 164–9

technological change in modelling of energy demand 119–20, 122
telecommunications sector 28, 44, 300

tertiary reserves 427
time see daylight saving time (DST)
time-of-use pricing (TOU) 41, 42, 92, 95, 347, 362
Train, K. 219, 221

transaction costs 274
transport sector 17, 26, 112–14, 212–13

see also electric vehicles

Turkey

fuel poverty 313
ultra vires 264

United Nations 255

Framework Convention on Climate Change 106

United States of America

change in industrial structure 119
daylight saving time (DST) 450–1
demand-side management (DSM) 370, 372, 373

financial/incentive-based measures

362, 363

information and capacity building measures 365

integrated policy strategies 367

public–private partnerships (PPPs) 364

regulatory and control measures 348, 359, 361

voluntary action 364
drivers of aggregate energy consumption 19

energy efficiency policies 338

interfuel substitution 114

local government in 262

public attitudes and behaviour 234

rebound effect 118

social change 289, 291–3

transport sector 113

unused energy 131

urban areas 249
Urga, G. 115
utility-based demand-side management (DMS) 133–4
voltage regulation 427
voluntary action 363
vulnerability 33–4, 318
types of vulnerable households 321–3
vulnerable households and expenditure on energy 10, 324–8

Wack, Pierre 49
Walker, A. 311
Walker, G. 252
Walters, C. 115

waste, energy from 251, 268–70
wasted energy 131
Waverman, L. 115
welfare system
expenditure on energy by welfare recipients 321, 322
fuel poverty and 308, 310, 322
West, S.E. 113
White, M.W. 110
Williams, R.C. 113
Wood, D. 108, 109
World Energy Council (WEC) 338

Yatchew, A. 113