Cambridge University Press 978-1-107-00850-2 - The Future of Electricity Demand: Customers, Citizens and Loads Tooraj Jamasb and Michael G. Pollitt Frontmatter More information

The Future of Electricity Demand

What will electricity and heat demand look like in a low-carbon world? Ambitious environmental targets will modify the shape of the electricity sector in the twenty-first century. 'Smart' technologies and demandside management will be some of the key features of the future of the electricity system. Meanwhile, the social and behavioural dimensions will complement and interact with new technologies and policies. Electricity demand will increasingly be tied up with the demand for heat and transport.

The Future of Electricity Demand looks into the features of the future electricity demand in light of the challenges posed by climate change. Written by a team of leading academics and industry experts, the book investigates the economics, technology, social aspects, and policies and regulations which are likely to characterize energy demand in a low-carbon world. It provides a comprehensive and analytical perspective on the future of electricity demand.

TOORAJ JAMASB is the SIRE Chair of Energy Economics at Heriot-Watt University, Edinburgh. He was previously Senior Research Associate in the Faculty of Economics and at the ESRC Electricity Policy Research Group (EPRG) at the University of Cambridge.

MICHAEL G. POLLITT is Reader in Business Economics at the Judge Business School, University of Cambridge and Fellow and Director of Studies in Economics and Management at Sidney Sussex College, Cambridge. He is also an assistant director of the ESRC Electricity Policy Research Group (EPRG). Cambridge University Press 978-1-107-00850-2 - The Future of Electricity Demand: Customers, Citizens and Loads Tooraj Jamasb and Michael G. Pollitt Frontmatter More information

The Future of Electricity Demand

Customers, Citizens and Loads

Tooraj Jamasb Michael G. Pollitt

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107008502

© Faculty of Economics, University of Cambridge 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Jamasb, Tooraj. The future of electricity demand : customers, citizens, and loads / Tooraj Jamasb, Michael Pollitt. p. cm. – (Department of applied economics occasional papers ; 69) Includes bibliographical references and index. ISBN 978-1-107-00850-2 (hardback) 1. Electric power consumption – Great Britain – Forecasting. 2. Energy policy – Great Britain. 3. Energy conservation – Great Britain. I. Pollitt, Michael G. II. Title. III. Series. HD9685.G72J36 2011 333.793'2120941 – dc23 2011017973

ISBN 978-1-107-00850-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of figures	page xii
List of tables	xvii
List of boxes	xix
List of contributors	xxi
Foreword	XXV
Preface	xxvii
Acknowledgements	xxviii
Introduction and overview of the chapters	1
TOORAJ JAMASB, LAURA M. PLATCHKOV AND	
MICHAEL G. POLLITT	
Opening remarks	1
Structure of the book	2
Overview of the main chapters	4
Part I: The economics	4
Part II: Technology	6
Part III: Social dimensions	8
Part IV: Policy and regulation	10
Conclusions	13
References	14

Part I: The economics

1	The economics of energy (and electricity) demand	17
	LAURA M. PLATCHKOV AND MICHAEL G. POLLITT	
	1.1 Introduction	17
	1.2 The long-run macroeconomic context of energy demand	19
	1.3 The long-run microeconomic context of energy demand	29
	1.4 Conclusions on the economics of electricity demand	43
	References	45
2	Energy scenarios and implications for future	
electricity demand		48
	GRAHAM AULT, DAMIEN FRAME AND	
	NICK HUGHES	

Cambridge University Press	
978-1-107-00850-2 - The Future of Electricity Demand: Customers, Citizens and Load	ds
Tooraj Jamasb and Michael G. Pollitt	
Frontmatter	
More information	

vi Contents

	2.1 Introduction	48
	2.2 Overview	49
	2.3 Scenarios	52
	2.4 Big transmission and distribution ('switch me on')	55
	2.5 Energy services companies ('fix it for me')	61
	2.6 Distribution system operators (government-led green	
	agenda)	67
	2.7 Microgrids (dynamic green markets)	74
	2.8 Discussion with respect to future electricity demand2.9 Implications and conclusion	80 84
	References	86
3	Demand-side participation: price constraints,	
	technical limits and behavioural risks	88
	JACOPO TORRITI, MATTHEW LEACH AND	
	PATRICK DEVINE-WRIGHT	
	3.1 Introduction	88
	3.2 The constraints to demand-side participation	90
	3.3 Overview of European experiences on demand-side	90
	participation	94
	3.4 Description of the social aspects of flexibility in demand	
	response, particularly issues of psychological motivation and	
	social acceptance	97
	3.5 Incentivizing demand-side participation through	
	incentive/payment schemes for the end-user	98
	3.6 Conclusions	102
	References	103
4	Review of recent developments in economic	
	modelling of energy demand	106
	JEVGENIJS STEINBUKS	
	4.1 Introduction	106
	4.2 Input substitution	107
	4.3 Energy efficiency	116
	4.4 Change in industrial structure	118
	4.5 Technological change	119
	4.6 Conclusions	121
	References	122
Part I	I: Technology	
5	Demand-side management and control in buildings	129
,	IUN HONG, CAMERON M JOHNSTONE.	127

JUN HONG, CAMERON M. JOHNSTONE,	
JAE MIN KIM AND PAUL TUOHY	
5.1 Introduction	129
5.2 Drivers for DSM and control within buildings	129
5.3 DSM	133
5.4 Micro-level demand-side management and control	
(DSM+c)	136

Cambridge University Press
978-1-107-00850-2 - The Future of Electricity Demand: Customers, Citizens and Loads
Tooraj Jamasb and Michael G. Pollitt
Frontmatter
More information

	Contents			
	 5.5 Strategic- and operational-level DSM+c algorithms implementation 5.6 Future uptake References 	148 157 158		
6	 6 Smart metering: technology, economics and international experience AOIFE BROPHY HANEY, TOORAJ JAMASB AND MICHAEL G. POLLITT 			
	6.1 Introduction	161		
	6.2 Context for smart metering	162		
	6.3 Economic assessment of smart metering	169		
	6.4 Lessons from international experience	175		
	6.5 Conclusions	180		
	References	181		
7	7 Smart domestic appliances as enabling technology for demand-side integration: modelling, value and drivers VERA SILVA, VLADIMIR STANOJEVIC, MARKO AUNEDI, DANNY PUDJIANTO AND GORAN STRBAC			
	7.1 Introduction	185		
	7.2 Role of smart appliances	186		
	7.3 Consumer acceptance	190		
	7.4 Framework to quantify the value of smart appliances as a			
	source of flexibility	193		
	7.5 Quantification of the value of smart appliances	197		
	7.6 Conclusion	210		
	References	210		
8	The scene for and notential impacts of the adaption			
0	The scope for and potential impacts of the adoption	010		
	of electric vehicles in UK surface transport	212		
	GREGORY MARSDEN AND STEPHANE HESS			
	8.1 Transport and energy in the UK	212		
	8.2 Technological prospects	215		
	8.3 Consumer preferences and adoption rates	218		
	8.4 Impacts on the demand for electricity	221		
	8.5 Other supporting policies	223		
	8.6 Conclusions	224		
	References	225		
Part II	I: Social dimensions			

9	From citizen to consumer: energy policy and public	
	attitudes in the UK	231
	ELCIN AKCURA, AOIFE BROPHY HANEY,	
	TOORAJ JAMASB AND DAVID M. REINER	
	9.1 Introduction	231

Cambridge University Press
978-1-107-00850-2 - The Future of Electricity Demand: Customers, Citizens and Loads
Tooraj Jamasb and Michael G. Pollitt
Frontmatter
More information

viii	Contents			
	9.2 Public attitudes, behaviour and energy policy	232		
	9.3 EPRG survey design and implementation	236		
	9.4 Survey results	239		
	9.5 Conclusions	246		
	References	247		
10		249		
	SCOTT KELLY AND MICHAEL G. POLLITT			
	10.1 Introduction	249		
	10.2 Defining local energy	251		
	10.3 The context for local energy solutions	254		
	10.4 Reconciling local government strategy with local energy solutions	256		
	10.5 Lessons learned from the localization of energy generation	250		
	in Europe	260		
	10.6 Local dimensions of energy demand in the UK	264		
	10.7 Conclusion	275		
	References	275		
11	Centralization, decentralization and the scales in			
	between: what role might they play in the UK			
	energy system?	280		
	IIM WATSON AND PATRICK DEVINE-WRIGHT			
	11.1 Introduction	280		
	11.2 What is 'decentralized energy'?	281		
	11.3 Scale and the current energy system	283		
	11.4 Drivers for changes in scale	284		
	11.5 Conclusions	293		
	References	295		
12	Zquity, fait potenty una aomana (mambaning			
	affordability with sustainability and security of supply)	298		
	CATHERINE WADDAMS PRICE			
	12.1 Introduction	298		
	12.2 The citizen and consumer in energy markets	298		
	12.3 Fuel poverty in the UK	305		
	12.4 Public response and policies for reducing fuel poverty	309		
	12.5 Fuel poverty and policies in other countries	311		
	12.6 Concluding remarks	314		
	References	315		
13	Energy spending and vulnerable households	318		
	TOORAJ JAMASB AND HELENA MEIER			
	13.1 Introduction	318		
	13.2 Background and past studies	319		
	13.3 Types of vulnerable households	321		
	13.4 Data	323		
	13.5 Vulnerable households and energy spending	324		

	Contents		ix
		Drivers of fuel poverty Discussion and conclusions References	328 331 332
Part IV	/: P	olicy and regulation	
14	secto AOII M. I	nand-side management strategies and the residential or: lessons from the international experience FE BROPHY HANEY, TOORAJ JAMASB, LAURA PLATCHKOV AND MICHAEL G. POLLITT	337
	14.2 14.3 14.4 14.5	Introduction The residential energy demand: key features Barriers to energy efficiency in the residential sector Demand-side management policies Policy packages and the importance of comprehensiveness Conclusion References	337 339 344 347 367 372 374
15	regu	tricity distribution networks: investment and lation, and uncertain demand RAJ JAMASB AND CRISTIANO MARANTES	379
	15.2 15.3	Introduction Distribution networks and their operating environment Regulation of active network and demand Demand for distribution services and drivers of	379 380 383
		investment Model description Relevance of the model for active network and demand and concluding remarks References	385 387 398 399
16	ener for t JOE CAM	potential impact of policy and legislation on the gy demands of UK buildings and implications he electrical network A. CLARKE, JUN HONG, IERON M. JOHNSTONE, JAE MIN KIM AND L G. TUOHY	401
		Introduction EU policy, legislation and standards relating to energy	401
	16.3	performance of buildings UK policy, legislation and standards relating to energy performance of buildings	401 404
		The probable buildings of the future? Other factors influencing the probable buildings of the	407
	16.6	future Impact of probable future buildings on energy demand and supply choices	413 417

х

Cambridge University Press	
78-1-107-00850-2 - The Future of Electricity Demand: Customers, Citizens and Load	s
Гоогај Jamasb and Michael G. Pollitt	
Frontmatter	
More information	

	Contents	
	16.7 Discussion	419
	16.8 Conclusions	421
	References	421
17	· · · · · · · · · · · · · · · · · · ·	
	R&D initiative for the development of active demand	423
	FRANÇOIS BOUFFARD, RÉGINE BELHOMME,	
	ALIOUNE DIOP, MARIA SEBASTIAN-VIANA,	
	CHERRY YUEN, HANNAH DEVINE-WRIGHT, PEDRO	
	LINARES, RAMÓN CERERO REAL DE ASUA AND	
	GIOVANNI VALTORTA	
	17.1 Introduction	423
	17.2 The ADDRESS architecture	425
	17.3 Needs and expectations of power system participants with	
	respect to active demand	427
	17.4 Active demand services and products	428
	17.5 The need for aggregation17.6 The value of active demand and its markets	431 432
	17.7 Active demand process architecture	434
	17.8 A simple example of market clearing process	438
	17.9 The potential benefits and acceptance of active demand	441
	17.10 Conclusion	443
	Acknowledgement	443
	References	443
18	Daylight saving, electricity demand and emissions:	
	the British case	445
	YU-FOONG CHONG, ELIZABETH GARNSEY, SIMON	
	HILL AND FRÉDÉRIC DESOBRY	
	18.1 Introduction	445
	18.2 Background	445
	18.3 Evidence and policy	446
	18.4 US and UK clock time policy	450
	18.5 Activity patterns of the UK population18.6 Analyzing the potential for winter daylight saving	451 453
	18.7 Peak demand and cost effects	455
	18.8 The impact of advancing the clock by an hour all year	457
	18.9 Scottish and European Union issues	457
	18.10 Implications and conclusions	459
	References	460
19	Concluding reflections on future active networks	
	and the demand-side for electricity	464
	TOORAJ JAMASB AND MICHAEL G. POLLITT	
	19.1 Introduction	464
	19.2 Technology and R&D	465

Cambridge University Press
978-1-107-00850-2 - The Future of Electricity Demand: Customers, Citizens and Loads
Tooraj Jamasb and Michael G. Pollitt
Frontmatter
More information

Contents		xi
19.3	Utilities, consumers and communities	466
19.4	Economics and policy	467
19.5	Society and political economy	468
	References	468
Index		469

Figures

1.1	UK final electricity consumption by sector, 1960–2009	page 18
1.2	UK domestic energy consumption by end use,	page 10
	1970–2008	18
1.3	Income as a driver of energy consumption – energy use	
	per head versus GDP per head, 1972–2008	20
1.4	Price as a driver of energy consumption – energy	
	intensity versus energy prices	20
	Price as a driver of electricity consumption: 2008 data	21
1.6	The role of relative input prices in long-run economic	
	development: price of labour relative to energy, early	
	1700s	22
1.7	How long-run technological change drives prices of	
	energy services: price of light 1800–1950	23
1.8	How falling prices have driven long-run demand for	
	energy services: demand for light	24
	UK energy expenditure as a percentage of GDP	26
1.10	UK energy and communications services expenditure	
	as a percentage of GDP	28
1.11	Shares of different devices in household electricity	
	demand in the UK, 1970–2009	37
	UK daily power prices, 2009	39
1.13	The components of household energy demand at	
	system peak	40
	LENS scenario terminology	49
	Key to pictogram symbols	54
	Big T&D pictogram	59
	ESCO pictogram	65
	DSO pictogram	72
	Microgrids pictogram	79
5.1	Load shift module identifying whole load shift	141

Cambridge University Press	
978-1-107-00850-2 - The Future of Electricity Demand: Customers, Citizens and Load	s
Гоогај Jamasb and Michael G. Pollitt	
Frontmatter	
More information	

	List of figures	xiii
5.2	Load shift module identifying part load shift	142
	Demand-supply appraisal flow chart	144
	DSM+c algorithm when applied at the strategic level	149
5.5	Framework for implementing DSM+c at the	
	operational level	152
5.6	Simulation-based DSM+c as applied at the strategic	
	level	154
5.7	Internet-enabled energy system architecture	155
5.8	Case study architecture for demand control	
	implementation	156
	Case study results	158
	Vision of smart appliances implementation structure	187
7.2	Payback effect generated by the process of energy	
	restoration	188
	Total demand from domestic appliances in the UK	189
	Diversified demand of a WM in the UK	191
7.5	Consumption of a WM per washing cycle (reference	
	temperature of 40°)	191
	Appliance shifting algorithm	194
	Structure of the system scheduling algorithm	196
	Structure of the network congestion algorithm	197
7.9	Estimated number of appliances starting a cycle during	
	a day	200
	Annual value per appliance	200
	Reduction in wind curtailed driven by smart appliances	201
7.12	Annual value per appliance for different appliances for	000
7 1 2	the LF system	202
1.13	Reduction in CO_2 emissions driven by smart	202
7 1 4	appliances	202
	Annual savings from DD per appliance	204
	Sixteen bus-bar representation of the UK system Impact of the size of controllable load to the congestion	207
1.10	costs and value of DSM	209
0.1	Top three choices of respondents on areas in need of	209
9.1	urgent attention and improvement	239
0.2	National energy policy priorities	239 240
	National energy policy priorities split by age	240
	How concerned are you that UK is becoming	241
2.4	dependent on foreign sources of energy?	242
95	To what extent are energy prices affecting your overall	242
2.1	financial situation?	243
		275

Cambridge University Press	
978-1-107-00850-2 - The Future of Electricity Demand: Customers, Citizens and Load	3
Tooraj Jamasb and Michael G. Pollitt	
Frontmatter	
More information	

xiv List of figures

96	Household rating of electricity suppliers on	
2.0	maintaining reasonable prices	243
97	Number of blackouts experienced in the past year	244
	Reasons for switching suppliers	245
	Graphical representation between centralized energy,	213
10.1	local energy, community energy and micro-energy	252
10.2	Trends in the annual mean installed power generation	232
10.2	capacity of new power-generation facilities compared	
	with the annual total number of new installations	254
10.3	Energy consumption from local authority buildings	291
10.5	and facilities	257
10.4	Breakdown of CO_2 emissions from local authority-	231
10.1	owned infrastructure (excluding social housing energy	
	consumption)	258
10.5	The EU share of generating capacity coming from	230
10.5	CHP	265
10.6	Growth of CHP capacity in the UK (1977–2006)	269
	Real gas and electricity price index	324
	Share of fuel-poor households subdivided into	5-1
	vulnerable groups	325
13.3	All and low-income households	326
	All and pensioner households	327
	All and IS/JSA recipient households	327
	All and female single-parent households	328
	UK energy consumption by end use, 1970–2008	342
	Decomposition of changes in heating per capita,	
	1990–2005	343
14.3	Useful space heating intensity	343
14.4	Combined effects of MEPS, rebates and labels	366
14.5	Actors involved in DSM policies in the UK, Denmark	
	and Germany	369
14.6	Type of measures implemented in the UK, Denmark	
	and Germany	370
15.1	Average annual domestic electricity consumption per	
	meter point	389
15.2	Comparison of measures of residential demand in	
	three EDF energy networks service areas: LPN, SPN	
	and EPN	391
15.3	Average annual industrial and commercial electricity	
	consumption per employee	393
15.4	Regional demand growth in 2010, 2015 and 2020	394

Cambridge University Press
978-1-107-00850-2 - The Future of Electricity Demand: Customers, Citizens and Loads
Tooraj Jamasb and Michael G. Pollitt
Frontmatter
More information

	List of figures	xv
	Primary substations risk level in 2010, 2015 and 2020 The example office	396 409
16.2	Carbon performance and energy ratings for the naturally ventilated (NV) design options calculated using SBEM	411
	Carbon performance and energy ratings for the mechanically ventilated (MV) design options with heat recovery and no cooling	411
16.4	Carbon performance and energy ratings for the mechanically ventilated and cooled (HVAC) design options	411
16.5	High-carbon-intensity grid similar to current situation with overall grid and carbon-fuelled generation intensities of 0.54 and 0.73 kgCO ₂ /kWh respectively	414
16.6	Carbon intensity of grid with significant decarbonization, overall grid and carbon-fuelled generation intensities of 0.30 and 0.40 kgCO ₂ /kWh	
16.7	respectively Payback (years) analysis for individual measures applied to three different dwelling types for the higher	415
16.8	feed-in tariff case Energy demand (kWh/m ² p.a.) for semi-detached	416
	dwelling to different standards Delivered energy (kWh/m ² p.a.) for semi-detached	416
16.10	dwelling to different standards Delivered energy (kWh/m ² p.a.) by fuel type for	417
17.1	semi-detached dwelling to different standards Scope and simplified representation of the ADDRESS architecture	418 426
17.2	AD product standardized delivery process	420
	Overview of an aggregator's internal functionalities	431
	Process architecture diagram	435
	UML diagram showing the commercial interaction	
	between players	437
17.6	UML diagram showing the technical interaction	
	between players	438
	Uniform price market clearing	439
	Principle of 'all-or-nothing' bids	440
	Relationships between the market and its participants Sleeping and waking patterns for selected sunrise and	440
	sunset times	452

Cambridge University Press	
978-1-107-00850-2 - The Future of Electricity Demand: Customers, Citizens and Loads	3
Гоогај Jamasb and Michael G. Pollitt	
Frontmatter	
More information	

xvi List of figures

UK leisure patterns – percentage of respondents	
engaged in leisure pursuits outside the home	453
Changes in average demand during weeks on spring	
clock changes	454
Changes in average demand during weeks on autumn	
clock changes	455
	engaged in leisure pursuits outside the home Changes in average demand during weeks on spring clock changes Changes in average demand during weeks on autumn

Tables

1.1	Global drivers of energy consumption: increase in	
	energy consumption 1973–90	page 25
	Lifetime costs of certain energy-related services	35
	LENS scenarios and themes	53
	Big T&D modelling results summary	60
	ESCO modelling results summary	66
2.4	DSO scenario modelling results summary	73
2.5	Microgrid scenario modelling results summary	81
2.6	Total electricity demand across scenarios for years	
	2000, 2025 and 2050	82
3.1	EU 15 smart metering deployment and demand-side	
	participation projections	95
5.1	Various control priorities, methods and durations for	
	residential appliances	138
6.1	Smart meter functionality	168
6.2	Summary of international costs	170
6.3	Smart meter costs in the UK	171
6.4	Allocation of smart metering costs	175
6.5	Allocation of smart metering benefits	176
6.6	International roll-outs	177
6.7	Smart pricing trials	180
7.1	Smart appliances acceptance survey	192
7.2	Wind-installed capacity and penetration scenarios	198
7.3	Conventional generation plant mix	198
7.4	Smart appliances information	199
7.5	Capacity of different generation technologies in DD studie	s 203
7.6	Annual savings and emission reduction from dynamic	
	demand	204
7.7	Range of smart appliances' value for different applications	205
7.8	Investment cost of different smart appliances	206
	Generation data for 16-bus system	208
7.10	Impact of DSM on system resources utilization	208
		xvii

Cambridge University Press
978-1-107-00850-2 - The Future of Electricity Demand: Customers, Citizens and Loads
Tooraj Jamasb and Michael G. Pollitt
Frontmatter
More information

xviii List of tables

8.1	Energy consumption in the transport sector	213
8.2	Petroleum consumption for road transport 1997–2007	214
8.3	Electric vehicle specifications	216
8.4	Projections of demand for electricity from EV and PHEV	222
9.1	National Statistical Office survey results on percentage	
	of sample that used the Internet in the past three	
	months prior to the survey	238
9.2	Households with Internet access by region (%), UK,	
	2006, 2007	238
10.1	A framework to identify modes of governance for	
	implementing local energy solutions	261
10.2	Energy intensity of the economy: gross inland	
	consumption of energy divided by GDP at constant	
	prices in 2006	263
11.1	The spectrum of energy system scales	282
	Scale in the Foresight 'SEMBE' scenarios	284
	Routes for public engagement and scales of energy	
	systems	291
12.1	Characteristics of gas and electricity prepayment	
	households, £s, 2004–5	304
12.2	Characteristics of prepayment and other domestic	
	consumers	305
123	Overlap between fuel poverty and other measures of	505
12.5	deprivation, average 2003–5, millions of households	306
12.4	Households in fuel poverty 1996–2010, UK	307
	Mean values for different household types	329
	Barriers to energy efficiency in the building sector	345
	Major demand-side policies in the residential sector	515
1 1.2	and their definition	349
143	Assessment of individual policies	352
	Estimated impacts of some implemented policies	357
	Measures of residential electricity demand	390
	Key to graph labels for combinations of construction	570
10.1	and system performance levels	412
16.2	Delivered energy by fuel type (kWh/m ² p.a.) for	712
10.2	semi-detached dwelling to different standards	419
171	Needs of system operators and their fulfilment by	11)
17.1	means of AD	428
17 2	AD products and their main characteristics	428
	Studies on the impact of extending DST on electricity	400
10.1		447
	usage	44/

Boxes

2.1	'Big T&D' scenario summary	page 55
2.2	ESCOs scenario summary	61
2.3	DSOs scenario summary	67
2.4	Microgrids scenario summary	74

xix

Contributors

- ELCIN AKCURA is a PhD Candidate at the Electricity Policy Research Group, Faculty of Economics, University of Cambridge.
- GRAHAM AULT is Professor at the Institute for Energy and Environment, Strathclyde University.
- MARKO AUNEDI is Research Assistant at the Control and Power Research Group, Department of Electrical and Electronic Engineering, Imperial College London.
- RÉGINE BELHOMME is Project Manager, Senior Engineer, EDF SA, Research & Development Division, France.
- FRANÇOIS BOUFFARD is Assistant Professor at McGill University, Canada. He was previously Lecturer at the School of Electrical & Electronic Engineering, University of Manchester, UK.
- AOIFE BROPHY HANEY is a PhD Candidate at the Electricity Policy Research Group, Judge Business School, University of Cambridge.
- RAMÓN CERERO REAL DE ASUA is a Control Systems Senior Engineer at Iberdrola Distribución Eléctrica, SAU, Spain.
- YU-FOONG CHONG is Consultant at IPA Energy + Water Economics.
- JOE A. CLARKE is Professor at the Energy Systems Research Unit, Department of Mechanical Engineering, University of Strathclyde.
- FRÉDÉRIC DESOBRY is Research Associate in Signal Processing at the Department of Engineering, University of Cambridge.
- HANNAH DEVINE-WRIGHT is Director at Placewise Ltd. She was previously at the University of Manchester.
- PATRICK DEVINE-WRIGHT is Professor in Human Geography, University of Exeter and was previously Reader at the School of Environment and Development, University of Manchester.

xxi

xxii List of contributors

- ALIOUNE DIOP is Engineer at EDF SA, Research & Development Division, France.
- DAMIEN FRAME is Research Assistant in the Institute for Energy and Environment, University of Strathclyde.
- ELISABETH GARNSEY is Emeritus Reader in Innovation Studies, Institute for Manufacturing, University of Cambridge.
- STEPHANE HESS is Reader in Choice Modelling at the Institute for Transport Studies, University of Leeds.
- SIMON HILL is Research Associate in Signal Processing at the Department of Engineering, University of Cambridge.
- JUN HONG is Research Fellow at the Energy Systems Research Unit, Department of Mechanical Engineering, University of Strathclyde.
- NICK HUGHES is UKERC Research Student, Imperial College London and University of Strathclyde.
- TOORAJ JAMASB is the SIRE Chair of Energy Economics at Heriot-Watt University, Edinburgh. He was previously Senior Research Associate in the Faculty of Economics and at the ESRC Electricity Policy Research Group (EPRG) at the University of Cambridge.
- CAMERON M. JOHNSTONE is Senior Lecturer, Energy Systems Research Unit, Department of Mechanical Engineering, University of Strathclyde.
- SCOTT KELLY is a PhD student at the Centre for Climate Change Mitigation Research (4CMR) and the Electricity Policy Research Group (EPRG) at the University of Cambridge.
- JAE MIN KIM is Senior Research Fellow at the Energy Systems Research Unit, Department of Mechanical Engineering, University of Strathclyde.
- MATTHEW LEACH is Professor in Energy & Environmental Systems and Director of the Centre for Environmental Strategy, University of Surrey.
- PEDRO LINARES is Associate Professor at the Universidad Pontificia Comillas, Spain.
- CRISTIANO MARANTES is Low Carbon London Solution Manager, at UK Energy Networks in London, UK.

List of contributors

- GREGORY MARSDEN is Senior Lecturer in Transport Policy and Strategy at the Institute for Transport Studies, University of Leeds.
- HELENA MEIER is Lecturer in Economics at Department of Economics, Heriot-Watt University, Edinburgh, and was previously visiting Researcher at the EPRG.
- LAURA M. PLATCHKOV is Research Assistant at the Faculty of Economics, University of Cambridge.
- MICHAEL G. POLLITT is Reader in Business Economics at the Judge Business School, University of Cambridge and Fellow and Director of Studies in Economics and Management at Sidney Sussex College, Cambridge. He is also Assistant Director of the ESRC Electricity Policy Research Group.
- DANNY PUDJIANTO is Research Associate at the Control and Power Research Group, Department of Electrical and Electronic Engineering, Imperial College London.
- DAVID M. REINER is Senior Lecturer in Technology Policy and Course Director of the MPhil in Technology Policy at the Judge Business School, University of Cambridge.
- MARIA SEBASTIAN-VIANA is an Expert Engineer at EDF SA, Direction Optimisation and Trading Division, France.
- VERA SILVA is a PhD Candidate at the Control and Power Research Group, Department of Electrical and Electronic Engineering, Imperial College London.
- VLADIMIR STANOJEVIC is Research Assistant at the Control and Power Research Group, Department of Electrical and Electronic Engineering, Imperial College London.
- JEVGENIJS STEINBUKS is Research Associate at the Faculty of Economics and Director of Economic Studies, Sidney Sussex College, University of Cambridge.
- GORAN STRBAC is Professor of Electrical Energy Systems, Control and Power Research Group, Department of Electrical and Electronic Engineering, Imperial College London.
- JACOPO TORRITI is Fellow in Environment at the London School of Economics. He was previously Research Associate at the Centre for Environmental Strategy, University of Surrey.

xxiii

xxiv List of contributors

- PAUL TUOHY is Lecturer, Energy Systems Research Unit, Department of Mechanical Engineering, University of Strathclyde.
- GIOVANNI VALTORTA is Head of Network Operation and Maintenance at ENEL Distribuzione S.p.A., Italy.
- CATHERINE WADDAMS PRICE is Director of the ESRC Centre for Competition Policy at the University of East Anglia and Professor in Norwich Business School, University of East Anglia.
- JIM WATSON is Director of the Sussex Energy Group, SPRU, University of Sussex.
- CHERRY YUEN is Group Leader Utility Solutions, ABB Switzerland Ltd, Switzerland.

Foreword

Until the oil shocks of the 1970s, electricity demand growth was rapid, but then slowed dramatically in developed economies, with subsequent excess capacity. Falling fuel and electricity prices from 1986 then directed attention away from the demand side. That situation has now changed. Ambitious environmental targets, rising electricity prices, rapid technical progress, combined with cheaper and better information and communication technologies, will have a dramatic impact on the electricity sector of the twenty-first century. 'Smart' technologies and demand-side management will be key features of this new electricity system. Social and behavioural changes are also likely to play an important role. Decarbonizing the economy means increasing the share of electricity, which will power cars and heat pumps, reducing the importance of oil and gas but creating new and more concentrated demand patterns. New intermittent low carbon generation and new heavy demand uses will require more flexible and responsive demand, which will require major changes to the design and operation of the electricity system, further increasing its complexity.

The UK led the world in electricity reforms starting in 1990, providing a valuable case study for other countries to learn how, and to what extent, the management of electricity demand can – or cannot – be successfully combined into a competitive energy market environment. The next wave of required reforms offers new opportunities for learning, and although this book concentrates on the UK, it draws numerous insights from, and for, other countries.

This need to reconsider the design and management of the electricity sector led the Engineering and Physical Sciences Research Council (EPSRC) to extend the SuperGen FutureNet Research Programme from 2006 for a further four years with the FlexNet Programme. This had funded a consortium of seven UK university groups bringing together a range of fruitful interdisciplinary collaborations to address the issues. The Flexnet Research Programme builds on the achievements of FutureNet and lays out the major technical, economic, market design, public

xxv

xxvi Foreword

acceptance and other steps required to create flexible networks. An important part of the project is to showcase lessons to be taken up by the commercial sector, government and regulators. It has studied technologies and options needed for a more flexible energy system, and characterizes future energy demand in a low-carbon world. This will require radically new ways to produce, use, and value and price electricity, while maintaining productivity, comfort and security.

The demand side will need to become more flexible and to allow dynamic interaction between producers and consumers. This was the focus of the 'Customers, Citizens and Loads' (CCL) work stream, coordinated by the University of Manchester, which is the source of the material in this book. The CCL work stream has examined all aspects of electricity demand – economic, technical, political and social – as well as drawing on the expertise of and results from the rest of the FlexNet Programme.

We published the first book based on this work, *Future Electricity Technologies and Systems*, in 2006. It concluded that a low-carbon electricity system by 2050 was technically feasible. In 2008, a second volume – *Delivering a Low-Carbon Electricity System* – outlined what important steps needed to be undertaken by 2020 to put us on track towards such a system. *The Future of Electricity Demand* focuses on a somewhat neglected part of the electricity system, where interdisciplinary work continues to offer significant insights and where there is much to be gained from the sort of research collaboration that has produced this book. We trust you will find it as exciting as we did.

Director of Research, ESRC Electricity Policy Research Group Professor of Economics Faculty of Economics University of Cambridge

Department of Electrical and Electronic

Engineering Imperial College London

University of Cambridge
Professor of Electrical Power Engineering
PROFE

PROFESSOR DAVID NEWBERY

PROFESSOR TIM GREEN

Preface

Ambitious environmental targets will modify the shape of the electricity sector in the twenty-first century. 'Smart' technologies and demand-side management will be some of the key features of the future of the electricity system in a low-carbon world. Meanwhile, the social and behavioural dimensions will complement and interact with new technologies and policies. Moreover, electricity demand will increasingly be tied up with the demand for heat and transport.

The Future of Electricity Demand explores the features of the future electricity demand in light of the challenges posed by climate change. Written by a team of leading academics and industry experts, the book investigates the economics, technology, social aspects, and policies and regulations which seem likely to characterize energy demand in a low-carbon world. The book begins by looking at the economics and the modelling of energy demand. Next, it examines the technological solutions for achieving active demand, such as smart meters, smart appliances and electric vehicles. It then turns to the social dimensions of energy, and finally to policy and regulatory instruments. It thus provides a comprehensive and analytical perspective on the future of electricity demand.

> TOORAJ JAMASB MICHAEL G. POLLITT

> > xxvii

Acknowledgements

The editors are very grateful to the large number of individuals without whom this book would not have been possible. In particular, we acknowledge the help and support of the UK Research Councils and the SuperGen community, especially the FlexNet consortium of universities. Together they have facilitated the coming together of a wide range of individuals from different disciplines to share their expertise and views on the future of electricity demand in a low-carbon world.

We particularly wish to thank Janusz Bialek, Mark Bilton, Steve Connors, Nick Eyre, Ahmad Faruqui, Gareth Harrison, Benjamin F. Hobbs, Sue Roaf, Sanem Sergici, Fionnguala Sherry-Brennan and Sonia Yeh, all of whom, as external referees, have ensured the quality of the substance covered in the book. We would also like to thank Roger Fouquet and Peter J.G. Pearson, who kindly provided the data for some of the figures in Chapter 1. A special mention must be made to Aoife Brophy Haney and Laura Platchkov, Research Assistants at the Cambridge Faculty of Economics, who successfully managed the entire process through to completion.

We are also grateful to David Newbery, Research Director of the ESRC Electricity Policy Research Group, who continues to inspire us with criticisms and encouragements, Sean Holly, Research Director of the Faculty, as well as Chris Harrison and Philip Good at Cambridge University Press, for their support and work in preparing the book for publication. And last but not least, we extend our sincere thanks to all the authors, without whose unwavering support this book would not have been completed.

> TOORAJ JAMASB MICHAEL G. POLLITT

xxviii