This book explains a well-known puzzle that helped catalyze the establishment of generative syntax: how children tease apart the different syntactic structures associated with sentences such as “John is easy/eager to please.” The answer lies in animacy: taking the premise that subjects are animate, the book argues that children can exploit the occurrence of an inanimate subject as a cue to a non-canonical structure, in which that subject is displaced (The book is easy/*eager to read). The author uses evidence from a range of linguistic subfields, including syntactic theory, typology, language processing, conceptual development, language acquisition, and computational modeling, exposing readers to these different kinds of data in an accessible way. The theoretical claims of the book expand the well-known hypotheses of Syntactic and Semantic Bootstrapping, resulting in greater coverage of the core principles of language acquisition. This is a must-read for researchers in language acquisition, syntax, psycholinguistics, and computational linguistics.

MISHA BECKER is an Associate Professor in the Linguistics Department at the University of North Carolina, Chapel Hill, where she has taught courses in linguistic theory and child language acquisition since 2002.
The Acquisition of Syntactic Structure
Animacy and Thematic Alignment
In this series

106 Sharon Inkelas and Cheryl Zoll: Reduplication: doubling in morphology
107 Susan Edwards: Fluent aphasia
108 Barbara Dancygier and Eve Sweetser: Mental spaces in grammar: conditional constructions
110 Marcus Tomalin: Linguistics and the formal sciences: the origins of generative grammar
111 Samuel D. Epstein and T. Daniel Seely: Derivations in minimalism
112 Paul de Lacy: Markedness: reduction and preservation in phonology
113 Yehuda N. Falk: Subjects and their properties
114 P. H. Matthews: Syntactic relations: a critical survey
115 Mark C. Baker: The syntax of agreement and concord
116 Gillian Catriona Ramchand: Verb meaning and the lexicon: a first phase syntax
117 Pieter Muysken: Functional categories
118 Juan Uriagereka: Syntactic anchors: on semantic structuring
119 D. Robert Ladd: Intonational phonology, second edition
120 Leonard H. Babby: The syntax of argument structure
121 B. Elan Dresher: The contrastive hierarchy in phonology
122 David Adger, Daniel Harbour and Laurel J. Watkins: Mirrors and microparameters: phrase structure beyond free word order
123 Niina Ning Zhang: Coordination in syntax
124 Neil Smith: Acquiring phonology
125 Nina Topintzi: Onsets: suprasegmental and prosodic behaviour
126 Cedric Boeckx, Norbert Hornstein and Jairo Nunes: Control as movement
127 Michael Israel: The grammar of polarity: pragmatics, sensitivity, and the logic of scales
128 M. Rita Manzini and Leonardo M. Savoia: Grammatical categories: variation in Romance languages
129 Barbara Citko: Symmetry in syntax: merge, move and labels
130 Rachel Walker: Vowel patterns in language
131 Mary Dalrymple and Irina Nikolaeva: Objects and information structure
132 Jerrold M. Sadoke: The modular architecture of grammar
133 Dunstan Brown and Andrew Hippiasly: Network morphology: a defaults-based theory of word structure
134 Bettelou Los, Corrien Blom, Geert Booij, Marion Elenbaas and Ans van Kemende: Morphosyntactic change: a comparative study of particles and prefixes
135 Stephen Crain: The emergence of meaning
136 Hubert Haider: Symmetry breaking in syntax
137 José A. Camacho: Null subjects
138 Gregory Stump and Raphael A. Finkel: Morphological typology: from word to paradigm
139 Bruce Teske: Output-driven phonology: theory and learning
140 Asier Alcázar and Mario Saltarelli: The syntax of imperatives
141 Misha Becker: The acquisition of syntactic structure: animacy and thematic alignment

Earlier issues not listed are also available
THE ACQUISITION OF SYNTACTIC STRUCTURE

ANIMACY AND THEMATIC ALIGNMENT

MISHA BECKER

University of North Carolina, Chapel Hill
Contents

List of figures page x
List of tables xi
Acknowledgements xiii

1 Introduction 1

2 The syntax of displacing and non-displacing predicates 14
 2.1 Raising-to-subject and subject control: seem vs. claim 16
 2.1.1 The structure of raising 19
 2.1.2 The structure of control 25
 2.1.3 Raising-to-object and object control: expect vs. persuade 28
 2.2 Tough-constructions: easy vs. eager 30
 2.2.1 Structure of tough-constructions 32
 2.2.2 Related constructions 36
 2.2.3 Structure of control adjective constructions 39
 2.3 Unaccusatives and unergatives: arrive vs. dance 39
 2.3.1 A semantically-driven syntactic distinction 40
 2.3.2 Formal representations of unaccusativity 42
 2.4 Passive 45
 2.4.1 Structure of passive 46
 2.4.2 A different displacing predicate 49
 2.5 The learning problem 52

3 Argument hierarchies 61
 3.1 The Animacy Hierarchy 63
 3.1.1 Linguistic effects of animacy: morphosyntax and argument structure 64
 3.1.2 Animacy, agency, degree of control, and teleological capability 69
 3.2 The Thematic Hierarchy 75
 3.2.1 A brief history of thematic roles 76
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2</td>
<td>Formal accounts of thematic role assignment</td>
<td>79</td>
</tr>
<tr>
<td>3.3</td>
<td>Animacy and thematic roles in opaque constructions</td>
<td>84</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Raising constructions across languages</td>
<td>86</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Tough-constructions across languages</td>
<td>103</td>
</tr>
<tr>
<td>3.4</td>
<td>Properties of derived subjects</td>
<td>109</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Argument structure universals, and the “problem” of ergativity</td>
<td>114</td>
</tr>
<tr>
<td>3.5</td>
<td>A learning procedure</td>
<td>119</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary</td>
<td>124</td>
</tr>
<tr>
<td>4</td>
<td>Animacy and adult sentence processing</td>
<td>126</td>
</tr>
<tr>
<td>4.1</td>
<td>Relative clauses</td>
<td>129</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Reduced relative clauses</td>
<td>129</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Subject vs. object relative clauses</td>
<td>136</td>
</tr>
<tr>
<td>4.2</td>
<td>Processing of raising and control</td>
<td>139</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Sentence completion</td>
<td>140</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Novel verb learning</td>
<td>147</td>
</tr>
<tr>
<td>4.3</td>
<td>Psycholinguistic effects of animacy on production of the passive</td>
<td>153</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary</td>
<td>155</td>
</tr>
<tr>
<td>5</td>
<td>Animacy and children’s language</td>
<td>156</td>
</tr>
<tr>
<td>5.1</td>
<td>Development of the animacy concept</td>
<td>157</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Featural properties of animates</td>
<td>158</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Behavioral properties of animates</td>
<td>159</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Intentional properties of animates</td>
<td>166</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Further conceptual change</td>
<td>169</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Agency</td>
<td>172</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Summary</td>
<td>173</td>
</tr>
<tr>
<td>5.2</td>
<td>Children’s use of animacy in learning argument structure</td>
<td>174</td>
</tr>
<tr>
<td>5.2.1</td>
<td>The power and limitations of Semantic Bootstrapping</td>
<td>179</td>
</tr>
<tr>
<td>5.2.2</td>
<td>The power and limitations of Syntactic Bootstrapping</td>
<td>186</td>
</tr>
<tr>
<td>5.3</td>
<td>Children’s acquisition of displacing predicates</td>
<td>190</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Acquisition of raising and control</td>
<td>192</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Acquisition of tough-constructions</td>
<td>208</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Acquisition of unaccusatives</td>
<td>227</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Animacy and the acquisition of the passive</td>
<td>235</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary</td>
<td>242</td>
</tr>
<tr>
<td>6</td>
<td>Modeling the acquisition of displacing predicates</td>
<td>245</td>
</tr>
<tr>
<td>6.1</td>
<td>Displacing predicates in the input to children</td>
<td>250</td>
</tr>
<tr>
<td>6.2</td>
<td>Computational modeling of language acquisition</td>
<td>256</td>
</tr>
</tbody>
</table>
6.2.1 Learning as generalization 258
6.2.2 Restricting the hypothesis space 261
6.3 Hierarchical Bayesian Models 265
 6.3.1 A model of learning raising and control 267
 6.3.2 A model of learning tough-constructions 276
 6.3.3 A model of learning unaccusatives and unergatives 279
6.4 Summary of modeling results 281

7 Conclusions and origins 283
 7.1 Origins of knowledge of the animacy distinction 286
 7.2 Origins of knowledge of linguistic animacy and displacing predicates 289
 7.3 Further questions 296

Appendix 298
Bibliography 300
Index 322
Figures

4.1 Percent “Correct” responses for novel raising (target) and control (filler) verbs; list condition only, averaged across frequency conditions
5.1 Mean RT in msec (log10) to warm-ups and fillers
5.2 Mean RT in msec (log10) to hard and afraid
5.3 Mean RT in msec (log10) for Group 1
5.4 Mean RT in msec (log10) for Group 2
5.5 Mean RT in msec (log10) for Groups 1 and 2, novel tough-adjectives
5.6 Percentage of correct categorizations of novel raising (target) and control (filler) verbs in adult experiment, 1-exemplar condition (Becker and Estigarribia, 2013)
6.1 A power law distribution, illustrating Zipf’s law
6.2 A power law distribution plotted on a log–log scale
6.3 Graphical representation of the Hierarchical Bayesian Model
6.4 Graphical representation of β and λ in Hierarchical Bayesian Model
6.5 Posterior distribution plots for λ; CHILDES data
6.6 Posterior distribution plots for λ; Switchboard data
6.7 Posterior distribution plots for λ for each adjective
6.8 Posterior distribution plots for λ; unaccusative and unergative verbs
Tables

3.1 Raising and control verbs in German and Italian
3.2 Raising and control verb meanings in Polynesian, European
3.3 Properties of tough-adjectives across languages
3.4 Properties of “basic” and derived subjects across languages
3.5 Typical properties of subjects and non-subject arguments
4.1 Percentage of raising and control responses in Becker (2005), Experiments 1–3
4.2 Percentage raising and control responses in Becker (2005), Experiment 4
4.3 Percentage raising and control responses in Becker (2005), Experiment 4 (separated by aspect of embedded verb)
4.4 Novel verbs and their pseudo-definitions
4.5 Observed mean percentage “Correct” responses
5.1 Mean percent correct (with predicate type)
5.2 Examples of test items in Becker (2006b)
5.3 Predicted responses depending on child’s assumptions
5.4 Results of experiment: relative proportion of OK/silly responses
5.5 Response time in msec to transitive vs. there-construction questions (5-year-olds)
5.6 Design of tough-adjective study
5.7 Response Time (msec) for novel tough-adjectives, group 2
5.8 Children’s use of animate subjects with unaccusative vs. unergative verbs in spontaneous speech
6.1 Mothers’ use of animate/inanimate subjects with raising and control verbs
6.2 Adults’ use of animate and inanimate subjects with tough/control adjectives
List of tables

6.3	Mothers’ use of animate and inanimate subjects with unaccusatives and unergatives	254
6.4	Distribution of raising and control verbs with animate/inanimate subjects, from CHILDES	270
6.5	Distribution of raising and control verbs with animate/inanimate subjects, from switchboard	271
6.6	Adults’ use of animate and inanimate subjects with tough/control adjectives	277
6.7	Distribution of *ready* in speech to children	279
6.8	Mothers’ use of animate and inanimate subjects with unaccusatives and unergatives	280
Acknowledgements

While working on my dissertation on the acquisition of the copula in child English, I happened to read an article by Bob Frank on the relative structural complexity of raising and control constructions. In the Tree Adjoining Grammar (TAG) framework, Frank argued, raising constructions involve additional complexity not found in control constructions. Because of this difference in complexity, he surmised that if someone heard the sentence Gabriel glorp to eat gouda, that person would first assume that the sentence had a control structure, and therefore that glorp was a control verb. When I read his prediction I thought, “I bet he’s right that people will assume glorp is a control verb, but I bet it’s for a different reason.” I quickly conducted an informal survey of the members of my department by giving them this very sentence and asking them what glorp meant. Sure enough, everyone offered me control verbs for glorp; not one person said it was a raising verb.

Initially, my hunch about why people would have this preference was that raising verbs are in some sense midway between functional and lexical categories (they are like function words, e.g. auxiliaries, in their argument structure, but lexical in their marking of subject agreement and lack of inversion), and I thought that people might be unwilling to assign a novel word to a category that is similar to closed class categories. But as I began to test people’s assumptions about these sentences with different kinds of inputs, in particular, with fill-in-the-blank sentences (where the participant is not assigning a novel verb to any category), I realized the explanation had to be something else. An early clue came from the observation that when I gave participants an inanimate subject, I got a lot more raising verb responses than I did when the subject was animate.

This was the beginning of my exploration of how learners come to identify the underlying structures of these kinds of sentences. And so although his influence was indirect and unintentional, I am grateful to Bob Frank for starting me on this path. Over the years my approach has broadened to
xiv Acknowledgements

...include different constructions (*tough* vs. control adjectives, and unaccusative vs. unergative verbs), child and adult participants, and different methodologies, all of which have been profoundly influenced by my colleagues around me. My early work on this topic was much influenced and enriched by Lila Gleitman, John Trueswell and the wonderful and insightful folks who made up the Cheese seminar at University of Pennsylvania’s Institute for Research in Cognitive Science. I am deeply grateful to IRCS and NSF for the opportunity to be immersed in that stimulating environment for two years.

Several of the studies I report on in this book are the product of collaborations, and I thank Bruno Estigarribia, W. Garrett Mitchener and Jeannette Schaeffer for their wonderful ideas and for being such inspiring and generous collaborators. Garrett Mitchener deserves a particularly big thank-you for his extensive input not only on our previous collaboration but on chapter 6 of this book. That chapter could not have materialized without his expertise and many hours of work. I thank him for developing our learning model, running the simulations, creating the figures for depicting the results, and most of all for his patience in explaining (and re-explaining) the details of the Bayesian model to me.

In addition, though not usually given author status, I thank the many undergraduate research assistants (Bianca Bulchandani, Marguerite Cameron, Brian Cansler, Adam Daland, Sam Farquharson, Alex Fine, Duna Gylfadottir, Michelle Hewitt, Molly Jabeck, Taylor Shirley, Lara Stephenson) and graduate students (Susannah Kirby, Inmaculada Gomez Soler) who helped me collect data.

I have been very fortunate to have had various sources and forms of support at the University of North Carolina, from the Faculty Partners and University Research Council small grants, to the Associate Professor Support grant through the College of Arts and Sciences. I could not have completed my various psycholinguistic experiments without this financial support. I am particularly grateful to the Institute for Arts and Humanities, whose Preyer Fellowship through the Faculty Fellows program allowed me a semester’s leave in order to complete this book.

No less vital than financial and leave support, I have the great fortune of having wonderful, supportive, and challenging colleagues. I am particularly indebted to Elliott Moreton, Katya Pertsova, and Jennifer Smith for feedback on early drafts of this work. I am lucky to have colleagues in other departments with interests in language, whose provocative questions have helped move my research forward: Jennifer Arnold, Peter Gordon, and the other members of the Psychology and Language UNC Group (PLUG), Dorit Bar-On and Dean...
Acknowledgements

Pettit in philosophy, and the audience members of the Linguistics colloquium and the Expressive Communication and Origins of Meaning (ECOM) research series for their insightful questions.

Parts of this book have been presented to audiences at the Boston University Conference on Language Development, College of Charleston, Generative Approaches to Language Acquisition North America, University of Maryland, Università di Milano, WCCFL, the Workshop on Animacy (Radboud University, Nijmegen), the Workshop on Input and Syntactic Acquisition (Portland, OR), and the Workshop on Sentence Complexity (Universität Konstanz). I thank these audiences for their comments, questions, and feedback, which invariably improved my work.

For data, judgments, and general brainstorming help I would like to thank Ash Asudeh, Daniela Blettner, Julie Brittain, Ivano Caponigro, Sandy Chung, Alex Clark, Stephen Crain, Annie Gagliardi, Jean Berko Gleason, Vincent Homer, Yi Ting Huang, Nina Hyams, Kyle Johnson, Elsi Kaiser, Beth Levin, Jeff Lidz, Diane Massam, Yuko Otsuka, Lisa Pearl, Geoffrey Pullum, Susi Wurmbrand, Charles Yang and Hang Zhang. I also want to express my profound appreciation to all of the adults and children (and their families) who have so generously provided the data for my studies. I think 3- to 7-year-olds are pretty much the most fun data sources ever! A slightly less entertaining but absolutely crucial data source is the CHILDES database, and I’m grateful to Brian MacWhinney and all the members of the chi-bolts mailing list for help in using this important resource.

I also thank Helen Barton at Cambridge University Press for her guidance, and a reviewer who provided numerous helpful suggestions which have improved this work greatly.

Finally, but most important, a huge debt of gratitude is owed to my husband, Scott, and our children, Olivia and Lyra, whose early years have been touched (and hopefully not too much marred!) by the writing of this book. I thank them for their patience, love, and support, and I thank my children for entertaining and highly appropriate data, some of which has found its way into this book. I’m also very grateful to my parents who have generously helped with childcare so that I could write uninterrupted, and who have provided general encouragement and support throughout my life.