Index

3-point bend test, 284 f9.3
active pharmaceutical ingredient, 1
adhesion, 277 t9.1
aerodynamic dispersion, 300
aerosol processes, 161
aerosol reactor, 163, 176
aerosol synthesis, 164
agglomerate, 15, 164
agglomerate attrition, 286
agglomerate breakage, 286
agglomerate dispersion, 295
agglomerate dissolution, 309
agglomerate structure, 276
agglomerate tensile strength, 282
agglomeration, 64, 65, 169
aggregates, 167
aggregation, 65, 169
amorphous particle formation, 212
atomization, 194
attrition, 59, 122, 131, 231, 262, 273, 286
attrition rate, 286
autogenous mills, 142
ball mill, 131, 142
batch crystallizers, 98
batch grinding, 126
batch grinding tests, 133
bead mills, 144
bed zone, 252
binder dispersion, 231
Biot number, 200
birth and death terms, 64, 65, 123, 177
Bond Work Index, 146
breakage, 64, 70, 172, 231, 251, 273
breakage distribution, 152
breakage function, 71, 125, 130
breakage kernel, 130
breakage mechanisms, 119
breakage rate constant, 71, 130
breakage selection function, 71, 124, 173
brittle, 119
Brownian motion, 170
capillary number, 240
CFD liquid bridge, 1, 277 t9.1
capillary number, 240
CFD simulations, 220
classification, 136
classifier, 106
cleavage, 122, 131
coaalescence, 65, 171, 245
coaalescence kernel, 65, 67, 68, 255
coating, 59
co-current dryers, 218
collision and coalescence zone, 168
collision velocity, 242
comminution, 118
concentration enrichment, 210
condensation, 59
consolidation, 240
consolidation and growth, 231
consolidation rate constant, 242
crystal face growth rates, 109
crystal growth, 59, 88
crystal growth kinetics, 88
crystal nucleation kinetics, 93

Cambridge University Press
978-1-107-00737-6 — Design and Processing of Particulate Products
Jim Litster
Index
More Information
crystal shape, 109
crystal size distribution, 88
crystal systems, 108 f4.2
crystallization, 80
crystallization rate processes, 88
crystallizer design, 86, 98
crystallizer mass balance, 107
cumulative distribution, 19
cyclone, 162, 185
dendritic growth, 110
designer particles, 4
diffusion flux, 311
dimensionless spray flux, 234, 236
Dirac delta function, 56, 64
disc granulator, 258
discrete distributions, 20
disintegration, 294
dispersion, 294, 309
dispersion by gases, 300
dispersion efficiency, 299
dispersion in liquids, 302
dissolution, 59, 294, 309
dissolution rate, 315
dissolution time, 312
drag coefficient, 312
drop-controlled nucleation, 232, 237, 254
drop drying, 200
drop-drying model, 206, 220
drop-drying time, 204
drop formation, 194
drop penetration time, 235
drop size distributions, 220
drum granulator, 250, 258
dry powder inhalation, 6
drying drops with dissolved or suspended solids, 204
dynamic yield strength, 240
dynamic yield stress, 242 f8.8

effective voidage, 236
elastic–plastic, 122 f5.3
emulsion, 72
energy balance, 201
energy relationships for grinding, 145
energy–size relationships, 147
Ennis coalescence criterion, 245, 262
envelope density, 17
equikinetic energy (EKE) kernel, 69
equivalent diameters, 13, 256
erosion, 59, 286, 307
Eulerian framework, 219
evaporation of a single drop, 202
Fanning friction factor, 184
Feret’s diameter, 16 t2.2
film formation, 167 f6.3
fines dissolution, 106
flame reactor, 162, 164
flocculation, 65
fluid bed attrition, 288
fluid energy mills, 144
fluidized beds, 288
fluidized granulators, 230, 243, 246, 261
formulated products, 1
fractal dimension, 15, 308
fracture energy, 278
fracture mechanics, 119
fracture toughness, 121, 282
fragmentation, 286
fragmentation number, 297, 307
frequency distribution, 19, 24
Froude number, 144, 259, 260
Gaussian (normal) distribution, 29
Geldart powder classification, 263
greening discretization, 126
greening size intervals, 25
Ghadiri, 285
grade efficiency, 137
grade efficiency curve, 137, 185
granulation, 9
granulation rate processes, 233 f8.2
Griffith criterion, 121
grinding media, 131
growth processes, 50, 59
growth rate, 90, 168
growth rate dispersion, 92
growth regime map, 249, 250 f8.13
hammer mill, 136, 142
Happgood, 238 f6.8
heat and mass transfer, 200, 203
heat transfer coefficient, 200
heterogeneous primary nucleation, 93
imbibition into an agglomerate, 304
impact, 119
impact mills, 142
impact testing, 284
impact velocity, 120
impeller tip speed, 260
impeller zone, 252
indentation, 283
induction growth, 248
inertial regime, 246
Iveson, 249
jaw crusher, 142 f5.11
jet mill, 136, 144
jet stretching, 196
JKR model, 277 t9.1
Kendall Model, 277
Kozeny–Carmen equation, 235
Lagrangian framework, 219
Laplace–Young equation, 234
layered growth, 254
layering regime, 246
liquid evaporation flux, 210
liquid saturation, 241, 249
liquid-fed flame synthesis, 164
log mean temperature difference, 204
log-normal frequency distribution, 25
log-normal distribution, 29
macroscopic population balance, 50, 51
mass–balance, 126
mass–moment mean, 27
mass–size balance, 123, 127f5.5
mass transfer, 59
mass-transfer coefficient, 59, 203, 310, 314
mass-transfer controlled, 310
mass-transfer-controlled growth, 90
McCabe–ΔL law, 89
mean of the distribution, 27
measuring properties, 30
mechanical dispersion, 233, 237
median size, 27
mercury porosimetry, 33
metastable, 83
metastable region, 83
metastable zone, 86
micromechanical models for agglomerate strength, 275
microscopic population balance, 52
microscopy, 30
Miller Indices, 108
minimum fluidization velocity, 27, 262
mixer granulator, 230, 238, 242, 253 f8.14, 260
moment of the frequency size distribution, 26
moments, 177
moments form of the population balance, 53
MSMPR continuous crystallizer, 101, 105
multiscale model, 219
non-inertial regime, 246
normalized moments, 26
nozzles, 198
nucleation, 64, 168, 222, 231, 232
nucleation kinetics, 93
nucleation-only regime, 249
nucleation regime map, 238 f8.6
Nusselt number, 201
Ohnesage number, 196
packed bed, 262
paint pigments, 3
parameter estimation, 135
particle bed crushing, 119
particle characterization, 9
particle density, 17, 32
particle design, 82
particle formation, 200
particle morphology, 209
particle property distributions, 9
particle relaxation time, 310
particle Reynolds number, 201, 312
particle shape, 14
particle size, 12, 30
particle size distribution, 21 f2.3
particle size measurement, 31
particle size reduction, 117
particle size reduction equipment, 141
particle size reduction equipment selection, 146 f5.1
particulate delivery forms, 273
particulate products, 2 t1.1
Peclet number, 210
phase diagram, 83
phase-space, 52
pin mill, 142
pipeline agglomerator, 162, 184
plug flow, 52
plug flow grinding, 126
pneumatic (two-fluid) nozzle atomizers, 198
poisoning, 90, 109
polymorphism, 109
pore size distribution, 33
porosity, 17, 18, 33
porous particle drying, 205
powder dispersers, 301 f10.4
powder dissolution, 309, 314
powder layering, 245
Prandtl number, 201
pressure drop, 184
pressure nozzle atomizers, 198
primary nucleation, 83
primary nucleation region, 83
process design, 82
process model, 4
process zone size, 283
product design, 82
Index

product engineering, 4
product model, 5, 274
projected area diameter, 16t2.2
properties of a single particle, 11
property distributions, 19
quality by design, 228
range of the distribution, 27
Ranz–Marshall equation, 97, 201, 313
rate processes, 75 t3.2, 88, 166, 231
Rayleigh jet break up, 194
reaction zone, 168
regime maps, 231
relative supersaturation, 83
reverse engineering, 5, 274, 289
Richardson–Zaki equation, 215
Rittinger, 146
rod mills, 142
roll crusher, 141
roping, 261
Rosin–Rammnler distribution, 29
rotating disc atomizers, 198
Rumpf model for Agglomerate Tensile Strength, 273, 276
Saffman–Turner kernel, 170
salting out, 85
scattering diameter, 16t2.2
Schmidt number, 313
secondary nucleation, 84, 95
secondary nucleation region, 84
seeded crystallizers, 86
semi-brittle, 119
shape factors, 14
shell formation, 209, 212
Sherwood number, 98, 311
shrinkage ratio, 222
shrinking core, 59
sieve size, 14
drop drying, 220
single particle breakage, 134f5.7
single particle crushing, 119
single particle dissolution, 309
single particle testing, 133
sintering, 171
size-independent growth, 53, 59, 255
size-independent kernel, 67
skeletal (true) density, 17, 32
slip velocity, 215, 313
Smoluchowski shear kernel, 69
solid bridge, 277 t9.1
solidification, 200
solubility, 83
special distributions, 28
specific energy, 151, 151 f5.17
specific surface diameter, 16t2.2
specific surface mean, 27
sphericity, 15
spray cooler design, 213
spray cooling, 65, 192
spray drier design, 218
spray drying, 65, 192
spray-drying configurations, 219 f7.11
spray pyrolysis, 164
spray zone, 232, 252
steady growth, 248
stirred media mills, 144, 149
Stokes deformation number, 240, 248
Stokes diameter, 14
stress energy, 149
stress intensity factor, 121
superficial gas velocity, 215, 265
superficial velocity, 262
supersaturation, 83, 85 f4.1
supersaturation ratio, 83
surface integration, 90
t curves, 148
tableting, 9
terminal settling velocity, 262, 312
total numbers balance, 54
toughness, 121
tumbling granulators, 230, 243, 258
tumbling mills, 142
twinning, 110
two-dimensional population balance, 222
uniaxial compression, 120f5.2
van der Waals adhesion, 277 t9.1
vapor-fed flame synthesis, 164
vibrating (sonic) atomizers, 198
Vigil–Ziff criterion, 188
viscous liquid bridge, 277 t9.1
viscous Stokes number, 245
voidage, 18
volume equivalent number, 13
volume (mass) size distribution, 24
Washburn equation, 235
water-dispersible granules, 273, 294
wear, 286
Weibull distribution, 121, 282
well-mixed granulator, 64
well-mixed grinding mill, 124, 127
Wen and Yu equation, 263
wet dispersion kinetics, 307
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wet granulation</td>
<td>228, 230</td>
</tr>
<tr>
<td>wet granulation equipment design</td>
<td>258</td>
</tr>
<tr>
<td>wet granulation scaling rules</td>
<td>258, 265</td>
</tr>
<tr>
<td>wet granule breakage</td>
<td>251</td>
</tr>
<tr>
<td>wet granule strength</td>
<td>240</td>
</tr>
<tr>
<td>wetting</td>
<td>234</td>
</tr>
<tr>
<td>work of adhesion</td>
<td>278</td>
</tr>
<tr>
<td>X-ray microtomography</td>
<td>34</td>
</tr>
<tr>
<td>Young–Dupre equation</td>
<td>233</td>
</tr>
</tbody>
</table>