The basic unit of nature – the ecosystem – is a special form of wealth, which we can think of as a stock of natural capital. However, perhaps because this capital is free, we have tended to view it as limitless, abundant, and always available for our use, exploitation, and conversion. *Capitalizing on Nature* shows how modeling ecosystems as natural capital can help us to analyze the economic behavior that has led to the overuse of so much ecological wealth. It explains how this concept of ecosystem as natural capital sheds light on a number of important issues, including landscape conversion, ecological restoration, ecosystem resilience and collapse, spatial benefits, and payments for ecosystem services. The book concludes by focusing on major policy challenges that need to be overcome in order to avert the worsening problem of ecological scarcity and how we can fund novel financing mechanisms for global conservation.

Edward B. Barbier is the John S. Bugas Professor of Economics in the Department of Economics and Finance, University of Wyoming. He has over twenty-five years’ experience as an environmental and resource economist, working mainly on the economics of environment and development issues. He is the author of many books on environmental policy, including *Natural Resources and Economic Development* (2005), *A Global Green New Deal* (2010), and *Scarcity and Frontiers: How Economies Have Developed Through Natural Resource Exploitation* (2011), all published by Cambridge University Press.
Capitalizing on Nature

Ecosystems as Natural Assets

EDWARD B. BARBIER
This book is dedicated to Lara, Becky, James, and Charlotte. Future generations are, after all, what it is all about.
To waste, to destroy our natural resources, to skin and exhaust the land instead of using it so as to increase its usefulness, will result in under-mining in the days of our children the very prosperity which we ought by right to hand down to them amplified and developed.

Theodore Roosevelt, seventh annual message, December 3, 1907

We could have saved the Earth but we were too damned cheap.

Kurt Vonnegut, Jr.
Contents

List of figures page viii
List of tables x
List of boxes xi
Acknowledgments xii

Introduction 1
1 Ecological scarcity as an economic problem 6
2 Ecosystem services and ecological landscapes 26
3 The basic natural asset model 85
4 Spatial variation in ecosystems 129
5 The open economy 152
6 Ecological collapse 199
7 The way ahead 232
8 Policies in the Age of Ecological Scarcity 269
Index 311
Figures

1.1 The ecological scarcity tradeoff page 7
1.2 Long-run global land use change, 1700–1990 14
1.3 Global agricultural and forest land use change, 1961–2005 16
1.4 Human-induced threats to coastal and marine ecosystems 21
2.1 Key interrelated steps in valuing ecosystem goods and services 34
2.2 Ecological landscape conversion to development 44
2.3 Irreversible ecological landscape conversion to development 46
2.4 Economic valuation of ecosystem goods and services 49
3.1 Optimal landscape conversion in the basic model 93
3.2 Landscape conversion when ecosystem services are ignored 93
3.3 The ecological transition and optimal landscape restoration 97
3.4 Land use change and the forest transition curve 98
3.5 Changing land use values and the forest transition 101
3.6 Number of coastal natural disaster events per year in Thailand, 1975–2004 115
3.7 Mangrove area (km²) in Thailand, 1961–2004 115
4.1 Nonlinear wave attenuation across a mangrove landscape 134
4.2 Nonlinear habitat function across a mangrove landscape 135
4.3 Mangrove land use with spatially uniform ecosystem values 136
4.4 Mangrove land use with spatially variable storm protection values 137
4.5 Optimal conversion of a coastal landscape with spatially variable benefits 139
4.6 Simulation of the spatial model 142
5.1 The rural poor and population on fragile lands in developing economies 157
5.2 Fragile land population and GDP per capita in developing economies 159
5.3 Resource dependency in exports, 1960–2006 161
5.4 Optimal landscape conversion in the open economy model 170
List of figures

5.5 The effects of a change in the terms of trade 172
5.6 The effects of a rise in international payments for ecosystem services 174
5.7 The provision of global ecosystem services 186
6.1 Optimal landscape conversion over time with a risk of ecological collapse 207
6.2 Optimal coastal landscape allocation with risk of collapse 210
6.3 Simulation of the spatial model with a risk of ecological collapse 212
6.4 Optimal landscape conversion over time with ecosystem resilience 222
7.1 The capital approach to sustainable development 236
7.2 Biodiversity, productivity, and stability in ecological communities 258
8.1 Reversing the vicious cycle of “unsustainable” development 273
8.2 The transaction costs of environmental policy change 276
Tables

1.1 Magnitudes of global environmental change, 1890s to 1990s
1.2 Trends in global forest area (10⁶ km²), 1990–2005
1.3 Trends in cultivated land to 2050 in developing regions
1.4 Water withdrawal by volume and by share of total renewable supplies
1.5 Developing countries and regions with relatively scarce water supplies
2.1 Examples of wetland ecosystem services and valuation studies
2.2 Ecosystems classified in terms of source and level of energy flow
2.3 Various nonmarket valuation methods applied to ecosystem services
2.4 Losses in floodplain benefits versus gains in irrigated production, net present value
2.5 Comparison of land use values per ha, Thailand, 1996–2004
2.6 Tradeoffs in landscape use scenarios, Willamette Basin, Oregon, 1990–2050
2.7 Forest ecosystem service values, Great Britain
5.1 Distribution of world’s population and rural poor on fragile land
5.2 Low- and middle-income economies and patterns of resource use
6.1 Major ecosystem state shifts and their causes
8.1 Global status of key ecosystem goods and services
8.2 Financing mechanisms for funding global ecosystem conservation
Boxes

2.1 Ecosystem functions and services ... page 29
2.2 Valuing water supply to New York City by the Catskills watershed 56
5.1 Resource dependency, fragile land populations, and rural poverty 163
6.1 Diversity and adaptability of ecosystems ... 216
6.2 The value of ecosystem resilience in the Goulburn–Broken Catchment of Southeast Australia .. 223
6.3 Land clearing and ecological disturbance in tropical forest ecosystems 225
7.1 Sustainable development as systems Venn diagram 234
7.2 How does economic development affect mangrove loss? 251
7.3 Estimating a supply curve for ecosystem services 253
7.4 Ecological resilience in coastal and marine ecosystems 256
8.1 Replanting mangroves in Thailand: the institutional and policy challenge 298
Acknowledgments

This book would probably not have happened without the prompting of Richard Carson. In June 2008, Rich approached me with the idea of writing a short monograph on the economics of ecosystems for the journal that he co-edits with Kip Viscusi, Foundations and Trends in Microeconomics. As Rich explained to me, many contributors to the journal expand their short monographs into book-length manuscripts. The publisher of the journal, Now Publishers, actually encourages this practice.

I am therefore grateful to Rich Carson and Kip Viscusi for suggesting that I publish the original article in their journal, and ultimately expand it into a book. I also appreciate the support of Zac Rolnick of Now Publishers, who facilitated my seeking book publication of an expanded article.

I would like to thank Chris Harrison of Cambridge University Press for enthusiastically backing this project from the outset and commissioning this book.

Amy Ando, Jeff Englin, and Marty Smith assisted with extensive and useful comments on the original book proposal. Amy Ando, Rich Carson, Dave Finnoff, Duncan Knowler, Charles Perrings, Jason Shogren, John Tschirhart, and Amos Zemel provided helpful comments and suggestions on my Foundations and Trends in Microeconomics article. The transformation of the article to book also benefited from comments received in reaction to my keynote address at the 11th Annual BioEcon Conference, “Economic Instruments to Enhance the Conservation and Sustainable Use of Biodiversity,” Venice, Italy, September 21–22, 2009.

xii
Acknowledgments

While writing this book, I also produced two related journal articles, for *Annual Reviews of Resource Economics* and *Ecological Monographs*. I am grateful to Amy Ando, Ian Bateman, Dave Finnoff, Rick Freeman, Nick Hanley, Kathy Segerson, and John Tschirhart for helpful comments on my *Annual Reviews* article, which also proved extremely useful to me in writing this book. In addition, I am indebted to my co-authors, Sally Hacker, Chris Kennedy, Evamaria Koch, Brian Silliman, and Andrew Stier, for the article in *Ecological Monographs*, as well as the editor Aaron Ellison, for advice, assistance, and suggestions.

Special thanks go to Joanne Burgess, who read over early drafts of the manuscript and provided detailed comments, suggestions, and edits. Her careful attention to the first chapter of this book was especially valuable. I am also indebted to Margie Reis for helping with the preparation of the manuscript for publication.