Crustal Evolution and Metallogeny in India

Sanjib Chandra Sarkar
Anupendu Gupta
Dedicated

to

the Students of Indian Geology
CONTENTS

List of Figures	ix
List of Tables	xxi
List of Plates	xxvii
Preface	xxxi

Chapter 1 Southern India

1.1 Geology and Crustal Evolution

- Introduction 1
- Peninsular Gneiss and Granitoids of Western Dharwar 4
- Western Dharwar Schist Belts 7
- Peninsular Gneiss and the Granitoids of Eastern Dharwar 20
- Eastern Dharwar Schist Belts 23
- Kimberlites and Lamproites 40
- Western and Eastern Dharwar Blocks: Similarity, Contrast and Relationship 45
- Southern Granulite Province (SGP) 48
- Proterozoic–Eocambrian Cover Sequences 55

1.2 Metallogeny

- Introduction 69
- Mineralisation in Sargur Type Schist Belts 70
- Ore Mineralisation in the Dharwar Schist Belts 74
- Ore Mineralisation in Southern Granulitic Province (SGP) 118
- Mineralisation in and Around the Cuddapah Basin 130
- Mineralisation in the Bhima Basin 137
- Manganese Mineralisation in the PG Valley 140
- Diamonds 141
- Bauxite Deposits 145

Chapter 2 Central India

2.1 Geology and Crustal Evolution

- Introduction 153
- Southern (Bastar) Crustal Province (SCP) 155
- Northern (Bundelkhand) Crustal Province (NCP) 181
- Tectonic Models for Central Indian Precambrian Crust 210
- Proterozoic Cover Sediments in Central India 215
- Deccan Traps and Their Relation to Continental Flood Basalts 228

2.2 Metallogeny

- Introduction 233
- Tin Mineralisation in Bastar 234
- Rare Metals (RM) and Rare Earth Element (REE) Mineralisations 235
- Iron ores of Dalli–Rajhara–Rowghat–Bailadila Belt 239
- Gold in Kotri Belt 256
- Gold in Sonakhan Greenstone Belt 257
Contents

Gold in Raigarh Belt 257
Copper–Molybdenum (–Gold) Mineralisation at Malanjkhand and Neighbouring Areas 258
Uranium Mineralisation in Central India 288
Polymetallic Mineralisation in Sakoli Fold Belt 292
Gold Mineralisation in Mahakoshal Belt 296
(Zn–Cu–Pb) Sulphide Mineralisation in Betul Belt 298
Manganese Mineralisations in the Sausar Group of Rocks 300
Phosphorite Deposits in Madhya Pradesh 307
Diamonds in Central India 308
Bauxite Deposits in Central India 313

Chapter 3 Eastern Ghat Belt 319

3.1 Geology and Crustal Evolution 319
Introduction 319
Lateral Lithologic Zones 320
Transverse Segments of EGMB 321
Geological Framework 322
Crustal Domains/Provinces in EGMB 325
Geophysical Attributes of EGMB 326
Evolutionary History of EGMB 328
EGMB vis-a-vis East Gondwana Supercontinent 329

3.2 Metallogeny 332
Introduction 332
Manganese Mineralisation 332
Bauxite Deposits 334
Other Minerals 340

Chapter 4 Eastern India 343

4.1 Geology and Crustal Evolution 343
Introduction 343
Archean Cratonic Nucleus 345
Iron Ore Provinces and Other Sedimentary/Volcanisedimentary Belts in South Singhbhum-North Orissa 354
North Singhbhum Mobile Belt 370
Gangpur Group 411
Chhotanagpur Granite–Gneiss Complex 412
Stratigraphic/Geochronologic Sequences in the Eastern India and their Regional Correlation 414
A Summary of the Crustal Evolution 417

4.2 Metallogeny 423
Introduction 423
Copper Sulphide Mineralisation Along Singhbhum Shear Zone 424
Uranium Mineralisation Along the Singhbhum Shear Zone, Basal Dhanjori and the IOG 440
Phosphate (Apatite–Magnetite) Mineralisation in Singhbhum Shear Zone 448
Genesis and Evolution of Ores Along the Singhbhum Copper–Uranium Belt 451
Cu-Pb Sulphide Mineralisation Along Northern Shear Zone 462
Contents

Phosphate Deposits in the Northern Shear Zone 463
Iron Oxide Breccia Hosted Cu–Au–U Mineralisation in NSMB
 (Between Dalma Volcanics and CGC) 464
Metallgeny in the Gangpur Basin 464
Gold in Singhbhum and Adjouring Areas 466
Tungsten Mineralisation in West Bengal 475
BIF Associated Hematitic Iron Ores of Eastern India 480
Chromite Mineralisation 497
Lateritic Nickel 507
Platinum Group Element (PGE) Mineralisation at Baula–Nuasahi, Orissa 507
Manganese Mineralisation in Singhbhum–North Orissa Region 513
Copper (gold) Mineralisation in Chhotanagpur Granite–Gneiss Complex (CGC) 515
Rare Metal (RM) and Rare Earth Elements (REE) Mineralisation in Jharkhand (‘Bihar’) Mica Belt, Chhotanagpur Granite–Gneiss Complex 517
Pyrite Deposit at Amjhore, Rhotas District, Bihar 520
Bauxite Deposits of Eastern India 521

Chapter 5 North-East India 526

5.1 Geology and Crustal Evolution 526
 Introduction 526
 Shillong–Mikir Massif (Meghalaya and Assam) 528
 Cretaceous–Tertiary Sedimentary Sequences and Intrusives in Meghalaya Plateau 531
 Indo-Burman Range (IBR) 534

5.2 Metallogeny 536
 Introduction 536
 Zinc–Copper–Lead Sulphide Deposit, Umpirtha, Meghalaya 536
 Lead Sulphide Mineralisation, Mawmaram, Meghalaya 537
 Uranium Mineralisation in Meghalaya 537
 Apatite and Rock Phosphate Mineralisation in Meghalaya 539
 Chromite Mineralisation in Manipur–Nagaland 540
 Magnette Deposit in Nagaland 540

Chapter 6 Western India 543

6.1 Geology and Crustal Evolution 543
 Introduction 543
 Basement Complex 546
 Aravalli Belt 552
 Bhilwara Province and the Status of the Bhilwara Supergroup 558
 Delhi Fold Belt 561
 Tectonic Models for the Origin and Evolution of Delhi–Aravalli Mobile Belt(s) 582
 Malani Group 585
 Marwar Supergroup 589

6.2 Metallogeny 591
 Introduction 591
 Ancient Mining and Metallurgy in Western India 591
Contents

- Mineralisation in Basement Rocks 595
- Ore Mineralisation in the Bhilwara Province 595
- Sulphide Mineralisations at Zawar, Aravalli Belt 611
- Gold Mineralisation in the Aravalli Sequence, Southeastern Rajasthan 629
- Sulphide Mineralisation in Delhi Fold Belt 637
- Uranium Metallogeny in the Western Indian Craton 663
- Tin–Polymetallic Mineralisation in Tosham Area, Haryana 667
- Tungsten Mineralisation at Degana, Balda and Sewariya, Rajasthan 670
- RM and REE Mineralisations in Rajasthan–Gujarat Region 672
- Rock Phosphate Deposits of Rajasthan 675
- Bauxite Deposits 677

Chapter 7 The Himalaya 679

7.1 Geology and Crustal Evolution 679
- Introduction 679
- The Litho-Tectonic Zones 680
- Himalayan Evolution – The Likely Story 690
- Continuation of the Peninsular Geology into the Himalaya 695

7.2 Metallogeny 695
- Introduction 695
- The Sub-Himalayan Zone 697
- Lesser Himalaya 697
- The Higher Himalayan Zone 709
- Tethyan Zone 711
- Indus–Tsangpo Suture Zone 713
- Metallogenetic Analysis of the Himalaya 713

Chapter 8 Crustal Evolution and Metallogeny in India: A Brief Review in the Context of the World Scenario 717

8.1 An Outline of the World Scenario 717
- Introduction 717
- Probable History of the Early Earth 718
- The Eoarchean Crust and the First Record of Crustal Metallogeny 719
- Archean Crust Development and Metallogeny Spread Over a Billion Years 719
- The Crust Comes of Age During the Proterozoic with the Attendant Metallogeny 721
- An Outline of Phanerozoic Geology and the Characteristic Mineralisations 722
- Supercontinents, Mantle Plumes – Plate Tectonics and Metallogeny 723

8.2 A Synoptic View of the Indian Situation and Its Comparison with the World 731

References 741
Index 741
Plate Section
LIST OF FIGURES

Chapter 1 Southern India 1

1.1 Geology and Crustal Evolution 1

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>Generalised geological map of South India, 2</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Geological map of Karnataka region, 3</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Some structures in Peninsular Gneiss, 4</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Geological map of a part of South India showing the distribution of schist belts of Western Dharwar (WD) and Eastern Dharwar (ED) Blocks, 5</td>
</tr>
<tr>
<td>1.1.5</td>
<td>Geological map showing Dharwar Group of rocks in the Western Dharwar Block and important ore deposits contained by them, 8</td>
</tr>
<tr>
<td>1.1.6</td>
<td>Detailed geological map of Bababudan area showing the distribution of its different formations, and their relationship with the gneissic basement and earlier schist belts, 10</td>
</tr>
<tr>
<td>1.1.7</td>
<td>REE-behavior of Bababudan BIFs, 11</td>
</tr>
<tr>
<td>1.1.8</td>
<td>A schematic diagram of probable geological situation of BIF precipitation in Indian deposits, 14</td>
</tr>
<tr>
<td>1.1.9</td>
<td>Eh-pH diagram showing stability fields of common iron minerals at 25°C and 1b, 14</td>
</tr>
<tr>
<td>1.1.10</td>
<td>The model of Eastern Dharwar Block (‘Batholith’) subducting below Western Lithospheric Plate, i.e Western Dharwar Block, 18</td>
</tr>
<tr>
<td>1.1.11</td>
<td>Structural map of Western Dharwar with suggested transcurrent shears, 19</td>
</tr>
<tr>
<td>1.1.12</td>
<td>Stages of Sagduction in Western Dharwar as Conceived by Choukrane et al., 20</td>
</tr>
<tr>
<td>1.1.13</td>
<td>Geological map of Closepet batholith, 21</td>
</tr>
<tr>
<td>1.1.14</td>
<td>Calc-alkaline differentiation trend of the Eastern Dharwar granitoids, in contrast with the TTG trend, 22</td>
</tr>
<tr>
<td>1.1.15</td>
<td>Compositional fields of some late granitoids in Eastern Dharwar and their projected tectonic settings, 23</td>
</tr>
<tr>
<td>1.1.16</td>
<td>Geology of the Sandur schist belt, 24</td>
</tr>
<tr>
<td>1.1.17</td>
<td>REE distribution (A–C) in mixed oxide-silicate facies of BIF, Sandur and other comparison with BIF's of other S. Indian occurrences (D–E), 26</td>
</tr>
<tr>
<td>1.1.18</td>
<td>Simplified geological map of Huti–Maski schist belt, showing gold deposits, 30</td>
</tr>
<tr>
<td>1.1.19</td>
<td>Generalised geological map of the Ramagiri area, showing gold occurrences, 33</td>
</tr>
<tr>
<td>1.1.20</td>
<td>Geological Map of Kolar schist belt, Karnataka, 34</td>
</tr>
<tr>
<td>1.1.21</td>
<td>Reported locations of kimberlite and lamproite in India, 40</td>
</tr>
<tr>
<td>1.1.22</td>
<td>Photomicrographs of some Indian hypabyssal-facies of kimberlite, 44</td>
</tr>
<tr>
<td>1.1.23</td>
<td>Distribution of age data of rocks from the Western and Eastern Dharwar Blocks, 45</td>
</tr>
<tr>
<td>1.1.24</td>
<td>Eu/Eu* vs CIA correlations of the greywackes from some schist belts of Western and Eastern Dharwar Blocks, 46</td>
</tr>
<tr>
<td>1.1.25</td>
<td>‘Plume’ model of Jayananda et al., 2000 to explain the geology of Eastern Dharwar, 48</td>
</tr>
<tr>
<td>1.1.26</td>
<td>Generalised geological map of the Southern Granulite Province (SGP) showing tectonic blocks and intervening regional shear zones, 49</td>
</tr>
<tr>
<td>1.1.27</td>
<td>Perturbation of the ambient 2.5 Ga geotherm due to suggested overthrusting of blocks, 25–35 km thick, along horizontal plane, 53</td>
</tr>
<tr>
<td>1.1.28</td>
<td>Geological map of Cuddapah basin, 55</td>
</tr>
<tr>
<td>1.1.29</td>
<td>A section across the Cuddapah basin showing increasing complexity of structures from west to east, 57</td>
</tr>
<tr>
<td>1.1.30</td>
<td>DSS profile across the Cuddapah basin, 60</td>
</tr>
<tr>
<td>1.1.31</td>
<td>Simplified geological map of PG valley, 63</td>
</tr>
<tr>
<td>1.1.32</td>
<td>Schematic longitudinal profile along SW outcrop belt of PG valley, 67</td>
</tr>
</tbody>
</table>
List of Figures

1.2 Metallogeny 69

1.2.1 A planar view of the Byrapur–Nuggihalli chromite belt, 70
1.2.2 Barite mineralisation in the Ghattihosahalli schist belt, 72
1.2.3 A simplified geological map of the Kolar schist belt showing auriferous zones, 75
1.2.4 Longitudinal vertical section of the Champion Reef, Kolar Gold Field (KGF), 76
1.2.5 REE contents in the Kolar amphibolites and in the ore zones, 77
1.2.6 Pb-Pb age of gold mineralisation in the Champion and Oriental lodes and Chigargarunta extension in South Kolar, 78
1.2.7 Generalised geological map of South Kolar belt showing the Mallappakonda and Chigargarunta gold prospects, 79
1.2.8 Map of Mallapakonda deposit, 80
1.2.9 Plots of Mallapakonda deposit in discriminant diagrams, 81
1.2.10 Geological map of Hutti mine area, Karnataka, showing the projected disposition of gold lode system and its relationship with country rocks, 84
1.2.11 Cross section through the Mallappa shaft, Hutti mines, 85
1.2.12 Roof-views of Zone-I Reef in the drive at 24th Level (depth—2400 ft), Mallapa Shaft, Hutti mines, 86
1.2.13 Uti open-cast mine showing benches on its western face, 87
1.2.14 Gold occurrences along the first and second order shears in Chitradurga schist belt, 90
1.2.15 Schematic geological maps and profiles, Ajjanaahalli deposit, 91
1.2.16 Small-scale and micro-structures, Hosur orebody, Gadag gold deposit, 93
1.2.17 Microstructures and Au-quartz veins in Kabuliyatatti ore body, 94
1.2.18 Structures in Far Eastern lode system, Sankatodak-Tana area Gadag schist belt, 94
1.2.19 Geological map of Jonnagiri schist belt showing locations of gold prospects, 96
1.2.20 Occurrence of primary gold mineralisation in India, 100

1.2.21 Geological map of a part of Western Ghats showing Kudremukh-Agumbe iron ore belt hosted by the Bababudan Group, 103
1.2.22 Distribution of iron formations and some important iron ore deposits in the Sandur schist belt, 105
1.2.23 Geological map of Donimalai iron ore deposit, 107
1.2.24 Transverse sections across the Donimalai deposit, 109
1.2.25 Simplified geological map of Allapata-Marlagallla area, 117
1.2.26 Geological sketch map of Marlagalla pegmatite, differentiated into complex zones, 118
1.2.27 Geological map of Attapadi valley showing gold occurrence at Kottathara, Kerala, 120
1.2.28 Geological map of Mamandur showing zinc-lead-copper mineralisation in granulite rocks, Tamil Nadu, 122
1.2.29 Photomicrographs, 123
1.2.30 Location map of important beach placers containing REE, Th, Ti, Zr etc. in peninsular India, 126
1.2.31 Distribution of mineral deposits in and around the Cuddapah basin, 130
1.2.32 Sediment (dolostone)-hosted uranium mineralisation in Papaghni Group, Cuddapah basin, 134
1.2.33 A generalised section of the Mangampetta barite deposit (a) and its 34S composition vis-à-vis that of protorozoic marine evaporite, 137
1.2.34 Geological map of Bhima basin, 138
1.2.35 Hypothetical cross-section of an Archean craton and adjacent cratonised mobile belt, 142
1.2.36 Location of bauxite deposits in India, 149
1.2.37 Geological map of Boknur-Navge plateau, Belgaum district, Karnataka, 150

Chapter 2 Central India 153

2.1 Geology and Crustal Evolution 153

2.1.1 Generalised geological map of Central India, 154
<table>
<thead>
<tr>
<th>Figure Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.2</td>
<td>Bengpal (Sukma) Gneiss exposed in Khardi River section, 156</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Geological map of a part of Bastar region, Chhattisgarh, 157</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Iron ore belt (Bailadila Group) in Chhattisgarh, 163</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Geological map of Bailadila belt, 164</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Geological map of a part of Dongargarh belt, Central India, 168</td>
</tr>
<tr>
<td>2.1.7</td>
<td>Geological map of a part of Kotri belt, Central India, 170</td>
</tr>
<tr>
<td>2.1.8</td>
<td>Normative An–Ab–Or diagram showing compositional range of the Dongargarh volcanic suite, 173</td>
</tr>
<tr>
<td>2.1.9</td>
<td>Geological map of Sonakhan belt, Chhattisgarh, 176</td>
</tr>
<tr>
<td>2.1.10</td>
<td>Pillowed metabasalt in Baghmara Formation, Sonakhan Group, Chhattisgarh, 177</td>
</tr>
<tr>
<td>2.1.11</td>
<td>Generalised geological map of Sakoli fold belt, Maharashtra, 179</td>
</tr>
<tr>
<td>2.1.12</td>
<td>Geological map of Bundelkhand Granite Complex, 181</td>
</tr>
<tr>
<td>2.1.13</td>
<td>Geological setup of Bijawar and Mahakoshal belts in Northern Crustal Province (NCP), 184</td>
</tr>
<tr>
<td>2.1.14</td>
<td>Regional tectonic frame of CITZ, 188</td>
</tr>
<tr>
<td>2.1.15</td>
<td>Generalised geological map of Betul supracrustal belt, Madhya Pradesh, 193</td>
</tr>
<tr>
<td>2.1.16</td>
<td>Geological map of the central part of Sausar belt, Maharashtra and Madhya Pradesh, 196</td>
</tr>
<tr>
<td>2.1.17</td>
<td>Geological map of Tan shear zone, Kanhan River section, Chhindwara Dist., Madhya Pradesh, 205</td>
</tr>
<tr>
<td>2.1.18</td>
<td>Some field-features of Tan shear zone, Kanhan River section, 206</td>
</tr>
<tr>
<td>2.1.19</td>
<td>Geological map of Bilaspur–Raigarh belt, Chhattisgarh, 209</td>
</tr>
<tr>
<td>2.2.20</td>
<td>Tectonic model proposed by Yedekar et al., 1990, for the evolution of Central Indian Suture (CIS), 212</td>
</tr>
<tr>
<td>2.1.21</td>
<td>Cartoon demonstrating the tectonic evolution of CITZ, 213</td>
</tr>
<tr>
<td>2.1.22</td>
<td>Schematic tectonic model of evolution of the CITZ, 214</td>
</tr>
<tr>
<td>2.1.23</td>
<td>Geological map of the Vindhyan basin, 216</td>
</tr>
<tr>
<td>2.1.24</td>
<td>Geological map of Chhattisgarh basin, 219</td>
</tr>
<tr>
<td>2.1.25</td>
<td>Unconformable contact between subhorizontal Chhattisgarh sediments with the underlying basement gneisses, 220</td>
</tr>
<tr>
<td>2.1.26</td>
<td>Geological map of Indravati Basin, 224</td>
</tr>
<tr>
<td>2.1.27</td>
<td>Geological map of Khariar basin, 226</td>
</tr>
<tr>
<td>2.1.28</td>
<td>Geological map of Ampani basin, 227</td>
</tr>
<tr>
<td>2.1.29</td>
<td>Map of peninsular India showing extent of Deccan Traps and correlatable on and off-shore Mesozoic volcanics, 228</td>
</tr>
<tr>
<td>2.1.30</td>
<td>An escarpment of the Western Ghats showing stacks of compound flows of Deccan Trap, viewed from Mahabaleshwar, Maharashtra, 229</td>
</tr>
<tr>
<td>2.1.31</td>
<td>Compositional fields of Deccan Basalts, 230</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Geological map of RM–REE–tin bearing Bastar–Malkangiri pegmatite belt (BMPB) and Garda–Toyar sector, southern Bastar, Chhattisgarh, 235</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Geological maps of Bodenar Pegmatite, Metapal Pegmatite, Bastar–Malkangiri Pegmatite Belt (BMPB), 237</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Compositional and tectonic fields of RM–REE–Sn bearing pegmatites of Paliam, Darba and Metapal granitoids, 238</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Distribution of iron ore deposits in Dalli–Rajhara and Mahamaya sectors, 241</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Cross-sections showing the variation in disposition, shape and thickness of the iron ore body in Rajhara Main block, 242</td>
</tr>
<tr>
<td>2.2.6</td>
<td>(a) Cross-sections showing disposition of iron ores with respect to BIF and shale in Jharandalli block, Dalli (b) Sketch geological map of Jharandalli, 244</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Some field features of ores and BIF in the Dalli–Rajhara deposits, 247</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Some field features of Mahamaya deposit, 247</td>
</tr>
<tr>
<td>2.2.9</td>
<td>Rowghat iron ore ‘belt’ showing the disposition of different deposits and blocks and reserve of F-deposits, 248</td>
</tr>
<tr>
<td>2.2.10</td>
<td>Ore deposit distribution map of Bailadila area, 249</td>
</tr>
<tr>
<td>2.2.11</td>
<td>Panoramic view of workings in 11 C and NOS deposits, Bailadila, 250</td>
</tr>
</tbody>
</table>
List of Figures

2.2.12 Cross-sections of Bailadila deposits, 252
2.2.13 Laminated massive (rich) ore, locally showing folds, deposit No 5, Bailadila showing quartz-growth from view wall, 253
2.2.14 Quartz vein in laminated iron ore, Deposit No. 11 C, Bailadila. 255
2.2.15 Photomicrographs showing auriferous rhyolitic tuff and ignimbrite from Kotri river section, 256
2.2.16 Regional geological map of Malanjkhand and surrounding area, 260
2.2.17 Geological map of Malanjkhand region showing the distribution of different petrographic varieties of granite (G1, G2, G3, and G4), 262
2.2.18 Photomicrograph showing relict plagioclase feldspar (PF) in late (secondary) alkali feldspar (AF) in partially altered G3 granite at the periphery of the mineralised zone, 262
2.2.19 Fe2O3/FeO variation diagram showing general increase of Fe2O3 in the ore bearing grey and pink granitoids, 263
2.2.20 Photograph and photo-micrograph of G2 granite, Malanjkhand, 263
2.2.21 Plots of Malanjkhand granitoids in Ab–An–Or triangular diagram, 265
2.2.22 Chondrite normalised values of REE in granitoids show LREE-enrichment, inconspicuous Eu-anomaly and concavity of HREE field, 266
2.2.23 Chemical discriminant diagrams, suggesting possible tectonic setting of Malanjkhand granitoids, 267
2.2.24 Detailed geological map of Malanjkhand copper deposit (after Hindusthan Copper Ltd.), 269
2.2.25 Cross-section of ore zone along line in Fig. 2.2.24, Malanjkhand copper deposit (after Hindusthan Copper Ltd.), 270
2.2.26 Different field features of the Malanjkhand deposit, 270
2.2.27 Field photograph of clots and patches of calcite-rich dominant ore minerals in pegmatoid granite in the northern end of Malanjkhand copper deposit, 271
2.2.28 Cross-section across ore zone showing silicified zones with or without ore mineralisation (after Hindusthan Copper Ltd.), 271
2.2.29 Photomicrographs showing textural evidences of deformation and recrystallization in the ore assemblages of Malanjkhand deposit, 272
2.2.30 Photograph showing discrete molybdenite veins cutting across the ore zone, Malanjkhand, 275
2.2.31 Five point Re–Os isochron of molybdenite sample of Malanjkhand, 277
2.2.32 MASH model of Hildreth and Moorbath, 284
2.2.33 Geological map of Dongargarh uranium province showing mineral occurrences, 289
2.2.34 Uranium mineralisation at the southeastern margin of Chhattisgarh basin, close to the granitic basement, 290
2.2.35 Geological map of western CGC in parts of Uttar Pradesh, Madhya Pradesh and Jharkhand showing locations of uranium mineralisation, 291
2.2.36 The Cu–Au –, W–, and Zn– prospects in Sakoli fold belt, 293
2.2.37 Geological map of Imalia gold prospect, district Sleemanabad, Madhya Pradesh, 297
2.2.38 Geological map of the eastern part of Betul belt showing the location of the zinc sulphide prospects, 299
2.2.39 Fields with mean grades of eight prospects of VHMS deposits in the Betul belt, 300
2.2.40 Synoptic diagram showing stratigraphic columns of different sectors of the Sausar manganese belt, Maharashtra and Madhya Pradesh, 300
2.2.41 Deformation structures in deformed bedded Mn-ores, Lohangi and Mansar Formations, 302
2.2.42 Phase relations in Mn–Fe–Si–C–O system at 1 kbar, 304
2.2.43 Bedded manganese oxide ore (Mn) and gondite (Gd), Sausar Belt, 304
2.2.44 Photomicrographs of gondite, and some Mn-oxide ores, 305
2.2.45 Some other petrographic features of metamorphosed Mn-ores and rocks, 305
List of Figures

2.2.46 Mn-oxide ore (Mn) as veins and patches within pegmatoid granite (Gr), in the footwall of the Main Ore Zone, Dongri Buzurg mine, 306
2.2.47 Geological map of Panna Diamond Field, Madhya Pradesh, 309
2.2.48 Geological map of Majhgaon kimberlite pipe, Madhya Pradesh, 310
2.2.49 Cross-section of the Majhgaon kimberlite pipe, 310
2.2.50 Plan and cross-section views of Hinota pipe, Madhya Pradesh, 311
2.2.51 Bauxite-bearing weathering profiles at some places in central India, 318

Chapter 3 Eastern Ghat Belt 319

3.1 Geology and Crustal Evolution 319
3.1.1 Generalised geological map of EGMB and adjacent regions (modified after Ramakrishnan et al., 1998), with prominent megalineaments, 320
3.1.2 Isotopic domains of Rickers et al., 2001 in the EGMB, 325
3.1.3 Subdivisions of EGMB in four crustal provinces (Rengali, Jaypur, Eastern Ghats and Krishna–as described in the text) based on distinct geological evolution and further divided into twelve domains demarcated by megalineaments and shear zones, 327
3.1.4 Jigsaw fit suggested for the coast lines of the peninsular India and East Antarctica, showing representative P-T paths of metamorphism deduced from the different isotopic domains of Rickers et al. (2001) in Eastern Ghat belt (EGB) and some locations in East Antarctica, 330
3.1.5 Assembly of Rodinia supercontinent as per SW US – East Antarctica (SWEAT) model, 331

3.2 Metallogeny 332
3.2.1 Geological map showing Khondalite hosted manganese mineralisation in parts of EGMB in Orissa between Kanaital, Bolangir District and Nishikhal–Kutinga, Rayagada District, 333

3.2.2 Photomicrograph of bauxite showing holocrystalline texture, Panchpatpalli, 337
3.2.3 Hand specimen showing pseudofolia in bauxite, Panchpatpalli, 337
3.2.4 Mineralogical variation in weathering profile at Pottangi and Galikonda areas, Andhra Pradesh, 339

Chapter 4 Eastern India 343

4.1 Geology and Crustal Evolution 343
4.1.1 Geological map of a part of the Precambrian terrain of Eastern India, 344
4.1.2 Compositional fields of Singhbhum Granite, 347
4.1.3 Chondrite normalised REE plots of SBG-A and SBG-B showing distinctive patterns and their similarity or contrast with other granitic phases of the region, 348
4.1.4 Sketch showing field relationship of the different phases of CKPG Complex, 1 km north of Chakradharpur town limit, 350
4.1.5 Geomagnetic map of a part of Singhbhum- North Orissa cratonic nucleus showing Newer Dolerite dyke swarms (dark green) in the Singhbhum Granite country (pink), 355
4.1.6 ‘Horse-shoe’ Synclinorium of Jones (a) Plan, (b) Block diagram, 356
4.1.7 PASS normalised REE plots of oxide phases of the BIFs of Eastern India, 361
4.1.8 (a) Geological profile, (b) Micro-fossils from dolomite, Kasia mine, Jamda-Koir valley, 362
4.1.9 Al₂O₃ -MgO-(Fe₂O₃ + TiO₂) diagram showing the plots of mafic–ultramafic volcanics of different IOG provinces, Singhbhum–North Orissa, 363
4.1.10 Chondrite–normalised REE plots for samples of IOG volcanics, 364
4.1.11 Generalised geological map of the western parts of Eastern Indian craton showing the locations of Darjing Group and Tamperkola Granite, 365
4.1.12 Generalised geological maps showing the Kolhan basin, 367
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.13</td>
<td>Depositional system tracts of Kolhan succession, 369</td>
</tr>
<tr>
<td>4.1.14</td>
<td>Geologic map of Bisrampur and adjacent area showing the disposition of conglomerate and arkosic sandstone beds along the contact of Singhbhum Granite, 371</td>
</tr>
<tr>
<td>4.1.15</td>
<td>Coarse basal (meta) sediments overlying Singhbhum Granite, Naroapahar and further west, 372</td>
</tr>
<tr>
<td>4.1.16</td>
<td>Field photographs showing the effects of shearing along SSZ far to its south in the rocks of Domain I and basement granite, 373</td>
</tr>
<tr>
<td>4.1.17</td>
<td>Stretched amygdules in Dhanjori basalt, Kulamara village, 374</td>
</tr>
<tr>
<td>4.1.18</td>
<td>Geological map of Dhanjori Basin and adjacent rocks, Singhbhum (East) district, Jharkhand, 375</td>
</tr>
<tr>
<td>4.1.19</td>
<td>Photomicrograph showing micro-spinifex texture displayed by elongate olivine and skeletal pyroxene in partially serpentinitised peridotite, 376</td>
</tr>
<tr>
<td>4.1.20</td>
<td>Geological map of Ongarbira volcanics, 378</td>
</tr>
<tr>
<td>4.1.21</td>
<td>Polymictic conglomerate with arkosic matrix along southern margin of CKPG, 379</td>
</tr>
<tr>
<td>4.1.22</td>
<td>Structures in quartzite occurring along SSZ, north of Ongarbira, 379</td>
</tr>
<tr>
<td>4.1.23</td>
<td>Diagrams showing Sub-alkaline tholeiitic character of Ongarbira basalt, 380</td>
</tr>
<tr>
<td>4.1.24</td>
<td>Chondrite-normalised REE distribution in Ongarbira volcanics of Group I, Group II and Group III, 381</td>
</tr>
<tr>
<td>4.1.25</td>
<td>Some structures from Singhbhum shear zone, 382</td>
</tr>
<tr>
<td>4.1.26</td>
<td>Small scale and micro-structures in mylonites, Singhbhum shear zone, 383</td>
</tr>
<tr>
<td>4.1.27</td>
<td>Deformed pebbles, Singhbhum shear zone, 384</td>
</tr>
<tr>
<td>4.1.28</td>
<td>Soda aranite and feldspathic schists from the Singhbhum shear zone-field features, 385</td>
</tr>
<tr>
<td>4.1.29</td>
<td>Ab-Or-Q diagram based on composition of Soda granite-feldspathic schist, 386</td>
</tr>
<tr>
<td>4.1.30</td>
<td>Kyanite-quartz, kyanite-tourmaline rocks, Lapsa Buru, 387</td>
</tr>
<tr>
<td>4.1.31</td>
<td>MgO-CaO-Al₂O₃ diagram depicting North Singhbhum mobile belt and other areas, 388</td>
</tr>
<tr>
<td>4.1.32</td>
<td>Chondrite-normalised REE-plots and (b) primitive mantle normalised trace element patterns of Dhanjori volcanics, 389</td>
</tr>
<tr>
<td>4.1.33</td>
<td>F₂–F₃ discriminant diagrams for Dalma and Dhanjori volcanics (a–b) and chondrite-normalised REE contents of Dalma volcanics, 390</td>
</tr>
<tr>
<td>4.1.34</td>
<td>Intra-plate subduction model, 391</td>
</tr>
<tr>
<td>4.1.35</td>
<td>Evolutionary model for the NSMB, 392</td>
</tr>
</tbody>
</table>
4.2 Metallogeny 423

4.2.1 Copper sulphide deposits and their occurrences along Singhbhum shear zone, 423

4.2.2 Geological map of the Badia–Mosabani–Surda–Kendadih section, Singhbhum Cu-U belt, East Singhbhum district, Jharkhand, 425

4.2.4 Geological map of the Ramchandra Pahar–Nandup–Bayanbil–Turamdih Dhadkidih–Mahuldih sector, Singhbhum Cu-U belt, East Singhbhum district, Jharkhand, 427

4.2.5 Geological map of Mundadevta–Dharkuli block of Baharagora deposit, 428

4.2.6 Geological section through Banalopa shaft, mosabani mine, 429

4.2.7 (a) Sketches of small scale ore structures in Mosabani mines; (b) ‘Durchbewegung’ or kneading of vein-quartz and host Rock (dark grey) in a sulphidic matrix (white to light grey) in Mosabani mines; (c) Chalcopryite dominant sulphide mineralisation in chlorite-quartz schist, displaying S-C structure control, 430

4.2.8 Assay plan of Main Shaft and No.4 Shaft workings of Cape Copper Company at Rakha Mines displaying disposition of the ore shoots, 432

4.2.9 (a) Longitudinal vertical section of a part of Rakha Mines deposit showing strike wise lode disposition and (b) Transverse geological section along boreholes in Roam–Sidheswar Block showing subsurface lode correlation along the dip, 433

4.2.10 Geology of Turamdih–Nandup–Bayanbil area showing Cu-sulphide ore zones, 434

4.2.11 Transverse borehole section across Turamdih copper deposit, 435

4.2.12 Wall rock alteration in immediate vicinity of ore zones SSZ, 437

4.2.13 Textures of deformed and recrystallised ore minerals in SSZ deposits, 438

4.2.14 Photomicrographs showing some minor phases associated with Cu-sulphide ores along SSZ, 439

4.2.15 Photomicrographs showing more minor phases associated with Cu-sulphide ores along SSZ, 439

4.2.16 Distribution of copper and uranium deposits along Singhbhum shear zone, 441

4.2.17 Transverse geological section across Jaduguda deposit showing disposition of the two parallel U-lodes, 442

4.2.18 Plan projection of the isograds of uranium ore body on outcrop map showing near down-dip disposition of the ore shoots, Narwapahar, 443

4.2.19 Cross-section along drilled boreholes showing disposition of uranium ore bodies, Turamdih–Bandhuhurang–Keraudungri area, 444

4.2.20 Distribution of U-minerals (uraninite mainly) in ores in SSZ, 445

4.2.21 Xenotime from Kanyaluka, 446

4.2.22 Molybdenite vein within footwall uranium lode exposed at three levels of Jaduguda mines, 447

4.2.23 Apatite-magnetite mineralisations, Dhanuppa, SSZ, 448

4.2.24 Sketches of small-scale structures in apatite ore from SSZ, 449

4.2.25 Chondrite-normalised REE distribution in apatite from SSZ, 451

4.2.26 Geological map of the Sargipalli Pb(Zn–Cu) deposit, 465

4.2.27 Transverse geological section along boreholes, Sargipalli Pb(–Zn–Cu) deposit, 465

4.2.28 Map showing locations of gold prospects in Singhbhum region, Eastern India, 467

4.2.29 Lode disposition at Lawa gold deposit, 471

4.2.30 Geological and structural map of Lawa area showing locations of the old gold mines at Bhalukkhad East and West and Tamapahar, 471

4.2.31 Lode disposition at Lawa gold deposit, 471

4.2.32 Photomicrograph of disseminated gold (Au) and arsenopyrite (Aspy) in the ore body (reflected light), Parasi prospect. Jharkhand, 474
4.2.34 Generalised geological map of northeastern segment of NSMB showing locations of tungsten mineralisation in Bankura district, West Bengal, 475

4.2.35 Geological map of Chhendapathar area showing the distribution of W-bearing and barren quartz veins, 477

4.2.36 Map showing distribution of iron ores along the ‘horse shoe’, Jamda-Koira valley, Singhbhum–Orissa region, 481

4.2.37 Deposit map and open cast mines, Chiria, 482

4.2.38 Geological map of Gua iron ore deposit, West Singhbhum district, Jharkhand, showing ore body overlying BIF (BHJ/BHQ), which together are sandwiched between two shale horizons, 483

4.2.39 Mine faces: (a) Noamundi East mine (b) Khondbond ‘Q’ deposit, (c) An OMC mine between Joda and Khondbond, Orissa, 484

4.2.40 Profile sections (a) across Noamundi iron ore mine, (b) Khondbond deposit (c) Banspani deposit, Orissa, 486

4.2.41 Some field features in Fe-ore deposits, Eastern India, 487

4.2.42 More field features of the ores, 489

4.2.43 Some small scale features in hard ores, 490

4.2.44 Photomicrograph of hard massive ore, Thakurani Pahar, Orissa, showing microplaty hematite (Hm) and martite (Mrt) with quartz and silicates (Q+Sil) as gangue minerals, 490

4.2.45 Photograph and sketch showing hard hematitic iron ore (> 66% Fe) with fine undisturbed laminations alternating with non-laminated scoriaceous bands, 491

4.2.46 (a) Near-surface limonitic ore overlying friable ore (FO) and blue dust (BD), (b) Boulders of ‘Canga’ derived from the surface, (c) Friable and hard ore with solution cavities parallel to the bedding surfaces, location of (a–c): Noamundi west mine, (d) Hard laminated ore alternating with contorted ore bands with cavities and solution breccia, (e) Highly scoriaceous hard massive ore with goethitic patches, (f) Quartz vein in Low-grade friable ore with limonitic layers, location (d–f): Joda mines, 492

4.2.47 (a–b) Field photograph and representative sketch of intertwined friable ore (FO) and blue dust (BD) showing remnants of primary laminates in form of hematite plates; (c) Close-up view of a hematite plate from location of (a), showing proto-botryoid texture on the plate surface, Katamati mines, Orissa; (d) sketch showing transition of BHJ into blue dust through friable platy ore within less than a meter; note layer parallel compositional gradation along band 1 and 3, and no layer-across change to the unaltered band 2, Hill 4, Noamundi east mine, 493

4.2.48 Intricately folded BIF with quartz laminates (light coloured, high relief) interlayered with blue dust (dark grey coloured, low relief), Gua mines, 493

4.2.49 Sketch of a bench face in Katamati mine showing the disposition and interrelationship between hard ore (HO) and other ore types (FO, BD, lateritic and float ore), 494

4.2.50 Lithologs of three boreholes, Joda-Khondbond iron ore deposits, Orissa, 494

4.2.51 Regional geological map of Sukinda area, Orissa, 499

4.2.52 Inferred geological map of the synformal zone of Sukinda belt showing the disposition of chromite orebodies, 499

4.2.53 Field and hand specimen photographs of chromite ores: Sukinda and Nuasahi deposits, 500

4.2.54 Photomicrographs showing chromite ore textures: (a) Chain texture in chromite (Cr)-olivine cumulate (reflected light; 80 X), Nuasahi; (b) Chromite cumulate with euhedral chromite (Cr) grains; intercumulate space occupied by serpentinitised olivine (reflected light, 50 X), Nuasahi; (c) Unusual graphic intergrowth of chromite (Cr-light) and olivine (Sil-dark) in harzburgite (reflected light; 200 X), Nuasahi; (d) Enlarged view of (c), chromite (Cr – white), silicate (Sil – dark) (reflected light, 200X); (e) Occluded silicate texture in chromite cumulate, showing markedly fine grained chromite in the silicate
List of Figures xvii

(4.2.55) Chromite composition from different intrusive types, 503

(4.2.56) (a) Chemical composition of chromite from Sukinda, compared with the composition fields (Greenbaum, 1977) of Alpine, stratiform and Mid-Atlantic Ridge chromitite complexes (after Chakraborty and Chakraborty, 1984); (b) Plots of Nuasahi and Jojohatu chromite on \(\text{Cr}_2\text{O}_3-\text{Al}_2\text{O}_3-\text{Fe}_2\text{O}_3\) diagram of Thayer (1964), showing the fields of Stratiform and podiform chromites and those of Nuasahi and Jojohatu, 504

(4.2.57) Phase relations in the system olivine-silica-chromite (Irvine, 1977), illustrating results of mixing primitive magma (A) with well fractionated (D) and slightly fractionated (B) variants of the same primitive magma, 505

(4.2.58) Geological map of Baula-Nuasahi complex, 508

(4.2.59) Geological section across Baula mine showing disposition of the chromite lodes, 509

(4.2.60) Schematic diagram depicting the intrusion of Bangur gabbro and hydraulic brecciation of dunite, Baula–Nuasahi complex, 511

(4.2.61) (a) Sm–Nd isochron age of Bangur Gabbro and matrix of breccia, Baula–Nuasahi complex, 512

(4.2.62) Lateritoid manganese ore overlain by kaolinite layer (white) exposed in a manganese quarry near Thakurani Pahar, Orissa, 514

(4.2.63) Northeastern parts of Chhotanagpur Granite–Gneiss Complex (CGC) showing the locations of basemetal sulphide prospects and deposits, 515

(4.2.64) Regional geological map of Bihar (Jharkhand) Mica belt, 518

(4.2.65) Stratigraphic column showing pyrite mineralisation in the Kaimur Group at Amjhore, Rohtas district, Bihar, 519

(4.2.66) Panoramic view of Bagru hills and a view of the flat top of the hill ‘Bagdu Pata’ about 1000 m MSL, Lohardaga district, Jharkhand, 522

(4.2.67) Views of the Bagru mines showing bauxite horizon below soil and laterite capping, 522

(4.2.68) Representative weathering profile of Bagru hill, 522

(4.2.69) Hard pisolithic bauxite and Pisolithes in bauxite replaced by iron oxide, 523

(4.2.70) Complex bauxite structures in hand specimens and micrographs, Bagru hills, 523

(4.2.71) Geological cross-sections of Kunjam-II deposit along E–W and N–S profiles prepared from drill hole data, 525

Chapter 5 North-East India 526

5.1 Geology and Crustal Evolution 526

5.1.1 Generalised geological map of the Northeastern India, 527

5.1.2 Generalised geological map of Shillong–Mikir (Meghalaya–Assam) plateau, NE India, 529

5.1.3 Geological map of Tyrsad–Barapani shear zone, Meghalaya, 532

5.1.4 Geological map of the Sung Valley and surrounding area, Khasi and Jaintia Hill districts, Meghalaya, 534

5.1.5 Schematic section across Indo-Burma Range and Central Burma basin, 535

5.2 Metallogeny 537

5.2.1 Geological map of southern Meghalaya showing uranium occurrences and associated rocks, 538

Chapter 6 Western India 543

6.1 Geology and Crustal Evolution 543

6.1.1 Generalised geological map of Aravalli–Delhi orogenic belt, 544
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.2</td>
<td>Exposure scale features in the Banded Gneissic Complex (BGC), 547</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Suggested stratigraphic column of Aravalli sequence in Udaipur area, 555</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Geological map of Zawar area showing structures, 557</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Geochemical attributes of granitoids of Khetri–Alwar area, Northern Rajasthan, 565</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Geochemical characteristics of Jasrapura Granitoids, 566</td>
</tr>
<tr>
<td>6.1.7</td>
<td>Map showing the Albitite zone in northern Rajasthan (chain and dotted line), 570</td>
</tr>
<tr>
<td>6.1.8</td>
<td>Subdivisions of SDFB into five distinct lithological, structural and tectonic zones, 575</td>
</tr>
<tr>
<td>6.1.9</td>
<td>Map showing locations of geochronological data available so far from different belts of Western India, 580</td>
</tr>
<tr>
<td>6.1.10</td>
<td>Plate tectonic model of the Precambrian rocks of Rajasthan (Sen, 1981), 582</td>
</tr>
<tr>
<td>6.1.11</td>
<td>Tectonic model linked to metallogeny for Rajasthan proposed by (Sinha Roy 2004), 583</td>
</tr>
<tr>
<td>6.1.12</td>
<td>Plate tectonic model for Aravalli-Delhi fold belt, Rajasthan (Deb and Sarkar, 1990; Deb, 1993), 584</td>
</tr>
<tr>
<td>6.1.13</td>
<td>Evolutionary model for Aravalli–Delhi belt, Rajasthan, (Sharma, 1995), 586</td>
</tr>
<tr>
<td>6.1.14</td>
<td>Generalised geological map of Eastern Rajasthan showing the Great Boundary fault (GBF) extending along the contact of the Bhilwara province and Vindhyan Supergroup, 590</td>
</tr>
<tr>
<td>6.2</td>
<td>Metallogeny 591</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Simplified regional geological map of Aravalli–Delhi orogenic belt showing locations of mineral occurrences and deposits, 592</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Site of ancient zinc–lead smelting at Zawar, 593</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Locations of Pur–Banera–Bhinder, Dariba–Rajpura–Bethumni, Zawar, Sawar–Bajta mineralised belts and Agucha deposit in Southern Rajasthan, 596</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Geological map of Rampura–Agucha deposit, Rajasthan, 597</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Transverse section across Rampura–Agucha ore zone showing zonal distribution of ore metals, 598</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Photomicrograph of an ore sample from Rampura–Agucha mine, 599</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Geological map of Rajpura–Dariba Bethumni belt, 601</td>
</tr>
<tr>
<td>6.2.8</td>
<td>Photograph of the gossan-Dariba belt, 602</td>
</tr>
<tr>
<td>6.2.9</td>
<td>Transverse geological section across Dariba–Rajpura ore zone, 604</td>
</tr>
<tr>
<td>6.2.10</td>
<td>Laminated sulphidic graphite mica schist from the hanging wall of Dariba Main lode, 604</td>
</tr>
<tr>
<td>6.2.11</td>
<td>P–T conditions of peak metamorphism in the Rajpura Dariba belt in relation to deformations D1 and D2, 605</td>
</tr>
<tr>
<td>6.2.12</td>
<td>Plot of Pb isotope data for galena specimens from Aravalli–Delhi orogenic belt, 607</td>
</tr>
<tr>
<td>6.2.13</td>
<td>Geology and ore deposit blocks in Sawar–Bajta belt, 609</td>
</tr>
<tr>
<td>6.2.14</td>
<td>Geological map of Jamarkotra–Zawar–Sarara area, Aravalli belt, Rajasthan, 612</td>
</tr>
<tr>
<td>6.2.15</td>
<td>Generalised geological map of Zawar ore belt, 613</td>
</tr>
<tr>
<td>6.2.16</td>
<td>Host rocks of Zawar Zn–Pb deposit, 614</td>
</tr>
<tr>
<td>6.2.17</td>
<td>Mochia 240 mL mine plan, Zawar, showing discordant relationship of the ore bands with the enclosing host dolostone, 615</td>
</tr>
<tr>
<td>6.2.18</td>
<td>Transverse section across ore body in Mochia Mine, Zawar, displaying the pattern of ore body disposition, 616</td>
</tr>
<tr>
<td>6.2.19</td>
<td>Small scale structures displayed by sphalerite (S)–galena (G) ores in dolomite (D) in the underground mines, 617</td>
</tr>
<tr>
<td>6.2.20</td>
<td>Geological map of Zawarmala deposit showing the folded ore body, 617</td>
</tr>
<tr>
<td>6.2.21</td>
<td>Photomicrographs showing diageneric through deformational to recrystallisation textures in the Zawar ore, 619</td>
</tr>
<tr>
<td>6.2.22</td>
<td>(a, b) Sulphur isotope (δ34S) data of sphalerite, galena and pyrite from Zawar ores, 621</td>
</tr>
<tr>
<td>6.2.23</td>
<td>Carbon and oxygen isotope data of Zawar ore, 623</td>
</tr>
</tbody>
</table>
List of Figures

6.2.24 Lead isotope data for sediment-hosted Zn–Pb deposits in Aravalli–Delhi belts, Rajasthan, 624
6.2.25 A cartoon figure showing a possible mode of ore fluid movement and subsequent ore deposition in Zawar area, 627
6.2.26 Regional geological map of Udaipur–Bhukia area with inset map showing generalised geology around Bhukia Gold Prospect, 630
6.2.27 Regional geological map of parts of Banswara district, 631
6.2.28 Lithostratigraphic section of Bhukia area, 632
6.2.29 Soil sample anomaly contours superposed on the geological map Bhukia–Jagpura prospect, 633
6.2.30 (a) F2 fold in calc–silicate rock, exposed at about 6 m towards arrow direction from the spot in (b); (b) Old workings aligned parallel to axial plane of F2, folds, auriferous quartz veins mobilised along the plane during F2 folding, now mostly excavated in the quarry, 635
6.2.31 (a) Transverse section showing the disposition of ore bodies at depth, (b) a major old working corresponding to the section, 635
6.2.32 Gold-sulphide-bearing albite-rich and calc–silicate-rich bands in carbonate units of Bhukia Formation, exposed on a hillock with several old workings, 636
6.2.33 Split core samples in Indo Gold core shed, 637
6.2.34 Mineralised belts in the North Delhi fold belt, Northern Rajasthan, 638
6.2.35 Geological map of the Khetri copper belt showing the major ore deposits, 639
6.2.36 Transverse sections across the orebodies at (a) Madan Kudan (b) Kolihan in Khetri copper belt, showing their conformity with the enclosing hosts of varied lithology, 641, 642
6.2.37 Compositional variations in the wall rocks of Kolihan and Madan Kudan mines, 643
6.2.38 (a) Primary banding in Khetri ores, (b) Metamorphic textures of Khetri ores, 644
6.2.39 Field sketch showing basic intrusive cutting across ore bodies, Kolihan mines, 645
6.2.40 Rampura–Tonda–Naila ki Dhan copper deposits, East Khetri belt, Rajasthan, 646
6.2.41 Geological map of Saladipura area, Sikar district, Rajasthan, 648
6.2.42 Structures in Saladipura ores, 649
6.2.43 Pyrite-pyrhotite relationships in saladipura ores, 650
6.2.44 P–T fields determined for sphalerite in Saladipura ore, 650
6.2.45 Geological maps of Khandela–Ghateshwar-Rohil-Khahundra sector, showing zones of iron oxide breccia, 652
6.2.46 Generalised geological map of Ajmer area showing locations of Zn–Pb ore deposits at Ghugra, Kayar, Madarpura and Lohakhan, 656
6.2.47 Geological map of Ambaji ore zone, 659
6.2.48 Transverse section across the ore zones at Ambaji, 659
6.2.49 Sulphur isotope data of ore forming sulphides from some deposits of SDFB, 661
6.2.50 A triangular diagram with plots of three major metals in VMS deposits, showing the different compositional fields and the positions of VMS deposits/prospects in Ambaji–Sendra belt, 662
6.2.51 Map showing distribution of U-mineralisation in Western India, 665
6.2.52 Geological map of Tosham area, Haryana, 668
6.2.53 Plots of Tosham Granite, Tosham Rhyolite and Khanak Granite in a discriminant diagram, 670
6.2.54 Geological map of Degana Granite pluton, Nagaur district, Rajasthan, 671
6.2.55 Geological map of Balda area showing the disposition of tungsten-bearing quartz veins within granite and mica schist, 672
6.2.56 Map of Western India showing occurrences of RM–REE pegmatites, 674
List of Figures

Chapter 7 The Himalaya 679

7.1 Geology and Crustal Evolution, 679

7.1.1 (a) A generalised geological map of the Himalaya and the Northern part of the Indian Peninsula (b) A schematic cross-section across the Himalaya, 682

7.1.2 Simplified geological map of Bhutan Himalaya, 689

7.1.3 (a) A tectonic map of the Tibet–Himalaya collision zone, (b) A schematic cross-section, 693

7.2 Metallogeny 695

7.2.1 Distribution of basemetal, uranium, tungsten, phosphorite, magnesite and gold mineralisations in the Himalaya, 696

7.2.2 Sketch map showing the ore zone folded and faulted with the associated country rocks, Rangpo, Sikkim, 699

7.2.3 Photograph and sketches showing ore structures on small-scale at Rangpo, Sikkim, 700

7.2.4 A borehole section showing the disposition of the ore bodies at the Gorubathan deposit, 701

7.2.5 Lead isotope evolution curves and isochron related to some Indian base metal deposits, 703

7.2.6 Geological map showing distribution of uranium mineralisation in Gamkak–Yomgam–Jaiyor area, West Siang district, Arunachal Pradesh, 706

7.2.7 Location and geological environments of Ganesh Himal zinc-lead deposit, Nepal, 710

7.2.8 Geological map of Gongkhola copper deposit, Bhutan, 713

Chapter 8 Crustal Evolution and Metallogeny in India:A Brief Review in the Context of the World-Scenario 717

8.1 An Outline of the World–Scenario 717

8.1.1 The growth of Supercontinent Ur from ~3.0 Ga to ~1.5 Ga, 724

8.2 Make up and break up of supercontinents, 725

8.3 Reconstruction of Rodinia, 726

8.4 Rodinia, a supercontinent formed between 1.3 and 0.9 Ga and fragmented into Gondwana and Laurentia at about 0.8–0.7, 727

8.5 Configuration of Laurasia and Gondwana East and West as the constituents of Pangea, 728

8.6 Crustal growth per 200 Ma (Mc Culloch and Bennett, 1994) and the periods of supercontinent assembly and break-up and mega-plume (MP) activities (after Rogers, 1996) vs-a-vis metallogenic peaks in different periods of Earth’s history, 730

8.2 A Synoptic View of the Indian Situation and Its Comparison with the World’s 731

8.7 Map showing geological provinces in India with oldest dates from each craton, 733
List of Tables

Chapter 1 Southern India 1

1.1 Geology and Crustal Evolution 1

1.1.1 Lithostratigraphy of the Bababudan Group at Bababudan, 9

1.1.2 Lithostratigraphy of the Chitradurga Group, 17

1.1.3 Lithostratigraphy of the Sandur schist belt, 25

1.1.4 Average chemical composition of BIF from Sandur schist belt, 26

1.1.5 Lithostratigraphy of the Kustagi schist belt, 28

1.1.6 Trace and REE composition of Kustagi BIF, 29

1.1.7 Lithostratigraphy of the Hutti–Maski schist belt, 31

1.1.8 Major element composition of metabasalts of Hutti–Maski schist belt, 31

1.1.9 Lithostratigraphy of the Kolar schist belt, 35

1.1.10 Composition of Kolar Amphibolites, 36

1.1.11 Lithostratigraphy in the Jonnagiri schist belt, 37

1.1.12 Stratigraphic sequence of rocks in Veligallu schist belt, 37

1.1.13 Lithostratigraphy of the Nellore schist belt, 38

1.1.14 Rb-Sr isochron ages of kimerlites and lamproites of the Dharwar craton, 44

1.1.15 Geochronology of some late granitic rocks from Southern Granulite Province, 54

1.1.16 Stratigraphic classification of the Cuddapah Supergroup, 56

1.1.17 Classification of the Cuddapah Supergroup, 58

1.1.18 Stratigraphic sequence of the Bhima basin, 61

1.1.19 Stratigraphy proposed for the South western outcrop belt of PG Valley by different workers and suggested correlation, 65

1.2 Metallogeny 69

1.2.1 Isotopic composition of sulphur in Ghattihosahalli deposit, 73

1.2.2 Ore minerals identified in KGF, 82

1.2.3 Chemical composition (wt%) of mineral gold and electrum from KGF, 83

1.2.4 Stratigraphy of the Donimalai area, 106

1.2.5 Average major element composition (wt%) of Donimalai BIFs, 108

1.2.6 Average chemical composition (wt%) of different ore-types of Donimalai deposit, 109

1.2.7 Geological reserve and the grade of lateritic gold from Nilambur Valley, Kerala, 119

1.2.8 Composition of a Somalpatti carbonatite, 125

1.2.9 Average REE composition (wt%) of Indian beach monazite, 126

1.2.10 Ore reserves and grade in Bandalamotta, Nallakonda and Dukonda deposits, 131

1.2.11 Principal characteristics of the stratabound carbonate-hosted uranium mineralisation in the Cuddapah basin, 133

1.2.12 Chemical ages (Ma) of U-minerals in limestones-hosted and granitoid-hosted veins, 140

1.2.13 Pipe-wise record of diamond recovery from Wajakarur kimberlite field, 144

1.2.14 Chemical variation in lateritic profile, Belgaum, 151

Chapter 2 Central India 153

2.1 Geology and Crustal Evolution 153

2.1.1 Geochronological data on Sukma gneisses and granitic rocks, 158

2.1.2 Geochronological data on Amgaon Gneiss, 160

2.1.3 Lithostratigraphy in the Chandenar–Tulsidongar mobile belt, 160
List of Tables

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.4</td>
<td>Lithostratigraphy of Bailadila Series (Crookshank, 1963)</td>
<td>165</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Lithostratigraphy of Bailadila Series (Ramakrishnan, 1990)</td>
<td>165</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Stratigraphic succession of Bailadila Group</td>
<td>166</td>
</tr>
<tr>
<td>2.1.7</td>
<td>Stratigraphy of Dongargarh/Kotri Supergroup</td>
<td>169</td>
</tr>
<tr>
<td>2.1.8</td>
<td>Average major element composition of Bijli Rhyolite, Pachangi Rhyolite and Kurse Kohri Rhyolite/ignimbrite (Ramakrishnan, 1990)</td>
<td>171</td>
</tr>
<tr>
<td>2.1.9</td>
<td>Average chemical composition of Pitepani volcanics</td>
<td>172</td>
</tr>
<tr>
<td>2.1.10</td>
<td>Stratigraphy of the Khairagarh Group</td>
<td>175</td>
</tr>
<tr>
<td>2.1.11</td>
<td>Lithostratigraphy of the Sonakhan Group</td>
<td>177</td>
</tr>
<tr>
<td>2.1.12</td>
<td>Lithostratigraphy of Sakoli fold belt (SKFB)</td>
<td>178</td>
</tr>
<tr>
<td>2.1.13</td>
<td>Lithostratigraphy of Bijawar Group</td>
<td>185</td>
</tr>
<tr>
<td>2.1.14</td>
<td>Stratigraphic succession of Bijawars in Sonrai area</td>
<td>186</td>
</tr>
<tr>
<td>2.1.15</td>
<td>Stratigraphic succession of Gwalior Group</td>
<td>187</td>
</tr>
<tr>
<td>2.1.16</td>
<td>Stratigraphic succession of Mahakoshal Group</td>
<td>189</td>
</tr>
<tr>
<td>2.1.17</td>
<td>Chemical composition of the igneous rocks of the Mahakoshal belt</td>
<td>190</td>
</tr>
<tr>
<td>2.1.18</td>
<td>Generalised stratigraphic succession in Betul belt (Modified after Mahakud 1993), 194</td>
<td></td>
</tr>
<tr>
<td>2.1.19</td>
<td>Chemical analyses of mafic (1–5) and felsic volcanics (6–10), Betul belt</td>
<td>194</td>
</tr>
<tr>
<td>2.1.20</td>
<td>Chemical analyses of magnesian schists, Betul belt</td>
<td>195</td>
</tr>
<tr>
<td>2.1.21</td>
<td>Suggested stratigraphic successions for the Sausar Supracrustals,</td>
<td>197</td>
</tr>
<tr>
<td>2.1.22</td>
<td>Metamorphic conditions of RKG belt</td>
<td>201</td>
</tr>
<tr>
<td>2.1.23</td>
<td>Metamorphic conditions of the BBG belt</td>
<td>203</td>
</tr>
<tr>
<td>2.1.24</td>
<td>Stratigraphic succession of Semri Group</td>
<td>217</td>
</tr>
<tr>
<td>2.1.25</td>
<td>Stratigraphic succession of Kaimur Group</td>
<td>217</td>
</tr>
<tr>
<td>2.1.26</td>
<td>Stratigraphic succession of Rewa Group</td>
<td>218</td>
</tr>
<tr>
<td>2.1.27</td>
<td>Stratigraphic succession of Bhander Group</td>
<td>218</td>
</tr>
<tr>
<td>2.1.28</td>
<td>Stratigraphic succession of Singhora Group</td>
<td>221</td>
</tr>
<tr>
<td>2.1.29</td>
<td>Stratigraphic succession of Chandarpur Group</td>
<td>221</td>
</tr>
<tr>
<td>2.1.30</td>
<td>Stratigraphic succession of Raipur Group</td>
<td>222</td>
</tr>
<tr>
<td>2.1.31</td>
<td>Stratigraphic succession of Indravati Group</td>
<td>224</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Characteristics of different pegmatite types in BMPB</td>
<td>236</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Some details about the iron ore deposits of the Dalli–Rajhara–Rowghat–Bailadila belt</td>
<td>240</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Stratigraphic succession of the Dalli-Rajhara area</td>
<td>240</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Geological reserves and composition of iron ores in the Rajhara Main Block</td>
<td>243</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Reserve and composition of ore types in Dalli Mechanised Mine</td>
<td>245</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Levelwise, gradewise quantity of ore types, Dalli Mechanised Mine</td>
<td>246</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Iron ore reserves (Mt) in the Bailadila group of deposits, Chhattisgarh</td>
<td>250</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Chemical composition of Bailadila iron ore</td>
<td>254</td>
</tr>
<tr>
<td>2.2.9</td>
<td>Ore production and important metal-contents in ores, ore-concentrates and tailings from Malanjkhand Mine</td>
<td>259</td>
</tr>
<tr>
<td>2.2.10</td>
<td>Stratigraphic succession in the Malanjkhand area, Madihya Pradesh</td>
<td>260</td>
</tr>
<tr>
<td>2.2.11a</td>
<td>Major element composition (wt.%) of granitoid rocks from Malanjkhand (Sarkar et. al., 1996)</td>
<td>264</td>
</tr>
<tr>
<td>2.2.11b</td>
<td>Rare earth element (REE) and other trace element contents (ppm) in Malanjkhand rocks (Sarkar et. al., 1996)</td>
<td>265</td>
</tr>
<tr>
<td>2.2.12</td>
<td>Fluorine-content of Malanjkhand granitoid rocks</td>
<td>267</td>
</tr>
<tr>
<td>2.2.13</td>
<td>$\delta^{18}S$ (per mil) of sulphide minerals from the Malanjkhand Mine</td>
<td>273</td>
</tr>
<tr>
<td>2.2.14</td>
<td>$\delta^{18}O$ (per mil) of gangue quartz, Malanjkhand deposit</td>
<td>273</td>
</tr>
<tr>
<td>2.2.15</td>
<td>Mo-contents in ore zones, foot and hanging walls, Malanjkhand deposit</td>
<td>275</td>
</tr>
<tr>
<td>2.2.16</td>
<td>Vertical and lateral variation of molybdenum (ppm) in the Malanjkhand ore zone</td>
<td>275</td>
</tr>
</tbody>
</table>
2.2.17 Total estimated molybdenum resource (tonnes) in the Cu-ores of Malanjkhand at 0.4% cut-off (Bhargava et al., 1999), 276

2.2.18 Re–Os data for molybdenite from the Malanjkhand deposit, 276

2.2.19 Characteristics of mineralisations in the Malanjkhand Cu–Mo (–Au) metallogenic province, 278

2.2.20 Average composition of high-grade Mn-ores in Balaghat, Nagpur and Bhandara districts, Madhya Pradesh and Maharashtra, 301

2.2.21 Mineralogical compositions of the Mn-bearing rock types in the Sausar Group, 303

2.2.22 A generalised lateritic profile of the Amarkantak area, Madhya Pradesh, 314

2.2.23 Chemical analyses (wt%) of different lithounits in the lateritic profile, Amarkantak plateau, Madhya Pradesh, 314

2.2.24 Phutkapahar weathering profile, 315

Chapter 4 Eastern India 343

4.1 Geology and Crustal Evolution 343

4.1.1 Major element composition of some BIF samples from Eastern India and the world, 358

4.1.2 Trace element contents in some BIFs from Eastern India, 359

4.1.3 REE contents (ppm) in Fe-oxide phases of BIFs from the Jharkhand–Orissa area, 360

4.1.4 Sub-divisions of the Dhanjori Group, 375

4.1.5 Chemical composition of Dhanjori volcanic rocks, 376

4.1.6 REE-composition (ppm) of some mafic-ultramafic rocks from the Dhanjori basin, 377

4.1.7 Singhbhum Group, 395

4.1.8 Stratigraphic succession of Dalma volcanisedimentary suite, 399

4.1.9 Stratigraphic succession of the Gangpur Group, 412

4.1.10 Regional correlation of the Precambrians of Singhbhum-North Orissa region, 414

4.1.11 Revised correlation of the Precambrians of Singhbhum–North Orissa, 415

4.1.12 A generalised chronostratigraphic succession of the Singhbhum–Orissa Iron ore craton, 416

4.1.13 Chronostratigraphy of rock formations in the Eastern Indian craton, 416

4.2 Metallogeny 423

4.2.1 Status of copper mines, Singhbhum Copper-Uranium belt, 424

4.2.2 Composition of uraninite from the Singhbhum belt, 446

4.2.3 Composition (partial, in wt%) of representative apatite–magnetite ores from a few deposits along the Singhbhum belt, 450

4.2.4 REE contents (ppm) of Singhbhum apatite, 451

4.2.6 Gold content in ROM and Mill concentrate samples of some Cu / U mines, Jharkhand, 469

4.2.7 Tungsten contents (WO3%) in different rocks in the Chhendapathar area, Bankura, West Bengal, 479

Chapter 3 Eastern Ghat Belt 319

3.1 Geology and Crustal Evolution 319

3.1.1 Event stratigraphy of Eastern Ghat Mobile Belt, 329

3.2 Metallogeny 332

3.2.1 Salient features of the major bauxite deposits in the Orissa sector of the Eastern Ghats, 335

3.2.2 Salient features of the major bauxite deposits in the Andhra Pradesh sector of the Eastern Ghats, 336

3.2.3 A generalised weathering profile in the East Coast, 338

3.2.4 A weathering profile across the Panchpatmali bauxite plateau, Koraput, Eastern Ghats, 339

3.2.5 Average chemical composition of khondalitic parent rocks (protoliths) and the weathered rocks derived from them at the Panchpatmali and Pottangi bauxite plateaus, Koraput, 340

3.2.6 Major graphite belts and deposits/occurrences within the confines of EGMB in Orissa, 342
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.8</td>
<td>Grade-wise reserves (Mt) of hematitic ores in Eastern India, 481</td>
</tr>
<tr>
<td>4.2.9</td>
<td>Physical and chemical properties and mineral composition of the East Indian iron ores, 484</td>
</tr>
<tr>
<td>4.2.10</td>
<td>PGM assemblages, Baula–Nuaahi, Orissa and their distribution, 510</td>
</tr>
<tr>
<td>4.2.11</td>
<td>Stratigraphic sequence of the IOG rocks in Jamda–Koira Valley, showing the position of manganiferous formation, 513</td>
</tr>
<tr>
<td>4.2.12</td>
<td>Chemical composition (wt%) of the basement rocks below the Bagru hill deposits, Lohardaga, 524</td>
</tr>
<tr>
<td>4.2.13</td>
<td>Chemical composition (wt%) of some samples of bauxite from the Bhusar East, Bagru NE and Bagru Central blocks, Bagru hills, 524</td>
</tr>
</tbody>
</table>

Chapter 5 North-East India | 526
5.1 Geology and Crustal Evolution | 526
5.1.1 Stratigraphic succession of Shillong Group, 531

Chapter 6 Western India | 543
6.1 Geology and Crustal Evolution | 543
6.1.1 Pre-Vindhyan stratigraphy of Rajasthan and Gujarat, 545
6.1.2 Geochronology of the members of the basement complex of Rajasthan area, 546
6.1.3 Chemical analyses of major (wt.%), trace and rare earth elements (ppm) of some banded gneissic rocks of the Mewar region, 548
6.1.4 Stratigraphic schemes proposed by different workers for the Aravalli sequence of Rajasthan and Gujarat, 553
6.1.5 Stratigraphic succession of the Aravalli Supergroup, 554
6.1.6 Classification of Bhilwara Supergroup, 559
6.1.7a Stratigraphic sequence of the Delhi System (Supergroup) rocks of Northeastern Rajasthan, 563
6.1.7b Stratigraphic sequence of rocks in the Delhi fold belt of northeastern Rajasthan, 564

6.1.8 Chemical composition of the granitoids from the Khetri–Alwar region, northern Rajasthan, 567
6.1.9 Chemical composition of Barotiya and Sendra volcanics, 572
6.1.10 Classification of Delhi Supergroup, 573
6.1.11 Average chemical composition of the Balda and Sewariya Granites, 576
6.1.12 Chemical composition of the granites, granodiorites and tonalites of the Sendra region, 576
6.1.13 Radiometric age data from the rocks and ores of the Delhi fold belt, 578
6.1.14 Geochronological data from different belts of Rajasthan, 581
6.1.15 Average chemical composition of some Malani Group rocks, 587
6.1.16 Stratigraphic succession of the Marwar Supergroup in the Nagaur basin, 589
6.1.17 Stratigraphic sequence of the Marwar Supergroup in the Birmania Basin, 589

6.2 Metallogeny | 591
6.2.1 Radiocarbon dates of different materials related to ancient mining at Zawar, Dariba and Agucha mines, 594
6.2.2 Reserve and grade of Zn–Pb ore established in different deposits/blocks of Dariba–Rajpura–Bethumni ore belt (GSI), 602
6.2.3 Sediment-hosted sulphide deposits in Bhilwara Province, Rajasthan, 610
6.2.4 Ore reserves and principal ore metal contents of Zawar deposit, 612
6.2.5 Composition (wt%) of some sphalerite samples from the Zawar belt, 618
6.2.6 Sulphur isotope data for Zawar ores, 620
6.2.7 Sulphur isotope composition of Zawar sulphides, 621
6.2.8 Carbon and oxygen isotope composition of ore zone carbonate, Zawar belt, 622
6.2.9 Composition of Zawar lead and model age(s) of mineralisation, 623
6.2.10 Characteristics of sediment (carbonate)-hosted Pb–Zn ore deposits in Zawar belt, Rajasthan, 624
List of Tables

6.2.11 Major and trace element data of iron-oxide breccia and other associated rocks from Rohil area, Sikar district, Rajasthan, 653
6.2.12 Reserves and grades of volcanic-associated sulphide deposits of the SDFB, 657
6.2.13 Pb-isotope data for VMS deposits in the Ambaji–Sendra belt, Western India, 662
6.2.14 Uranium occurrences in Paleo–Mesoproterozoic rocks of Western Indian craton, 664
6.2.15 Uranium mineralisation along with the albitite and associated rocks of Western Indian craton, 666
6.2.16 Some compositional characteristics of albitites and associated rocks, Sikar district, Rajasthan, 667
6.2.17 Major element oxides (wt.%) and trace element (ppm/ppb) composition of Tosham Granite, Tosham Rhyolite and Khanak Granite, 669
6.2.18 Reserves of rock phosphates in Rajasthan, 676

Chapter 7 The Himalaya 679
7.1 Geology and Crustal Evolution 679
7.1.1 Disposition of the litho-tectonic zones of the Himalaya, 680
7.1.2 Stratigraphy of the Lesser Himalaya rocks in the Darjeeling–Sikkim sector, according to different authors, 684

Chapter 8 Crustal Evolution and Metallogeny in India: A Brief Review in the Context of the World-Scenario 717
8.2 A Synoptic View of the Indian Situation and Its Comparison with the World’s 731
8.1 Geological Developments and corresponding metallogeny through time in the various crustal segments of the Indian Peninsula and their age-wise correlation 739
LIST OF PLATES

Chapter 1 Southern India 1

1.1.3. (a) Intricate folding in leucosome bands in Peninsular Gneiss, west of Kolar. A later shear zone, filled up by quartzofeldspathic material, cut across the folded bands; (b) Multiply deformed interbanded gneiss-amphibolite (dark) complex in Peninsular Gneiss, south of Bangalore. A geological hammer added to the natural sickle makes it interesting! (c) Mylonitic (proto-) banding in Peninsular Gneiss, north of Kunigal; (d) Swerving gneissocity of Bangalore

1.1.20. Geological map of Kolar schist belt, Karnataka

1.2.12 Roof-views of Zone-I Reef in the drive at 24 Level (depth–2400 ft), Mallapa Shaft, Hutti mines

1.2.21 Geological map of a part of Western Ghats showing Kudremukh-Agumbe iron ore belt hosted by the Bababudan Group

Chapter 2 Central India 153

2.1.2 (a) Bengpal (Sukma) Gneiss exposed in Khardi River section

2.1.18 Some field-features of Tan shear zone, Kanhan River section

2.2.6 (a) Cross-sections showing disposition of iron ores with respect to BHF-BIF and shale in Jharandalli block, Dalli deposit (b) Sketch map of Jharandalli block at 423 m RL bench level

2.2.7 (a) Folded massive iron ore in Rajhara Main Block, bench – 423 m RL (b) Iron ore in the core of a chevron fold defined by BIF in Kande kasa (Dalli) Block, bench – 550 m RL; (c) Hard ore intimately admixed with soft ore as seen in Rajhara mine face at 423 m RL; (d) Sketch of bench faces at Rajhara and Mayurpani mines

2.2.12 Cross sections of Bailadila deposits

2.2.26 Different field-features of the Malanjkhand deposit

2.2.37 Geological map of Imalia gold prospect, district Sleemanabad, Madhya Pradesh

Chapter 4 Eastern India 343

4.1.1 Geological map of a part of the Precambrian terrain of Eastern India

4.1.5 Geological map of a part of Singhbhum- North Orissa cratonic nucleus showing Newer Dolerite dyke swarms (dark green) in the Singhbhum Granite country (pink)

4.1.31 Kyanite-quartz, kyanite-tourmaline rocks, Lapsa Buru

4.1.32 (a) Dumortierite hillock at Ujanpur, west of Kharkai river; (b) Hand specimen showing dumortierite (Dm) and kyanite; (c) Schistosity parallel laths and boudins of dumortierite (Dm) in kyanite-quartz schist (Ky + Q); (d) Tourmaline pocket (Tm) surrounded by dumortierite (Dm); vein quartz (Q) in patches; (e) Kyanite (Ky) rimmed by dumortierite (Dm)

4.1.33 Tourmaline mineralisation in SSZ

4.1.37 (a) Geological map of Ghatsila–Galgudi sector (modified after Sarkar and Saha, 1962), (b) FCC prepared from imagery for a part of the area

4.1.39 Detailed geological map of some sectors of the Dalma volcanic belt

4.2.2 Geological map of the Badia–Mosabani–Surda–Kendadih section, Singhbhum Cu-U belt, East Singhbhum district, Jharkhand

4.2.4 Geological map of the Ramchandra Pahar–Nandup–Bayanbil–Turamdih Dhakkidih–Mahuldhid sector, Singhbhum Cu-U belt, East Singhbhum district, Jharkhand
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.7</td>
<td>Chalcopyrite dominant sulphide mineralisation in chlorite-quartz schist, displaying S-C structure control,</td>
</tr>
<tr>
<td>4.2.29</td>
<td>Geological and structural map of Lawa area showing locations of the old gold mines at Bhatukkhad East and West and Tamapahar</td>
</tr>
<tr>
<td>4.2.33</td>
<td>Photomicrograph of disseminated gold (Au) and arsenopyrite (Aspy) in the ore</td>
</tr>
<tr>
<td>4.2.38</td>
<td>Geological map of Gua iron ore deposit, West Singhbhum district, Jharkhand</td>
</tr>
<tr>
<td>4.2.40</td>
<td>Three profile sections across Noamundi iron ore mines, showing low westerly dip of the ore zones and interfingerling of different ore types. borehole cross-sections of (b) Two profile sections across Khondbond deposit, Orissa, showing low easterly dip of the ore zone and (c) Two profile sections across Banspani deposit, Orissa, showing low westerly dip of the ore zone.</td>
</tr>
<tr>
<td>4.2.41</td>
<td>Field photographs showing (a) Chevron folded BHQ (top left) changing over to Banded hematite shale, Gua mines, Singhbhum; (b) Flexure in high-grade iron ore bands with well-developed axial plane schistosity visible on close inspection, Gua mines, Singhbhum; (c) Hard and blocky high-grade iron ore (HO) with well-developed shears planes (SZ) and fractures of tectonic origin, Thakurani Pahar, Orissa; (d) Folded BHJ with alternate hard ore (dark grey-HO) and jasper (brown-J) bands in Joda mines; (e) Axial planar cleavages and joints developed in a folded BHJ band occurring within friable iron ore (FO), Hill 6, Noamundi East mine; (f) Highly folded friable iron ore (FO), Hill 4, Noamundi East mine</td>
</tr>
<tr>
<td>4.2.45</td>
<td>Photograph and sketch showing hard hematitic iron ore (> 66% Fe) with fine undisturbed laminations alternating with non-laminated scoraceous bands. Sporadic limonite streaks/specs and minute cavities are noted in the laminated bands, Katamati mine, southern extension of Noamundi deposit</td>
</tr>
<tr>
<td>4.2.46</td>
<td>(a) Near-surface limonitic ore overlying friable ore (FO) and blue dust (BD), (b) Boulders of ‘Canga’ derived from the surface, (c) Friable and hard ore with solution cavities parallel to the bedding surfaces, location of (a–c): Noamundi west mine, (d) Hard laminated ore alternating with contorted ore bands with cavities and solution breccia, (e) Highly scoriceous hard massive ore with goethitic patches, (f) Quartz vein in Low-grade friable ore with limonitic layers, location (d–f): Joda mines</td>
</tr>
<tr>
<td>4.2.47</td>
<td>Field photograph and representative sketch of intertwined friable ore (FO) and blue dust (BD) showing remnants of primary laminates in form of hematite plates; (c) Close-up view of a hematite plate from location of (a), showing proto-botryoid texture on the plate surface, Katamati mines, Orissa; (d) sketch showing transition of BHJ into blue dust through friable platy ore within less than a meter; note layer parallel compositional gradation along band 1 and 3, and no layer-across change to the unaltered band 2, Hill 4, Noamundi East mine</td>
</tr>
<tr>
<td>4.2.48</td>
<td>Intricately folded BIF with quartz laminates (light coloured, high relief) interlayered with blue dust (dark grey coloured, low relief), Gua mines</td>
</tr>
<tr>
<td>4.2.49</td>
<td>Sketch of a bench face in Katamati mine showing the disposition and interrelationship between hard ore (HO) and other ore types (FO, BD, lateritic and float ore)</td>
</tr>
<tr>
<td>4.2.50</td>
<td>Lithologs of three boreholes, Joda-Khondbond iron ore deposits, Orissa</td>
</tr>
<tr>
<td>4.2.63</td>
<td>Northeastern parts of Chhotanagpur Granite–Gneiss Complex (CGC)</td>
</tr>
<tr>
<td>Plate</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.2.64</td>
<td>Regional geological map of Bihar (Jharkhand) Mica belt showing the locations of basemetal sulphide prospects and deposits</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Generalised geological map of the Northeastern India</td>
</tr>
<tr>
<td>5.1.9</td>
<td>Map showing locations of geochronological data available so far from different belts of Western India</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Simplified regional geological map of Aravalli–Delhi orogenic belt showing locations of mineral occurrences and deposits</td>
</tr>
<tr>
<td>5.2.8</td>
<td>Photograph of the gossan exposure at Dariba,</td>
</tr>
<tr>
<td>5.2.16</td>
<td>Host rocks of Zawar Zn–Pb deposit (a) schistose greywacke, (b) recrystallised impure dolostone (Banerjee and Sarkar, 1998). F-feldspar, Q-quartz</td>
</tr>
<tr>
<td>5.2.26</td>
<td>Regional geological map of Udaipur–Bhukia area with inset map showing generalised geology around Bhukia Gold Prospect</td>
</tr>
<tr>
<td>5.2.29</td>
<td>Soil sample anomaly contours superposed on the geological map Bhukia–Jagpura prospect</td>
</tr>
<tr>
<td>6.2.31</td>
<td>(a) Transverse section showing the disposition of ore bodies at depth, (b) a major old working corresponding to the section Bhukia deposit</td>
</tr>
<tr>
<td>6.2.32</td>
<td>Gold-sulphide-bearing albite-rich and calc-silicate-rich bands in carbonate units of Bhukia Formation, exposed on a hilllock with several old workings. Inset-1: closer view of albittitic rock exposure; Inset-2: hand specimen of sheared albite-quartz rock</td>
</tr>
<tr>
<td>6.2.33</td>
<td>Split core samples in Indo Gold core shed</td>
</tr>
<tr>
<td>6.2.35</td>
<td>Geological map of the Khetri copper belt showing the major deposits</td>
</tr>
<tr>
<td>6.2.36</td>
<td>Map showing geological provinces in India with oldest dates from each craton</td>
</tr>
<tr>
<td>7.1.3</td>
<td>(a) Tectonic map of the Tibet–Himalaya collision zone (b) Schematic cross section</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Geological developments and corresponding metallogeny through time in the various crustal segments of the Indian peninsula and their age-wise correlation</td>
</tr>
<tr>
<td>8.3</td>
<td>Reconstruction of Rodinia: (a) modified after Li et al., 2008, (b) modified after Santosh et al., 2009</td>
</tr>
<tr>
<td>8.7</td>
<td>Map showing geological provinces in India with oldest dates from each craton</td>
</tr>
</tbody>
</table>