Environmental Valuation in South Asia

Edited by
A.K. Enamul Haque, M.N. Murty and Priya Shyamsundar
Contents

List of Figures	ix
List of Tables	xi
List of Appendices	xvi
List of Contributors	xvii
Preface	xxi

Chapter 1: Introduction

1.1. About the Book | 1
1.2. Environmental Valuation in South Asia | 2
1.3. Valuation Methods | 4
1.4. Implementing Full Cost Pricing in Agrarian Settings | 6
1.5. Accounting for Linked Ecological and Social Systems | 8
1.6. Improved Health Outcomes | 10
1.7. Micro to Macro: Valuation and Better Measures of Sustainable Development | 12
1.8. Increasing Revenues through Better Valuation | 13
1.9. Challenges to Environmental Valuation in Developing Countries | 14

Chapter 2: Environmental Valuation: A Review of Methods

A.K. Haque, M.N. Murty and P. Shyamsundar

2.1. Environmental Resources and Economic Valuation | 19
2.2. Environmental Values | 20
2.3. Measuring Environmental Values and Policy Changes | 22
2.4. Valuation Methods | 23
2.5. Conclusion | 32

Chapter 3: Valuing the Environment as a Production Input

Jeffrey R. Vincent

3.1. Introduction | 36
3.2. Production Function | 38
3.3. Cost Function | 46
3.4. Profit Function | 54
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5. Empirical Implications</td>
<td>57</td>
</tr>
<tr>
<td>3.6. Implications of Relaxing Key Assumptions</td>
<td>64</td>
</tr>
<tr>
<td>3.7. Example: Rainfall and Rice in India</td>
<td>70</td>
</tr>
<tr>
<td>Chapter 4: Should Shrimp Farmers Pay Paddy Farmers?:</td>
<td></td>
</tr>
<tr>
<td>The Challenges of Examining Salinization Externalities in South India</td>
<td>79</td>
</tr>
<tr>
<td>L. Umamaheswari, K. Omar Hattab, P. Nasurudeen and P. Selvaraj</td>
<td></td>
</tr>
<tr>
<td>4.1. Introduction</td>
<td>79</td>
</tr>
<tr>
<td>4.2. Study Area</td>
<td>80</td>
</tr>
<tr>
<td>4.3. Data</td>
<td>82</td>
</tr>
<tr>
<td>4.4. Homogeneity of Paddy Villages</td>
<td>84</td>
</tr>
<tr>
<td>4.5. Soil Characteristics</td>
<td>84</td>
</tr>
<tr>
<td>4.6. Comparing Paddy Cultivation</td>
<td>87</td>
</tr>
<tr>
<td>4.7. Estimation of Externality Cost</td>
<td>88</td>
</tr>
<tr>
<td>4.8. Factors Causing Soil Salinity</td>
<td>90</td>
</tr>
<tr>
<td>4.9. Production Function Analysis</td>
<td>91</td>
</tr>
<tr>
<td>4.10. Welfare Gains from Salinity Reduction</td>
<td>95</td>
</tr>
<tr>
<td>4.11. Conclusion</td>
<td>96</td>
</tr>
<tr>
<td>Chapter 5: Evaluating Gains from De-Eutrophication of the Dutch Canal</td>
<td>99</td>
</tr>
<tr>
<td>W.R. Rohitha</td>
<td></td>
</tr>
<tr>
<td>5.1. Introduction</td>
<td>99</td>
</tr>
<tr>
<td>5.2. Study Area and Data</td>
<td>101</td>
</tr>
<tr>
<td>5.3. Water Quality Valuation Techniques</td>
<td>103</td>
</tr>
<tr>
<td>5.4. Analysis of Results</td>
<td>108</td>
</tr>
<tr>
<td>5.5. Conclusion and Policy Implications</td>
<td>112</td>
</tr>
<tr>
<td>Chapter 6: Pesticide Productivity and Vegetable Farming in Nepal</td>
<td>115</td>
</tr>
<tr>
<td>Ratna Kumar Jha and Adhrit Prasad Regmi</td>
<td></td>
</tr>
<tr>
<td>6.1. Introduction</td>
<td>115</td>
</tr>
<tr>
<td>6.2. Pesticide Use in Agriculture: A Review</td>
<td>118</td>
</tr>
<tr>
<td>6.3. Study Area and Data</td>
<td>120</td>
</tr>
<tr>
<td>6.4. Theory and Methods</td>
<td>123</td>
</tr>
<tr>
<td>6.5. Results and Discussion</td>
<td>127</td>
</tr>
<tr>
<td>6.6. Conclusions and Policy Recommendations</td>
<td>135</td>
</tr>
</tbody>
</table>
Chapter 7: Forests, Hydrological Services, and Agricultural Income: A Case Study from the Western Ghats of India

Sharachchandra Lele, Iswar Patil, Shrinivas Badiger, Ajit Menon and Rajeev Kumar

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Introduction</td>
<td>141</td>
</tr>
<tr>
<td>7.2. Forest Ecosystems, Watershed Services and Social Well-being: the Existing Literature</td>
<td>142</td>
</tr>
<tr>
<td>7.3. Framework and Objectives</td>
<td>145</td>
</tr>
<tr>
<td>7.4. Study Site: Ecological, Social and Agro-hydrological Characteristics</td>
<td>146</td>
</tr>
<tr>
<td>7.5. Relationship between Rainfall, Catchment Response and Tank Filling</td>
<td>151</td>
</tr>
<tr>
<td>7.6. Socio-economic Data Collection and Sampling</td>
<td>155</td>
</tr>
<tr>
<td>7.8. Likely Impacts of changes in catchment vegetation on agricultural incomes and wage employment in the tank command</td>
<td>162</td>
</tr>
<tr>
<td>7.9. Conclusions and Implications</td>
<td>164</td>
</tr>
</tbody>
</table>

Chapter 8: Can Mangroves Minimize Property Loss during Big Storms?: An Analysis of House Damages due to the Super Cyclone in Orissa

Saudamini Das

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1. Introduction</td>
<td>170</td>
</tr>
<tr>
<td>8.2. Studies on Valuing the Storm Protection role of Coastal Forests</td>
<td>172</td>
</tr>
<tr>
<td>8.3. Study Area</td>
<td>174</td>
</tr>
<tr>
<td>8.4. Methodology</td>
<td>175</td>
</tr>
<tr>
<td>8.5. Data</td>
<td>184</td>
</tr>
<tr>
<td>8.6. Results and Discussion</td>
<td>188</td>
</tr>
<tr>
<td>8.7. Conclusions and Policy Recommendations</td>
<td>200</td>
</tr>
</tbody>
</table>

Chapter 9: Valuation of Recreational Amenities from Environmental Resources: The Case of Two National Parks in Northern Pakistan

Himayatullah Khan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1. Introduction</td>
<td>211</td>
</tr>
<tr>
<td>9.2. Studying two Parks in Pakistan</td>
<td>213</td>
</tr>
</tbody>
</table>
Chapter 10: Valuing the Land of Tigers: What Indian Visitors Reveal

Indrila Guha and Santadas Ghosh

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1. Introduction</td>
<td>232</td>
</tr>
<tr>
<td>10.2. Studies Estimating Recreational Value</td>
<td>234</td>
</tr>
<tr>
<td>10.3. Methodology for ZTCM</td>
<td>235</td>
</tr>
<tr>
<td>10.4. Nature of a Sundarban Tour</td>
<td>237</td>
</tr>
<tr>
<td>10.5. Survey Design and Sampling</td>
<td>240</td>
</tr>
<tr>
<td>10.6. Data Exploration: Descriptive Statistics</td>
<td>241</td>
</tr>
<tr>
<td>10.7. Empirical Estimates</td>
<td>248</td>
</tr>
<tr>
<td>10.8. Conclusion and Policy Implications</td>
<td>253</td>
</tr>
</tbody>
</table>

Chapter 11: Estimating Welfare Losses from Urban Air Pollution using Panel Data from Household Health Diaries

Usha Gupta

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1. Introduction</td>
<td>256</td>
</tr>
<tr>
<td>11.2. Study Site</td>
<td>258</td>
</tr>
<tr>
<td>11.3. Data Sources and Survey Design</td>
<td>260</td>
</tr>
<tr>
<td>11.4. Methodology</td>
<td>262</td>
</tr>
<tr>
<td>11.5. Estimating Household Health Production Function Model</td>
<td>264</td>
</tr>
<tr>
<td>11.6. Results</td>
<td>268</td>
</tr>
<tr>
<td>11.7. Conclusion</td>
<td>272</td>
</tr>
</tbody>
</table>

Chapter 12: Children in the Slums of Dhaka: Diarrhoea Prevalence and its Implications

M. Jahangir Alam

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1. Introduction</td>
<td>276</td>
</tr>
<tr>
<td>12.2. Determinants and Costs of Child Diarrhoea</td>
<td>278</td>
</tr>
<tr>
<td>12.3. Study Area and Sampling</td>
<td>281</td>
</tr>
<tr>
<td>12.4. Methods of Estimation</td>
<td>283</td>
</tr>
<tr>
<td>12.5. Results and Discussion</td>
<td>290</td>
</tr>
<tr>
<td>12.6. Cost and Sensitivity Analysis of Child Diarrhoea</td>
<td>296</td>
</tr>
<tr>
<td>12.7. Conclusions and Policy Recommendations</td>
<td>301</td>
</tr>
</tbody>
</table>
Chapter 13: Red Wells, Green Wells and the Costs of Arsenic Contamination in Bangladesh

M. Zakir Hossain Khan and A.K. Enamul Haque

13.1. Introduction 306
13.2. Background 307
13.3. Methods 309
13.4. Results 317
13.5. Discussions and Conclusions 323

Chapter 14: Air Quality and Cement Production: Examining the Implications of Point Source Pollution in Sri Lanka

Cyril Bogahawatte and Janaranjana Herath

14.1. Introduction 328
14.2. Air Pollution and Health Impacts 329
14.3. Study area 331
14.4. Data 332
14.5. Methodology and Estimation 336
14.6. Results and Discussion 341
14.7. Conclusions and Policy Implications 345

Chapter 15: Revisiting the Need for Improved Stoves: Estimating Health, Time and Carbon Benefits

Min Bikram Malla Thakuri

15.1. Introduction 348
15.2. Indoor Air Pollution Problem in Developing Countries: A Review 349
15.3. Study Area and Data 353
15.4. Methodology 355
15.5. Results and Discussion 362
15.6. Conclusions and Recommendations 374

Chapter 16: Benefits from Reduced Air Pollution in Delhi and Kolkata: A Hedonic Property Price Approach

M.N. Murty, S.C. Gulati and Avishek Banerjee

16.1. Introduction 380
16.2. The Hedonic Price Model and Choice of Functional Forms 382
16.3. Data Sources and Design of Household Survey 386
16.4. Model for Estimation and Measurement of Variables 387
16.5. Estimates of Hedonic Property Value Model with Alternative Functional Forms 394
16.6. Inverse Demand Functions for Environmental Quality and Welfare Gains from Reduced Air Pollution 403
16.7. Conclusion 406

Chapter 17: The Value of Statistical Life 412

K. R. Shanmugam and S. Madheswaran

17.1. Introduction 412
17.2. Methodology 414
17.3. Econometric Specification of the Hedonic Wage Function 418
17.4. Estimation Issues 418
17.5. Empirical Analysis 426
17.6. Concluding Remarks 437

Chapter 18: An Assessment of Demand for Improved Household Water Supply in Southwest Sri Lanka 444

Herath Gunatilake, Jui-Chen Yang, Subhrendu Pattanayak and Caroline van den Berg

18.1. Introduction 444
18.2. Use of the CV Method to Measure WTP 446
18.3. Planning, Design and Administering the Survey 448
18.4. Results 461
18.5. Conclusion 470

Index 475
List of Figures

2.1. Different Categories of Environment Values
3.1. Modeling an Environmental Improvement: Production Function
3.2. Valuing an Environmental Improvement: Production Function
3.3. Modeling an Environmental Improvement: Cost Function
3.4. Valuing an Environmental Improvement: Cost Function
3.5. Valuing an Environmental Improvement: Profit Function
3.6. Modeling Environmental Degradation: Production Function
3.7. Modeling Environmental Degradation: Cost Function
4.1. Externality Effect of a Decline in Soil Quality
6.1. Optimal Use of Pesticides
6.2. Impact of Pesticide on Yield Loss Reduction in a Production System
6.3. Average Amount of Pesticides Used on Cole Crops (gm a.i./ ha)
6.4. Resultant Damage Abatement Function of Pesticide
6.5. Pesticide Productivity Curve
6.6. Marginal Value Product of Pesticide Use in Cole Crop Production
7.1. Conceptual Framework
7.2. Intra-annual Variation in Rainfall near Baragi Village
7.4. Variation in ‘Probability of Exceedance’ of Rainfall Required to Fill Tank with variation in forested catchment runoff coefficient during the northeast monsoon (September–December)
8.1. Sea Elevations at Orissa Coast during 1999 Super Cyclone Landfall
10.1. Distribution of Visitors to the Sunderban
10.2. Projection of Revenue Collection with Varying Entry-Fee Rate
11.1. Monetary Valuation of Air pollution–Sick Days
12.1. Duration of Child Diarrhoea with a Recall period of 15 Days
12.2. Specification Test
13.1. Marginal Effect by Age
16.1. Average Concentrations of SPM, NOx, SO₂ and the Exposure Index for 7 Monitoring Stations in Delhi for the Period October 2001 to March 2002
List of Figures

16.2. Average Concentrations of SPM, NOx, SO2, and the Exposure Index for 19 Monitoring Stations in Kolkata for the Period October 2001 to March 2002
16.3. Inverse Demand Function for Clean Air in Delhi
16.4. Inverse Demand Function for Clean Air in Kolkata
16.5. Inverse Demand Function for the Pooled Model of Delhi and Kolkata
17.1. Wage-Risk Trade-off
18.1. Household Demand for Improved Water Service in Sri Lanka
List of Tables

2.1. How to Evaluate Environmental Policy Changes
2.2. Valuation Techniques
3.1. Estimation of Cobb-Douglas Production Function for Irrigated Rice Farms in Tamil Nadu during Northeast Monsoon
3.2. Estimation of Profit Function for Irrigated Rice Farms in Tamil Nadu during Northeast Monsoon
4.1. Land Use and Cropping Characteristics of Paddy Villages
4.3. Range of EC Values for Poovam Soil Samples
4.4. Range of EC Values for Thiruvettakudy Soil Samples
4.5. Descriptive Statistics for Transplanted Paddy
4.6. Descriptive Statistics for Direct Sown Paddy
4.7. Estimated Log-Log Function of Salinity on Distance Parameters
4.8. Descriptive Statistics of Affected Farms
4.9. Descriptive Statistics of Unaffected Farms
4.10. Descriptive Statistics of Combined Sample
4.11. Estimates of Production Function for Paddy Farms
4.12. Estimates of Losses per Hectare from Increased Salinity Obtained Using Different Methods
5.1. Description of Variables
5.2. Descriptive Statistics of Variables
5.3. Estimated Shrimps Yield Function
5.4. Gains from Improving Water Quality to a Safe Level in the Dutch Canal
6.1. Pocket-wise Distribution of Cultivated and Cole crop area in Bhaktapur
6.2. Summary Statistics of the Variables
6.3. Results from the Non–linear Estimation of Various Production Functions
6.4. Computation of Damage Abatement and Yield Increment due to Pesticide Use
<table>
<thead>
<tr>
<th>List of Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5. Cole Crop Production Using Different Level of Pesticides by Farmer</td>
</tr>
<tr>
<td>7.1. Landholding Classes among Tank Command Farmers</td>
</tr>
<tr>
<td>7.2. Estimated Production and Income in Entire Tank Command: Unirrigated kharif</td>
</tr>
<tr>
<td>7.3. Estimated Aggregate Production and Income in Entire Tank Command: Irrigated kharif</td>
</tr>
<tr>
<td>7.4. Estimated Aggregate Production, Income and Employment Generated in Entire Tank Command: Summer Paddy</td>
</tr>
<tr>
<td>7.5. Predicted Impact of Catchment Forest Regeneration on Gross Income of Baragi Tank Command Area Farmers</td>
</tr>
<tr>
<td>7.6. Predicted Impact of Catchment Forest Regeneration on the Net Income of Baragi Tank Command Area Farmers and Wage Employment Generated in the Command Area</td>
</tr>
<tr>
<td>8.1. List of Variables</td>
</tr>
<tr>
<td>8.2. Description and Sources of Data</td>
</tr>
<tr>
<td>8.3. Descriptive Statistics of House Damage Model</td>
</tr>
<tr>
<td>8.4. Ordinary Least Squares Estimates with Robust Std. Errors for Fully Collapsed Houses</td>
</tr>
<tr>
<td>8.5. Weighted Least Squares Estimates (weight = area) for Partially Collapsed Houses</td>
</tr>
<tr>
<td>8.6. Averted House Damages and Values</td>
</tr>
<tr>
<td>8.7. Storm Protection Values of Mangroves</td>
</tr>
<tr>
<td>9.1. Sample Respondents Interviewed in Different Seasons and Locations of the MHN Park</td>
</tr>
<tr>
<td>9.2. Explanatory Variables and Hypotheses</td>
</tr>
<tr>
<td>9.3. Descriptive Statistics of the Respondents</td>
</tr>
<tr>
<td>9.4. Visitor's Perceptions Regarding Improvements in two National Parks</td>
</tr>
<tr>
<td>9.5. Reasons for Visiting MHN Park by Sample Respondents</td>
</tr>
<tr>
<td>9.6. Estimated Results of Linear Regression Equations for Visitation</td>
</tr>
<tr>
<td>10.1. Types of Tours Packages: Seven Options in the Survey Questionnaire</td>
</tr>
<tr>
<td>10.2. Percentage of Multipoint Visitors Across Regions: Survey Estimate</td>
</tr>
<tr>
<td>10.3. Average Travel Cost and Per-capita Income Across Tour Packages</td>
</tr>
<tr>
<td>10.4. The Two-segment Split of the Recreational Market Used in the Study</td>
</tr>
<tr>
<td>10.5. Identification of Zones Used in Estimating TGF (excluding foreign nationals)</td>
</tr>
<tr>
<td>10.6. Zonal Data from Secondary Sources</td>
</tr>
</tbody>
</table>
10.7. Summary Statistics from Survey Data: Distribution of Visitors, Travel Cost and Per-capita Income across Zones, Durations and Market Segments

10.8. Variables Used for Estimating TGF

10.9. Regression Result for the Trip Generating Function

10.10. Distribution of Aggregate CS Across Zones, Segments and Durations (in Million INR)

11.1. Descriptive Statistics

11.2. Number of Sick Days (H): Poisson Estimates

11.3. Tobit Equations of Mitigating Activities (M) Left Censored (0)

12.1. Cost of Child Diarrhoea per Child per Episode

12.2. Socio-Economic Conditions of Slum Households

12.3. Variable Explanations and Expected Sign

12.4. Descriptive Statistics

12.5. Negative Binomial-Logit Hurdle Regression of the Prevalence of Child Diarrhoea and Duration

12.6. Different Types of Cost of Child Diarrhoea (BDT) (15 days)

12.7. Sensitivity Analysis of the Cost of Child Diarrhoea (BDT) (15 days)

12.8. Probability of Diarrhoeal Attack for a Child

12.9. Yearly Cost of Child Diarrhoea

12.10. Yearly Expected Cost (BDT) of a Representative Child Diarrhoea

12.11. Yearly Expected Cost (BDT) of a Representative Household for Children

13.1. Household Level Information

13.2. Individual Level Information

13.3. Distribution of Arsenic Related Diseases among Sick Households

13.4. Estimating the Probability of Sickness (Probit Model)

13.5. Estimating the Probability of Incurring Medical Costs (Probit Estimates)

13.6. Calculation of Cost of Illness or Welfare Gain

13.7. Lower Bound of Willingness to Pay to Avoid Arsenicosis

13.8. Comparison of WTP from Other Studies

13.9. Total WTP or Welfare Loss for Bangladesh

13.10. Unit Cost of Different Types of Arsenic Removal/Mitigating Technologies

14.1. Sampling of Households for the Socio-economic Survey

14.2. Air Pollution Levels within 3Km Distance of the Cement Factory, Puttalam District (National Building Research Organization)
14.3. General Characteristics of the Surveyed Households
14.4. Kitchen Characteristics (Indoor Air Pollution)
14.5. Respiratory and Related Diseases among Surveyed Households
14.6. Summary Statistics of the Regression Variables
14.7. Estimated Coefficients for Dose Response Functions for ARI, LRI and URI
14.8. Estimated Coefficients of the Mitigation Cost Functions for ARI, LRI and URI (Tobit Analysis)
14.9. Welfare Gain from Various Reductions in Current SPM levels per Annum
15.1. Household Characteristics: Descriptive Statistics
15.2. Characteristics of Intervention and Control Households
15.3. OLS and IV Regression results (Dependent Variable: CO level)
15.4. Symptoms of Illness in Main Cook (Woman) over 12 months Period
15.5. Symptoms of Illness in Children below Five Years over last 12 months Period
15.6. Probability of Reduction in Illness in Woman Cooks and Children below five years after Intervention
15.7. OLS, IV and Tobit Results (Dependent Variable: log of treatment cost)
15.8. Marginal Effects: Negative Binomial Estimates (Dependent Variable: Days lost due to illness)
15.9. Determinants of Firewood Consumption – OLS and IV estimates
15.10. Summary of Cost and Benefits (in Rs.)
15.11. CBA Analysis – the Results
16.1. Descriptive Statistics of Variables Used for Estimation of the Hedonic Property Value Model: Location Delhi
16.2. Descriptive Statistics of the Variables Used for Estimation of the Hedonic Property Value model: Location Kolkata
16.3. Estimates of Hedonic Price Equation for Delhi
16.4. Estimates of Marginal Willingness-to-pay Equation for Delhi
16.5. Estimates of Hedonic Price Equation for Kolkata
16.6. Estimates of Marginal Willingness-to-pay Equation for Kolkata
16.7. Estimates of Marginal Willingness-to-pay Equation for the Pooled Model
16.8. Estimates of Welfare Gains in INR to Urban Households in Delhi, Kolkata and for Pooled Model
17.1. Wages and Standard Benefit Rates
17.2. Risk Measures and Workers by Industry
17.3. Variable Definitions and Descriptive Statistics
17.4. Box-Cox Non-linear Regression Model Estimates of Wage Equations
17.5. OLS and WLS Estimates of Log Wage Equations
17.6. Regression Estimates of Job Risk Equations
17.7. Non linear Estimates of Log Wage Equation
17.8. Summary of Labour Market Studies on the Value of Life and Injury
17.9. Summary of (selected) Studies Estimating Implicit Discount Rates
18.1. Impact of Household Characteristics and Related Variables on Demand for Improved Piped Water Service-Probit regression
18.2. Predicted Uptake Rates of Improved WSS for Different Groups
18.3. WTP Estimates by Sub-groups with Connection Fees of Rs. 0 for Connected and Rs. 6000 for Unconnected Households
18.4. WTP Estimates by Sub-groups without Connection
List of Appendices

6.1. Empirical Finding from Pesticide Productivity Studies

8.8. Ordinary Least Squares Estimates with Robust Std. Errors for Fully Collapsed Houses with Tahasildar Dummies

8.9. Weighted Least Squares Estimates (weight = area) for Partially Collapsed Houses with Tahasildar Dummies

8.10. Ordinary Least Squares Estimates with Robust Std. Errors for the Ratio of Fully Collapsed to Partially Collapsed Houses
List of Contributors

M. Jahangir Alam
Department of Economics and Social Sciences
BRAC University
Dhaka, Bangladesh

Shrinivas Badiger
Centre for Environment and Development
Ashoka Trust for Research in Ecology and the Environment, Bangalore, India

Avishek Banerjee
Institute of Economic Growth
Delhi University Enclave
Delhi, India

Caroline van den Berg
World Bank
1818 H. Street NW
Washington DC, USA

Cyril Bogahawatte
Department of Agricultural Economics
University of Peradeniya
Peradeniya, Sri Lanka

Saudamini Das
Institute of Economic Growth
University of Delhi Enclave
Delhi, India

Santadas Ghosh
Department of Economics and Politics
Visva-Bharati
Santiniketan, West Bengal, India

Indrila Guha
Department of Economics
Vidyasagar College for Women
Kolkata, West Bengal, India

S.C. Gulati
Institute of Economic Growth
Delhi University Enclave
Delhi, India

Herath Gunatilake
South Asia Department
Asian Development Bank
6 ADB Avenue, Mandaluyong City 1550, Metro Manila, Philippines
List of Contributors

Usha Gupta
Department of Business Economics
Bhim Rao Ambedkar College
University of Delhi
Main Wazirabad Road
Delhi, India

A.K. Enamul Haque
Department of Economics
United International University (UIU)
Satmasjid Road, Dhanmondi
Dhaka, Bangladesh

K. Omar Hattab
Department of Soil Science and Agricultural Chemistry
Pandit Jawaharlal Nehru College of Agriculture and Research Institute
Puducherry U.T., India

Janaranjana Herath
Department of Agricultural Economics and Business Management
Faculty of Agriculture
University of Peradeniya
Peradeniya, Sri Lanka

Md. Zakir Hossain
Transparency International
Bangladesh
Dhaka, Bangladesh

Ratna Kumar Jha
District Agriculture Development Office, Bhaktapur
Department of Agriculture, Nepal

Himayatullah Khan
Institute of Development Studies

NWFP Agricultural University
Peshawar, Pakistan

Rajeeva Kumara
Sobaganahalli, Kothigere Post
Kunigal Taluk
Tumkur District, Karnataka, India

Sharachchandra Lele
Centre for Environment and Development
Ashoka Trust for Research in Ecology and the Environment
Bangalore, India.

S. Madheswaran
Centre for Economic Studies and Policy
Institute for Social and Economic Change
Bangalore, India

Ajit Menon
Madras Institute of Development Studies
andhinagar, Adyar
Chennai
Tamil Nadu, India

M. N. Murty
Institute of Economic Growth
Delhi University Enclave
Delhi, India

P. Nasuruadeen
Department of Agricultural Economics and Extension
Pandit Jawaharlal Nehru College of Agriculture and Research Institute
Karaikal
Puducherry U.T., India

Priya Shyamsundar
South Asian Network for Development and Environmental Economics
32/25 Sukhumvit Soi 67
Bangkok, Thailand

Min Bikram Malla
Practical Action Nepal Office
Pandol Marg, Lazimpat
Kathmandu, Nepal

P. Selvaraj
Fisheries College and Research Institute
Chidambaranagar
Thoottukudi
Tamil Nadu, India

Iswaragouda Patil
Head Post Kunnur
Shiggaon Taluk
Haveri District
Karnataka, India

L. Umamaheswari
Department of Agricultural Economics
Pandit Jawaharlal Nehru College of Agriculture and Research Institute
Karaikal
Puducherry U.T., India

Subhrendu Pattanayak
Sanford School of Public Policy and Nicholas School of the Environment
Duke University
Durham, NC, USA

Jeffrey R. Vincent
Nicholas School of the Environment
Duke University
Durham, NC, USA

Adhrit Prasad Regmi
Centre for Rural Development and Self-help
Dallu Residential Area, Chhuni
Kathmandu, Nepal

Jui-Chen Yang
Research Triangle Institute (RTI)
Research Triangle Park, USA

W.R. Rohita
No. 56, Darshanapuram
Kundasale, Sri Lanka

K. R. Shanmugam
Madras School of Economics
Gandhi Manadapam Road, Kottur
Chennai, India
Preface

Applied research in environmental economics has gained momentum in recent times and is viewed as a means to aid environmental management. The South Asian Network for Development Economics and Environment (SANDEE) has contributed to this momentum in South Asia, a region with a vast and growing ecological footprint. During the last ten years, SANDEE has sponsored research on several aspects of environment and development. It has also organized numerous workshops to meet training needs.

SANDEE uses innovative strategies to build capacity in environmental economics. Researchers and managers from universities, governments and NGOs are provided with repeated opportunities to improve their skills. The process for an economist to produce a useful piece of research is detailed. It involves his/her attending a teaching workshop, writing a research proposal related to an environmental problem in his/her country, presenting ongoing research to receive comments, receiving guidance from a SANDEE advisor and writing a manuscript. The final research output is peer-reviewed by an international expert. Thus, SANDEE research is grounded in the realities of local problems but benefits from the advice of scholars from around the world.

This book contains contributions from SANDEE researchers and advisors. The papers in the book are on environmental valuation in South Asia and provide information for designing sustainable development policies. They constitute detailed micro case studies of air, water, land and forest resources from the region.

The studies in this book have benefited from comments from many experts including Kenneth Arrow, Partha Dasgupta, Jean-Marie Baland, Kanchan Chopra, Herath Gunathilake, K. G. Maler, Subhrendu Pattanayak, E. Somanathan, Rehana Siddiqui and Jeff Vincent, to name a few. Many chapters have also been anonymously peer-reviewed. The editors have acted as advisors on specific projects and worked with several researchers from the beginning to the final culmination of this book.
The credit for producing the research presented in this book also goes to the highly motivated team at the SANDEE Secretariat. Manik Duggar, Pranab Mukhopadhyay, Kavita Shresta, and Anuradha Kafle, who were at SANDEE when these studies were done, have made the development of these projects possible. Current staff, including Mani Nepal and Krisha Shresta, has continued to work with the same spirit.

The task of preparing this book from SANDEE projects was entrusted to the Institute of Economic Growth (IEG) with M. N. Murty as coordinator. The IEG organized three book-related workshops and brought together contributors so that they could further develop their chapters. The former Director, Kanchan Chopra and several IEG faculty and staff provided intellectual and administrative support. We express our thanks to them.

Finally, we are thankful to SANDEE’S donors – IDRC (International Development Research Center), Sida (Swedish International Development Cooperation Agency), NORAD (Norwegian Agency for International Cooperation) and the World Bank for their financial assistance, and, to the staff who represent these agencies on SANDEE’s Board for their advice and support.

Enamul Haque, M. N. Murty and Priya Shyamsundar