The Capital Asset Pricing Model in the 21st Century
Analytical, Empirical, and Behavioral Perspectives

The Capital Asset Pricing Model (CAPM) and the mean-variance (M-V) rule, which are based on classic expected utility theory (EUT), have been heavily criticized theoretically and empirically. The advent of behavioral economics, prospect theory, and other psychology-minded approaches in finance challenges the rational investor model from which CAPM and M-V derive. Haim Levy argues that the tension between the classic financial models and behavioral economics approaches is more apparent than real. This book aims to relax the tension between the two paradigms. Specifically, Professor Levy shows that although behavioral economics contradicts aspects of EUT, CAPM and M-V are intact in both EUT and Cumulative Prospect Theory (CPT) frameworks. There is, furthermore, no evidence to reject CAPM empirically when ex-ante parameters are employed. Professionals may thus comfortably teach and use CAPM and behavioral economics or CPT as coexisting paradigms.

Haim Levy is Miles Robinson Professor of Business Administration at the Hebrew University of Jerusalem and Dean of the Academic Center of Law and Business, Israel. He is the author of hundreds of articles in leading academic journals and nineteen books. Based on publications in sixteen core journals in finance, he has obtained the ranking of the most prolific researcher in finance covering the fifty-year period through 2002. A coauthor with Nobel Laureates Harry Markowitz and Paul Samuelson, Professor Levy’s major research contributions have been in the field of stochastic dominance in financial economics, which sets forth the criteria for decision making under conditions of uncertainty. He has also developed economic models for risk management. Professor Levy received Hebrew University’s Prize for Excellence in Research in 1996 and the EMET Prize in 2006. He has served as economic adviser to the Bank of Israel and has held academic positions at the University of California, Berkeley, and the Wharton School, University of Pennsylvania. He received his Ph.D. from Hebrew University in 1969 and has held a full professorship there since 1976.
The Capital Asset Pricing Model in the 21st Century

Analytical, Empirical, and Behavioral Perspectives

HAIM LEVY

Hebrew University, Jerusalem
Contents

Preface
1 Introduction
1.1. The Mean-Variance Rule and the Capital Asset
Pricing Model: Overview 1
1.2. The Intensive Use of the Mean-Variance and the
Capital Asset Pricing Model among Practitioners 7
1.3. The Role of the Mean-Variance and the Capital
Asset Pricing Model in Academia 18
1.4. Summary 21

2 Expected Utility Theory
2.1. Introduction 23
2.2. The Axioms and Expected Utility Theory 25
 a) *The Axioms* 25
 b) *The Expected Utility Principle* 28
2.3. Is \(U(A) \) a Probability or a Utility? 30
2.4. Various Attitudes toward Risk 31
2.5. Preference with Risk Aversion and Risk Seeking 37
2.6. Criticisms of the Expected Utility Theory 38
 a) *Allais Paradox* 39
 b) *Criticism of the Commonly Employed Utility*
 Functions 40
 c) *Cumulative Prospect Theory: Experimental*
 Findings that Contradict Expected Utility Theory 42
 d) *Roy's Safety-First Rule* 44
2.7. Summary 44

3 Expected Utility and Investment Decision Rules 46
3.1. Introduction 46
3.2. Stochastic Dominance Rules 47
Contents

a) Expected Utility and the Cumulative Distributions 47
b) The First-Degree Stochastic Dominance Decision Rule 51
c) The Second-Degree Stochastic Dominance Decision Rule 52
d) The Prospect Stochastic Dominance Decision Rule 53
e) The Markowitz Stochastic Dominance Decision Rule 54

3.3. Graphical Illustrations of the Stochastic Dominance Criteria 54
3.4. Stochastic Dominance Rules and the Distribution’s Mean and Variance 58
 a) Mean, Variance, and Stochastic Dominance Rules 58
 b) Mean, Variance, and Risk Aversion 60
3.5. Summary 61

4 The Mean-Variance Rule (M-V Rule) 63
 4.1. Introduction 63
 4.2. The Mean-Variance Rule: Partial Ordering 65
 4.3. Expected Utility and Distribution’s Moments: The General Case 68
 4.4. The Quadratic Utility Function and the Mean-Variance Rule 72
 4.5. Quadratic Utility: Are There Sharper Rules Than the Mean-Variance Rule? 76
 Discussion 79
 4.6. Normal Distributions and the Mean-Variance Rule 85
 Discussion 91
 4.7. The Mean-Variance Rule as an Approximation to Expected Utility 93
 a) The Various Mean-Variance Quadratic Approximations 93
 b) Discussion: Mean-Variance Approximation and Mean-Variance Efficient Prospects 100
 c) A General Utility Function with No DARA Assumption 101
 d) A Risk-Averse Utility Function with DARA 105
 e) The Quality of the Approximation 108
 4.8. Summary 114

5 The Capital Asset Pricing Model 117
 5.1. Introduction 117
 5.2. The Mean-Variance Efficient Frontier 120
 a) The Mean-Variance Frontier with One Risky Asset and One Riskless Asset 120
Contents

5.3. The Derivation of the Capital Asset Pricing Model 134
 a) Sharpe’s Capital Asset Pricing Model Derivation 135
 b) Lintner’s Capital Asset Pricing Model Derivation 139
 c) Discussion 143
5.4. Equilibrium in the Stock Market 149
5.5. Summary 154

6 Extensions of the Capital Asset Pricing Model 156
6.1. Introduction 156
6.2. The Zero Beta Model 158
6.3. The Segmented Capital Asset Pricing Model 164
6.4. Merton’s Intertemporal Capital Asset Pricing Model 168
6.5. The Heterogeneous Beliefs Capital Asset Pricing Model 171
6.6. The Conditional Capital Asset Pricing Model 175
6.7. Ross’s Arbitrage Pricing Theory 179
6.8. Summary 184

7 The Capital Asset Pricing Model Cannot Be Rejected: Empirical and Experimental Evidence 186
7.1. Introduction 186
7.2. The Early Tests of the Capital Asset Pricing Model: Partial Support for the CAPM 191
 (i) The First-Pass Regression (Time-Series Regression) 191
 (ii) The Second-Pass Regression (Cross-Section Regression) 191
 a) The Study by Lintner 192
 b) The Study by Miller and Scholes 195
 c) The Study by Black, Jensen, and Scholes 196
 d) The Study by Fama and MacBeth 199
 e) The Role of Beta and the Variance as Explanatory Variables 200
7.3. The Second Cycle of Tests: Mainly Rejection of the CAPM 202
 a) The Small Firm Effect 203
 b) The Three-Factor Model of Fama and French 205
 c) The Study of Gibbons, Ross, and Shanken: A Multivariate Test of Alphas 207
7.4. Roll’s Critique of the Empirical Tests 209
Contents

7.5. Short Positions Everywhere on the Frontier: Allegedly Provides Evidence against the Capital Asset Pricing Model 212

7.6. The Capital Asset Pricing Model Cannot Be Rejected on Empirical Ground After All 214
 a) Confidence Interval of the β Approach 215
 b) A Positive Portfolio Exists with Ex-Ante Means 219
 c) Reverse Engineering: The Approach of M. Levy and R. Roll 221
 d) The Small Firm Effect and the Investment Horizon 224

7.7. Experimental Studies of the Capital Asset Pricing Market 233

7.8. Summary 237

8 Theoretical and Empirical Criticism of the Mean-Variance Rule 239

8.1. Introduction 239

8.2. Distribution of Returns: Theoretical Approach 242

8.3. The Empirical Distribution of Return: The Paretian Versus the Normal Distribution 249

8.4. A Horse Race between Various Relevant Distributions: The Characteristics of the Various Distributions and the Methodology 255

8.5. Short Investment Horizon and the Logistic Distribution 261
 a) The Empirical Result for the Relatively Short Horizon 262
 b) The Horizon Effect on Various Parameters 265
 c) The Logistic Distribution: The M-V Rule Is Optimal 270

8.6. Goodness of Fit: Investment Horizon Longer Than One Year 275

8.7. Employing the Mean-Variance Rule: The Economic Loss 280

8.9. Summary 296

9 Prospect Theory and Expected Utility 299

9.1. Introduction 299

9.2. Prospect Theory and Expected Utility 303
 a) Prospect Theory and Expected Utility Maximization 304
 b) Asset Integration 308
 c) Risk Aversion 311
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3. The Value Function</td>
<td>316</td>
</tr>
<tr>
<td>a) The Shape of the Value Function</td>
<td>316</td>
</tr>
<tr>
<td>b) Loss Aversion</td>
<td>317</td>
</tr>
<tr>
<td>9.4. The Decision Weight Function</td>
<td>323</td>
</tr>
<tr>
<td>9.5. The Pros and Cons of Prospect Theory Decision Weights</td>
<td>327</td>
</tr>
<tr>
<td>a) Drawback: First-Degree Stochastic Dominance Violation</td>
<td>327</td>
</tr>
<tr>
<td>b) Some Advantages</td>
<td>329</td>
</tr>
<tr>
<td>9.6. Summary</td>
<td>330</td>
</tr>
<tr>
<td>10 Cumulative Decision Weights: No Dominance Violation</td>
<td>333</td>
</tr>
<tr>
<td>10.1. Introduction</td>
<td>333</td>
</tr>
<tr>
<td>10.2. Rank-Dependent Expected Utility</td>
<td>336</td>
</tr>
<tr>
<td>10.3. Cumulative Prospect Theory Decision Weights</td>
<td>340</td>
</tr>
<tr>
<td>10.4. The Value and the Decision Weight Functions as Suggested by Cumulative Prospect Theory</td>
<td>345</td>
</tr>
<tr>
<td>10.5. The Various Decision Weights: Formulas and Estimates</td>
<td>347</td>
</tr>
<tr>
<td>a) Left Tail Irrelevance</td>
<td>353</td>
</tr>
<tr>
<td>b) Cumulative Prospect Theory's Unreasonable Decision Weights: The Equally Likely Outcome Case</td>
<td>354</td>
</tr>
<tr>
<td>c) Irrelevancy of the Alternative Prospects</td>
<td>356</td>
</tr>
<tr>
<td>10.6. The Suggested Prospect-Dependent Decision Weights Model</td>
<td>357</td>
</tr>
<tr>
<td>10.7. First-Degree Stochastic Dominance Violations Due to Bounded Rationality</td>
<td>366</td>
</tr>
<tr>
<td>10.8. Summary</td>
<td>370</td>
</tr>
<tr>
<td>11 The Mean-Variance Rule, the Capital Asset Pricing Model, and the Cumulative Prospect Theory: Coexistence</td>
<td>372</td>
</tr>
<tr>
<td>11.1. Introduction</td>
<td>372</td>
</tr>
<tr>
<td>11.2. Gains and Losses Versus Total Wealth</td>
<td>374</td>
</tr>
<tr>
<td>a) The Wealth Effect on the Mean-Variance Efficient Frontier</td>
<td>375</td>
</tr>
<tr>
<td>b) The Wealth Effect on the Capital Asset Pricing Model</td>
<td>378</td>
</tr>
<tr>
<td>11.3. Risk Aversion Versus the S-Shape Value Function</td>
<td>380</td>
</tr>
<tr>
<td>a) Diversification Is Not Allowed</td>
<td>380</td>
</tr>
<tr>
<td>b) Diversification between Risky Assets Is Allowed</td>
<td>383</td>
</tr>
<tr>
<td>c) Diversification Is Allowed and a Riskless Asset Exists</td>
<td>390</td>
</tr>
</tbody>
</table>
Contents

11.4. Cumulative Decision Weights, Mean-Variance, and the Capital Asset Pricing Model 392
 a) S-Shape Preference with Objective Probabilities 393
 b) S-Shape Preferences with Monotonic Decision Weight Functions 394

11.5. Capital Asset Pricing Model within Expected Utility and within Cumulative Prospect Theory 396

11.6. Summary 401

References 405
Name Index 415
Subject Index 418
Modern finance is relatively new. Before the breakthrough “Portfolio Selection” article was published by Markowitz in 1952, research in finance was basically nonquantitative and the use of quantitative models in teaching and in research was rare. A glance at finance textbooks that were used in teaching before 1952 and textbooks that are currently used suffices to reveal the revolution induced in the finance profession by the publication of this 1952 Mean-Variance (M-V) article. The next revolutionary papers in portfolio selection and equilibrium pricing were published by Sharpe, Lintner, and Black in 1964, 1965, and 1972, respectively. These three papers use Markowitz’s M-V model as a springboard in developing equilibrium prices of risky assets in the capital market and in identifying beta rather than sigma as the risk measure of an individual asset in a portfolio context. The model developed by Sharpe and Lintner, known as the Capital Asset Pricing Model (CAPM), is used in virtually all research studies that deal with risk and return and occupies a substantial portion of textbooks on investments and corporate finance.

The other pillars of modern finance are the papers published by Modigliani and Miller in 1958, which focus on the optimal capital structure, and the two breakthrough papers published by Black and Scholes and by Merton on option pricing in 1973. No wonder Markowitz, Sharpe, Scholes, Merton, Modigliani, and Miller have all been awarded the Nobel Prize in Economics for their revolutionary contributions (the other researchers mentioned were not alive in relevant years when the prizes were awarded). Because this book focuses on portfolio selection and the CAPM, we mainly discuss and analyze
Preface

the contributions of Markowitz, Sharpe, Lintner, and Black to the financial literature.

The publication of the Prospect Theory (PT) article by Kahneman and Tversky in 1979, for which Kahneman won the Nobel Prize in Economics in 2002, has shaken the foundations of the Expected Utility Theory (EUT); and, as the M-V framework and the CAPM have been developed within the EUT framework, PT indirectly has also shaken the foundations of these two models.

PT’s criticism of EUT is based on experimental findings. Additional criticism of the CAPM is based on empirical findings, showing that beta has very little or even no explanatory power at all. Leading this criticism is the 1992 empirical study of Fama and French, revealing that the coefficient of the CAPM’s beta is statistically insignificant; hence, in contradiction to the CAPM, beta does not explain the cross section of stock returns. Therefore, this finding allegedly casts doubt on the validity of beta as a measure of risk.

Thus, we have the M-V and the CAPM, which are widely used in teaching, in research, and by practitioners on the one hand, and PT’s experimental findings and empirical studies that criticize these two models on the other hand. Because PT has been known since 1979 and the empirical studies that criticize the M-V and the CAPM models have also been known for decades, one must wonder why academics as well as professional investors keep adhering to the M-V and the CAPM and why virtually all curriculums in finance still heavily rely on these two models. We devote this book to this question. We show that PT and M-V and the CAPM can coexist, even though PT and EUT cannot. We also show that although the CAPM is rejected with ex-post parameters, it cannot be rejected with ex-ante parameters.

We hope that after reading this book, professors of finance can comfortably teach the M-V and the CAPM, as well as the behavioral PT model, as we show that there is no contradiction between these two frameworks. Also, this book provides a somewhat different interpretation of the CAPM’s empirical studies, which, in a nutshell, asserts that the M-V and the CAPM cannot be rejected with the ex-ante parameters. Similarly, professional investors and consulting firms can continue relying on the M-V and the CAPM models, although some modifications may be needed.
In this book, we present all the material needed to achieve the integration of the M-V, CAPM, and Cumulative PT (CPT). For example, EUT and stochastic dominance rules are discussed, as we employ both to show that the M-V and the CAPM do not contradict CPT. Of course, we could refer the reader to this material in other books or articles but, to facilitate the reading of this book, we prefer to have all the relevant material contained in one place. The same principle is valid regarding PT and CPT material needed to prove that the behavioral model and the classical portfolio models can coexist. Finally, although we rely on the CPT, which is the modified version of PT, realizing the growing role of behavioral finance in recent years, we also devote a chapter to the original PT.

This book is mainly written for professors of finance and professional investors who use the M-V framework and the CAPM and who are also certainly aware of the criticisms of these two models. We hope that this book will resolve some conflicts and increase their confidence in the employed models. The book can be used in advanced courses in economics and finance and in Ph.D. classes in these two areas.

The book could not achieve its present form and level without the help of many people. I would like to thank Turan Bali, Rob Brown, Harry Markowitz, Richard Roll, William Sharpe, Jim Yoder, and an anonymous reader for their many helpful comments. It is a pleasure for me to thank Moshe (Shiki) Levy and Michal Orkan, who read the whole manuscript and provided me with many detailed comments.

Finally, I would like to thank Scott Parris and Adam Levine at Cambridge University Press and Peggy Rote at Aptara, Inc., for their great assistance in making writing and producing this book a pleasure.