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Hydrodynamics of a one-component classical fluid

1.1 Thermodynamics of a one-component perfect fluid

In the strict sense of the word, hydrodynamics describes the dynamical behaviour of a fluid.
But sometimes the hydrodynamical approach refers to phenomenological theories dealing
with various types of condensed media, such as solids, liquid crystals, superconductors,
magnetically ordered systems and so on. Two important and interconnected features char-
acterise the hydrodynamical description.

• It refers to spatial and temporal scales much longer than any relevant microscopical scale
of the medium under consideration.

• It does not need the microscopical theory for derivation of dynamical equations but
uses as a starting point a set of conservation laws and thermodynamical and symmetry
properties of the medium under consideration.

The latter feature gives us the possibility to study condensed matter without waiting for the
moment when a closed self-consistent microscopical theory is developed. Sometimes it can
be a long time to wait for such a moment. For example, one may recall the microscopical
theory of fluid with strong interactions, or as the latest example the microscopical theory
of high-Tc superconductivity. In fact, the cases when the hydrodynamical description can
be derived rigorously from the ‘first-principle’ theory are more the exceptions rather than
the rule. Such exceptions include, for example, weakly non-ideal gases and weak-coupling
superconductors. Even if it is possible to derive the hydrodynamical description from the
microscopical theory, the former as based on the most global properties (conservation laws
and symmetry) is a reliable check of the microscopical theory. If hydrodynamics does not
follow from a microscopical theory this is an alarming signal of potential problems with
the microscopical theory.

Impressive evidence of the fruitfulness of the hydrodynamical (phenomenological)
approach to condensed matter physics is provided by the volumes of Landau and Lifshitz’s
course addressing continuous media: Electrodynamics of Continuous Media, Theory of
Elasticity, and Fluid Mechanics (Landau and Lifshitz, 1984, 1986, 1987). The hydrody-
namical approach was very fruitful also for studying properties of rotating superfluids, as
will be demonstrated in this book. The hydrodynamical description always deals with the
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2 Hydrodynamics of a one-component classical fluid

continuous medium even if the medium under consideration is a lattice (an atomic lattice in
elasticity theory, for example). Indeed, the lattice constant is a microscopical scale which
should be ignored in accordance with the nature of the hydrodynamical description. As a
result, the hydrodynamical theories reduce to continuous field theories, and this similarity
stimulated and is stimulating a useful exchange of ideas between condensed matter physics
and field theory.

The basic idea of the hydrodynamical description is that any small volume of the fluid
(small with respect to the hydrodynamical scales, but large with respect to any microscopi-
cal scale!) is in a state near to equilibrium described by thermodynamics, and we start from
a discussion of the thermodynamics of the fluid.

The equilibrium state of any condensed medium, however complicated its microscopical
properties, can be described by a few thermodynamical variables. Their number depends
on the nature and symmetry of the condensed matter under consideration. The simplest are
one-component fluids and gases, characterised by the highest symmetry and the minimal
number of variables. The state of a resting one-component fluid (gas) in a very large
volume V is completely defined by the mass and entropy density ρ and S. The energy
density E0 (the subscript 0 points out that a resting fluid is considered) as well as other
thermodynamical parameters are functions of ρ and S. The surface effects are neglected,
and the total mass M = ρV , the total entropy S = SV , and the total energy E0 = E0V are
proportional to the volume V . For the energy density differential one has the Gibbs relation

dE0 = μ0dρ + T dS, (1.1)

where the chemical potential μ0 and the temperature T are partial derivatives of the energy
density:

μ0 = ∂E0

∂ρ
, T = ∂E0

∂S
. (1.2)

Two contacting fluids are in equilibrium if their chemical potential and temperature are
equal. It is often more convenient to use other pairs of variables rather than ρ and S. Cor-
respondingly, a different thermodynamical potential other than the energy should be used
to describe the equilibrium state (ensemble). This arises from the Legendre transformation.
Choosing the mass density ρ and the temperature T as thermodynamical variables, the
thermodynamical potential is the Helmholtz free energy for the canonical ensemble with
density F0(ρ, T ) = E0 − T S, which has the differential

dF0 = d(E0 − T S) = μ0dρ − SdT . (1.3)

The great canonical ensemble is defined by μ0 and T and the thermodynamical potential is
the pressure

P = −E0 + μ0ρ + T S. (1.4)
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1.1 Thermodynamics of a one-component perfect fluid 3

Equation (1.4) together with Eq. (1.1) gives the Gibbs–Duhem relation for the pressure
differential:

dP = ρdμ0 + SdT . (1.5)

The pressure is directly connected with the mechanical work performed by an expanding
fluid. Small work for a small adiabatic variation δV of the volume is

δA = −dE0

dV
δV . (1.6)

On adiabatic expansion the total mass and entropy are conserved, and the derivative
dE0/dV is calculated at fixed total mass ρV and total entropy SV . Therefore

∂ρ/∂V = −ρ/V , ∂S/∂V = −S/V . (1.7)

Then using Eq. (1.1) one obtains:

dE0

dV
= d(E0V )

dV
= E0 + dE0

dV
V

= E0 + V

(
μ0

dρ

dV
+ T

dS

dV

)
= E0 − μ0ρ − T S. (1.8)

Comparing this with Eq. (1.4) we find that the pressure

P = −∂E0

∂V
(1.9)

determines the adiabatic work δA = PδV indeed. If the fluid is moving with the centre-of-
mass velocity v, its momentum density or mass current is j = ρv while the fluid energy
density is

E = E0 + ρv2/2 = E0 + j2/2ρ. (1.10)

The differential of the energy density is

dE = μjdρ + T dS + v · dj (1.11)

if the mass current j = ρv is used as a hydrodynamical variable. Here the chemical
potential μj at fixed j is connected with the chemical potential μ0 of the resting fluid
by the relation

μj = μ0 − v2/2. (1.12)

Calculating the pressure from the energy of the moving fluid, the total momentum jV of
the fluid is kept fixed and

∂j/∂V = −j/V . (1.13)

Then

P = −∂E/∂V = −E + μjρ + T S + v · j = −E0 + μ0ρ + T S, (1.14)
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4 Hydrodynamics of a one-component classical fluid

and the Gibbs–Duhem relation becomes

dP = ρdμj + SdT + j · dv = ρdμ0 + SdT . (1.15)

So the pressure and the Gibbs–Duhem relation are not affected by the fluid motion.
Instead of j one may also choose the velocity v as a thermodynamic variable describing

fluid motion. Then

dE = μdρ + T dS + j · dv, (1.16)

and the chemical potential is

μ = μ0 + v2

2
. (1.17)

The pressure and the Gibbs–Duhem relation in this case also reduce to those in the coordi-
nate frame where the fluid is at rest [Eqs. (1.14) and (1.17)].

1.2 Hydrodynamics of a one-component perfect fluid

In the hydrodynamical theory the thermodynamical variables (the chemical potential and
the temperature) are not constant in general but vary smoothly in space and time. Instead
of a tremendous number of microscopical variables (coordinates and velocities of atoms or
their wave functions in the quantum mechanical description) one is dealing with continuous
classical fields of a few thermodynamical variables describing the dynamical behaviour
of the condensed medium. For a one-component perfect fluid, these are the mass density
ρ(R, t), the entropy density S(R, t), and the mass current j(R, t). Since they are slowly
varying functions of the three-dimensional position vector R and the time t , for their
local values one may use the thermodynamical relations given in the previous section.
Hydrodynamical equations are derived from conservation laws. We follow the procedure
described by Landau and Lifshitz (1987). A conservation law for some quantity means that
the variation of its density in time at a given point in space is due only to flows from other
parts of space. The mass conservation law gives the mass continuity equation

∂ρ

∂t
+ ∇ · j = 0. (1.18)

There are conservation laws for the linear momentum,

∂ji

∂t
+ ∇j�ij = 0, (1.19)

and for the energy,

∂E

∂t
+ ∇ · Q = 0, (1.20)
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1.2 Hydrodynamics of a one-component perfect fluid 5

where �ij is the momentum flux tensor and Q is the energy flux. For a perfect (inviscid)
fluid the total entropy is also conserved. This leads to the continuity equation for entropy

∂S

∂t
+ ∇ · J S = 0. (1.21)

Here J S is the entropy flux.
All equations, the conservation laws included, must be invariant for any inertial coor-

dinate frame (Galilean invariance). Suppose that there are two inertial coordinate systems
R, t and R′, t ′, the latter moving with the relative velocity w:

R = R′ + wt ′, t = t ′, v = v′ + w. (1.22)

Then the time and space derivatives in the two frames are connected by the relations:

∂

∂R
= ∂

∂R′ ,
∂

∂t
= ∂

∂t ′
−

(
w · ∂

∂R′
)

. (1.23)

Transforming the conservation laws (1.18)–(1.21) to the coordinate frame (R′, t ′) with the
help of Eqs. (1.22) and (1.23), we see that the equations are invariant (do not change their
form) if the flows are transformed as

j = j ′ + ρw, (1.24)

J S = J ′
S + Sw, (1.25)

�ij = �′
ij + j ′

iwj + wij
′
j + ρwiwj , (1.26)

Qi = Q′
i + E′wi + wj(�

′
j i + j ′

jwi)+ w2

2
(j ′
i + ρwi). (1.27)

For the one-component isotropic fluid the only vector at our disposal is the velocity v

(or the current j parallel to v) and there are no tensors besides δij and vivj . One can check
that the system of equations is Galilean invariant and all conservation laws are satisfied if
the fluxes are given by the following expressions (Landau and Lifshitz, 1987):

�ij = Pδij + ρvivj , (1.28)

J S = Sv, (1.29)

Q = [ρ(μj + v2)+ T S]v =
[
ρ

(
μ0 + v2

2

)
+ T S

]
v. (1.30)

The Euler equation follows directly from the mass continuity equation and the momen-
tum conservation law:

∂v

∂t
+ (v∇)v = −∇P

ρ
. (1.31)

The vector identity

(v∇)v = ∇ v2

2
+ [[∇ × v] × v] (1.32)
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6 Hydrodynamics of a one-component classical fluid

transforms the Euler equation into another form:

∂v

∂t
+ [ω̃ × v] = −∇P

ρ
− ∇ v2

2
. (1.33)

Here ω̃ = [∇ × v] is the vorticity of the velocity. Later on in this chapter we neglect the
temperature variation or consider the case T = 0. Then using the Gibbs–Duhem relation
(1.5) at zero temperature, the Euler equation becomes

∂v

∂t
+ [ω̃ × v] = −∇

(
μ0 + v2

2

)
. (1.34)

On the right-hand side one sees the chemical potential μ [see Eq. (1.17)] for the fluid
moving with velocity v.

Let us discuss now the angular momentum (moment) conservation law. For an isotropic
fluid, which consists of particles without internal degrees of freedom, i.e., without intrinsic
angular momentum, the moment density M is not an independent variable, but is directly
determined by the linear momentum density j :

M = [j × R]. (1.35)

Then

∂Mi

∂t
= εijk

∂jj

∂t
Rk = −εijk∇n�jnRk = −∇n(εijk�jnRk)+ εijk�jk . (1.36)

For any symmetric momentum flux tensor �ij this equation takes the form of the conser-
vation law,

∂Mi

∂t
+ ∇nGin = 0 (1.37)

with the angular momentum flux tensor

Gin = εijk�jnRk . (1.38)

For an isotropic fluid the tensor �ij is symmetric indeed, as seen from Eq. (1.28).
Usually when deriving hydrodynamics one starts from the Euler equation and checks the

momentum conservation law afterwards. We have shown here the opposite direction since
it will be helpful for understanding two-fluid hydrodynamics. But it is useful to reproduce
here the usual derivation also. One starts from Newton’s second law for the unit volume of
the fluid, which is

ρ
dv

dt
= f . (1.39)

The force f per unit volume (the force density) is defined by the stress tensor,

fi = −∇j σij , (1.40)

which is a scalar for the isotropic fluid:

σij = Pδij . (1.41)
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1.3 Motion of a cylinder in perfect fluid: backflow 7

The time derivative dv/dt in Eq. (1.39) is a substantial derivative in the Lagrange
description of fluid dynamics (Batchelor, 1970). The velocity is considered as a Lagrange
variable: taking the Lagrange (substantial) derivative one looks for a difference of two
velocities of the same fluid particle in two instants of time at which, because of its motion,
the particle is located in different points in space. On the other hand, the partial time
derivative ∂v/∂t in the Euler equation (1.31) is a derivative in the Euler description: taking
the time Euler derivative one compares velocities of two different particles, which at two
instants of time were located at the same point of space. The two derivatives are connected
by the relation

dv

dt
= ∂v

∂t
+ (v · ∇)v. (1.42)

As a result Eqs. (1.39)–(1.42) give the Euler equation Eq. (1.31).

1.3 Motion of a cylinder in an incompressible perfect fluid: backflow

We address an elementary problem of classical hydrodynamics considered in numerous
textbooks: motion of a cylinder immersed in a perfect incompressible fluid. The problem is
important for the analysis of vortex dynamics later in the book. Classic hydrodynamics tells
us that a moving cylinder of radius R0 induces a dipole velocity field around it (backflow):

V bf (r) = ∇�bf = −R2
0

[
vbf

r2 − 2(vbf · r)r

r4

]
. (1.43)

Here �bf = −R2
0vbf · r/r2 is the scalar velocity potential, the velocity vbf is a constant

which determines the backflow intensity, and r is a two-dimensional position vector normal
to the cylinder axis (the axis z) with an origin at this axis. The velocity field of the backflow
is shown in Fig. 1.1a.

The presence of backflow makes it possible to satisfy a natural condition that in the
coordinate frame with velocity vL of the cylinder, a current normal to the cylinder boundary
must vanish. Suppose that far from the cylinder the fluid moves with velocity v∞. Then
the total fluid velocity field around the cylinder is v∞ + V bf (r), and the radial current
ρ[v∞ + V bf (r)− vL] · r/r vanishes at r = R0 if vbf = vL − v∞. The kinetic energy of
the backflow in the coordinate frame moving with fluid velocity v is given by

μa
(vL − v∞)2

2
= ρR4

0

2

∫
r>R0

dr2
∣∣∣∣∇

[
(vL − v∞) · r

r2

]∣∣∣∣
2

= πR2
0ρ
(vL − v∞)2

2
. (1.44)

This determines the mass μa = πR2
0ρ per unit length, which is equal to the mass per unit

length of the fluid inside a cylinder of radius R0. It is called the associated mass since this
mass must be added to the mass of the cylinder itself when determining the kinetic energy
of a moving cylinder.

The associated mass must be connected with an additional momentum of the fluid
dragged by the moving object. The calculation of this momentum has a subtlety which is
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8 Hydrodynamics of a one-component classical fluid

(a)

(b)

Figure 1.1 Cylinder of radius R0 moving through a resting fluid with the velocity vL. (a) Velocity
field of the backflow around the cylinder. (b) The cylinder moves in a straight channel with periodic
boundary conditions at its ends.

well known in classical hydrodynamics. The momentum of the perfect fluid with potential
velocity field v(R) = ∇�(R) is determined by an integral, which after integrating by parts
reduces to a surface integral over a surface S confining the fluid:

P = ρ

∫
v(R) dR = ρ

∫
∇�(R) dR = ρ

∫
S

�dS. (1.45)

Here dS is a vector with magnitude equal to the element dS of the surface area and directed
normally to the surface outside the bulk occupied by the fluid. In the case of backflow, the
surface S consists of the surface of the cylinder of radius R0 and the surface S∞ confining
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1.3 Motion of a cylinder in perfect fluid: backflow 9

the fluid at large distance from the cylinder. The momentum per unit length of the cylinder is

P = ρ

∫
∇�bf (r) dr = ρ

⎛
⎜⎝ ∫
r=R0

�bf dS +
∫
S∞

�bf dS

⎞
⎟⎠ . (1.46)

This expression cannot define the momentum as long as the integral over S∞ is undefined.
Classical hydrodynamics (Lamb, 1997) tells us that the integral over S∞ must simply be
deleted from the expression. The remaining integral over the surface of the cylinder is called
the Kelvin impulse:

PK = ρ

∫
r=R0

�bf dS = μavbf . (1.47)

In classical hydrodynamics the Kelvin impulse is justified by considering the momentum
transferred to the object when making it move from rest (see Lamb, 1997, Sec. 119). Forces
which make the object move from the state of rest are applied locally and do not affect
the velocity and the velocity potential in the fluid far away from the object. This justifies
ignoring the integral over S∞ in the expression (1.46) for the momentum. The derivation in
fact assumes that there is finite compressibility of the fluid and the momentum transferred
to the fluid locally is not distributed over the whole fluid instantly.

In superfluid hydrodynamics one can justify using the Kelvin impulse in a simpler
way (Sonin, 1973). In superfluids the velocity potential � = h̄θ/m is determined by the
quantum mechanical phase θ of the condensate wave function (see Section 1.15). Let us
consider a cylinder moving in a straight channel with periodic boundary conditions at its
ends (Fig. 1.1b). The surface S∞ contains lateral walls of the channel and cross-section
planes at channel ends. Since there is no flow normal to the lateral walls, only the channel
ends contribute to the momentum component along the channel. The periodic boundary
condition requires that the phase difference at the channel ends is an integer number of 2π .
In the absence of an essential transport current along the channel, the phase difference must
vanish. Then the whole contribution of the surface S∞ to the momentum also vanishes.
This example of rather simple geometry illustrates the general rule that local perturbations
of the velocity field cannot change the phase at infinity. On the other hand, motion of an
object through an incompressible perfect fluid inevitably leads to a very small but still
finite velocity at infinity. The finite momentum of the fluid dragged by the moving object
means that that the whole fluid moves with average velocity P /ρV inversely proportional
to the volume V . The fluid moves with this velocity at the entrance to and the exit from
the channel shown in Fig. 1.1b. This tiny velocity integrated over the whole volume gives
a contribution of the same order as the momentum P . According to Fig. 1.1a, the fluid in
the backflow area around the cylinder moves in the direction opposite to the direction of
the cylinder velocity vL. Nevertheless, at large distance from the cylinder the fluid moves
with small average velocity in the same direction as the cylinder.
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10 Hydrodynamics of a one-component classical fluid

Although external forces are necessary in order to make an object move through a perfect
fluid, no force is needed to support steady translational motion of the object. The latter
moves without any resistance. In classical hydrodynamics this was called d’Alembert’s
paradox (Landau and Lifshitz, 1987), since it was in evident contradiction to real obser-
vations. Resolution of this paradox in classical hydrodynamics is quite evident: in a real
fluid one cannot neglect viscosity (see Section 1.8 addressing motion of a cylinder through
a viscous fluid). But for superfluids, d’Alembert’s paradox ceases to be a paradox. It is a
real observed phenomenon: at low velocities objects move through a superfluid without
dissipation and without generation of vorticity. So in a sense d’Alembert’s paradox is a
precursor of the phenomenon of superfluidity.

1.4 Motion of a cylinder in an incompressible perfect fluid: Magnus force

A transverse force normal to the velocity of a moving cylinder appears even in a perfect
fluid if there is a circular flow around the cylinder. The velocity field of the circular flow is

vv = [κ × r]
2πr2 , (1.48)

where the vector κ is parallel to the z axis. Its magnitude is the circulation of the velocity
given by the linear integral κ = ∮

vv · dl over any closed path around the cylinder. In
superfluids the circulation can only have special quantised values, whereas in classical
fluids κ is arbitrary. In addition to the circular flow around the cylinder, there is a fluid
current past the cylinder with constant velocity v∞ (Fig. 1.2a). Then the net velocity field is

v(r) = vv(r)+ v∞. (1.49)

Streamlines of this velocity field are shown in Fig. 1.2b. Here we ignore the backflow
around the moving cylinder, which has no contribution to the transverse force. The cylinder
moves with a constant velocity vL, and one should replace the position vector r in the
coordinate frame moving together with the cylinder by r − vLt . Then the time derivative
of the velocity is

∂v

∂t
= −(vL · ∇)v. (1.50)

In the coordinate frame moving with the cylinder, the velocity field does not vary in time,
and the Euler equation (1.33) yields the Bernoulli law, which determines the pressure
variation around the moving cylinder:

P = P0 − ρ[v(r)− vL]2

2
= P ′

0 − ρvv(r)
2

2
− ρvv(r) · (v∞ − vL). (1.51)

Here P0 and P ′
0 = P0 − 1

2ρ(v∞ − vL)
2 are constants, which are of no importance for

the further derivation. Figure 1.2b shows that due to superposition of two fluid motions
given by Eq. (1.49), the velocity above the cylinder is higher than that below the cylinder.
According to the Bernoulli law, the pressure is higher in the area where the velocity is
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