Index

Page numbers in italics refer to figures and tables.

Acasta Gneiss, 52
accretion heating, 205
acetylene, 189–90
Achaean era, 188
Acidiphilium spp, 160
Acidithiobacillus ferrooxidans, 160
Acidobacteria, 160
Acinetobacter, 160
Adenine, 159
Adenosine triphosphate (ATP), 49, 50, 136
Aeromonas, 160
aerosols (tholins), on Titan, 187, 188, 190, 192, 194
Africa, 53, 55, 95, 100, 107, 119, 126
Akilia island, 92, 95, 108
albedo, 121n, 242, 270
ALFA feed array, 294
algae, 122, 165
photosynthetic, 160
ALH84001 (Martian meteorite), 7, 17, 35–7, 35
alkalinity, 8
Allan Hills Meteorite (ALH84001), 7, 17, 35–7, 35
Allen, Paul, 295
Allen Telescope Array (ATA), 18, 295–7, 296, 299, 301, 302–3
Alpha Centauri B, 234
altimeters, 182, 183, 185
Altman, S., 62
aluminum, 205
Amazonian (cold and dry) Period, 158, 172
earth analogs for, 162–5
amino acids, 49
as biomarker, 25
in meteorites, 64
synthesis of, 12, 49, 59
ammonia, 120, 125, 192–3, 205, 214, 216–17, 219
ammonia hydrates, 204, 208
anaerobic metabolism, 123–5, 141
analysis, in life theory formation, 28, 31
Andes Mountains, 163, 164
animals:
foundation for evolution of, 135, 143, 144
macroscopic, 143–5
antarctica, 162, 173, 179
extreme environment of, 32, 48, 161
Mars meteorite in, 35–7
anthropomorphism, 266, 291
antibiotics, in search for non-standard life, 39
anti-greenhouse effect, 188–9
aragonite, 64
Archaea (domain), 12, 29, 57, 94, 122n, 123, 133, 160, 162, 164
metabolism in, 49, 58–9
Archean Eon, 12, 33, 54–5, 97, 118, 135, 159
evolution of habitability in, 115–28
fossils from, 102–3, 108
late, 134
Arecibo, Puerto Rico, observatory at, 294, 299, 303
Ariel, 203, 212
Aristotle, 291
Arthrobacter, 164
asteroid belt, 90, 205, 213, 221
asteroids: icy, 203–9
ingredients for habitability of, 204–9
missions to, 203–4
position and temperature of, 204
Index

property table for, 203
water on, 84, 201–9, 213–16

astrobiology:
aims of, 9, 18
breakthroughs in, 8–9
as discipline, 3
habitability as goal of, 288
history of, 6–9
and human culture, 18
and humility, 18–19
new synthesis in, 5–19
and origin of life, 11–13
questions proposed by, 6, 9
SETI and, 288
study week on, 3–4
use of term, 6, 9

astrometry planet search technique, 235
astronomers, astronomy, historical, 5, 6, 254–5
Atacama Desert, as Mars analog, 163–5, 163
atmosphere:
blurring effects of, 254, 271
as dynamic, 168
erosion of, 237
of Europa, 184
of exoplanets, 242–4, 266–80
of Mars, 158, 160–1, 165–73, 170
spectroscopic analysis of, 268
of Titan, 185, 186, 187–9, 192, 194
of transiting super-Earths, 243
atmosphere, Earth, 52, 63, 89, 109, 115, 185, 239–40
effect of early life on, 123–5
before GOE, 122–3
oxygen stabilization and regulations in, 136–8
postbiotic, 124
prebiotic, 124
and redox state, 122–8
vs. Mars, 168
weakly reduced, 123
see also Great Oxidation Event
atmospheric erosion, 237
Australia, 55, 92, 95, 100, 115, 159
cherts in, 98, 105, 106, 125
autotrophic metabolic pathways, 12
autotrophs (self-feeding), 48
Axel Heiberg Island, as Mars analog, 161, 162
Azua-Bustos, Armando, 157–73
Bacillus, 164
bacteria:
foveal record of, 132
in Mars analogs, 162–4
metabolism in, 58–9, 60
microaerophilic, 137
in Proterozoic oceans, 138–9, 141
Bacteria (domain), 12, 57, 122n
metabolism in, 49
banded iron formations (BIF), 55, 56, 121, 135–6
Baross, John, 5–19
Beacon Valley, as Mars analog, 161, 162, 165
Beggle, HMS, 5, 17
Benner, Steven, 25–45
Benner laboratory, 43
Benz, Willy, 73–84
benzene, 187, 189, 190, 191
Berkner, L. V., 7
bilaterality, 145–6
biochemistry, unity of, 11
bio-cosmological principle, 266
biology, advances in, 9
biomarkers, 17
biosignature gasses, 239–41
biosignatures, 239–42
biosynthesis, 189
Black Cloud (character), 27–8
black shales, biomarkers in, 126–7
“boring billion,” 135, 139
bottom-up approach, 11, 12, 239
brain, 145
Brevibacillus, 164
brown dwarfs, 251
brucite, 64, 214
Buick, R., 135
Calamarians (characters), 27–8
calcium–aluminum inclusions, 205
California, University of, at Berkeley:
Radio Astronomy Laboratory at, 295
telescope at, 294–5
Callisto, 176, 178, 182, 192, 195, 250
Cambrian Period, 116
Campbelltown Rotary Observatory, 295
Canada:
glaciation in, 119
Mars analogs in, 159, 161
old rocks in, 52, 90, 92
Canali, 157
Canfield, Donald, 136, 138
carbohydrates, 25
carbon:
isotopes, 10, 102–3, 104, 139
carbon (cont.)
as life essential, 10, 13, 89, 100–1, 214, 241
in microbial metabolism, 54–5, 67, 96–7
organic, 121, 139, 142
in respiration, 121–2
carbonaceous “snowflakes,” 120
carbon dioxide, 13, 244, 271, 272, 274
as carbon source, 12
in Earth’s atmosphere, 91, 120–1, 139–40, 267
in Mars atmosphere, 165, 168–71, 172
carbon fixation, 54, 67
Carboniferous Era, 159
Cassini Composite Infrared Spectrometer, 191
Cassini–Huygens mission, 8, 185, 186, 187, 189, 191, 192, 195–6, 212, 220
Cassini Imaging Science Subsystem (ISS), 187
Cassini Infr–Red Spectrometer, 212
Cassini Ion and Neutral Mass Spectrometer (INMS), 187, 191, 212, 220
Cassini Radio Science Subsystem, 193
Cassini/VIMS instrument, 189, 193
Castillo-Rogez, Julie, 201–22
catalysis, as life essential, 50
catalysts, in metabolism, 60–7, 65, 66
caves, as Mars analogs, 164–5
Cech, T. R., 62
cells:
formation of early, 94, 100–1
as foundation of life, 36
Cell Theory of Life, 36
Cellulomonas, 164
Cenozoic epoch, 96
Centaurs, 216
Central Bureau of Astronomical Telegrams, 301
Central Park, 117
Ceres, 218, 219, 220–1
habitability potential for, 202, 203, 213, 214, 215, 216
Charon, 201, 216, 218–19, 221–2
habitability potential of, 202, 203, 218, 219–22
chasmosolithic organisms, 103
chemical signatures, 10
chemical systems, as life essential, 27
cell theory: origins paradox in, 40–1
pre-biotic, 8, 39–41, 63–5
chemolithotrophs, 96–7, 97, 100, 104–5, 109, 161
chemoorganotrophs, 97, 100, 101, 105, 109
cherts, oxygen isotopes in, 116–17
“chicken and egg” problem, 40, 127
China, 142, 144
Chlorella, 160
CHNOPS (key elements for life), 180
Christalline Entity (character), 27
Christalline Entity (character), 27
cobalt, 13
collisions:
with Earth, 90
of landmasses, 52
in planet formation, 74–6, 83
Colour Peak, 161
comet, 90
in asteroid belt, 213
as building blocks for life, 11
commensal observations, 294–5
common ancestry, 31, 32, 39
complementarity, 41, 43–4, 42
conduction, 207–8
contamination, interstellar, 7
continents, 95
convection, 207–9, 215
mobile-lid, 212
Clarke, Arthur C., 18, 292
Class III habitats, 176, 176, 180, 196
Europa as potential, 180–1
Class IV habitats, 176, 176, 177, 196
clathrate hydrates, 204–5, 212, 214, 219, 221
clays, as catalysts in origin of life, 13, 64
Cleland, C. E., 10
climate:
in Archean Eon, 116–22, 125
of Mars, 169, 172–3
in Proterozoic, 139–41
Clinton, Bill, 8
Clostridium, 160
clouds, 242, 274
cnidarians, 145
coal beds, 51
Coastal Mountain Range, 163, 164
cobalt, 13
Cocconi, Giuseppe, 287
collisions:
with Earth, 90
of landmasses, 52
in planet formation, 74–6, 83
Colour Peak, 161
comet, 90
in asteroid belt, 213
as building blocks for life, 11
commensal observations, 294–5
common ancestry, 31, 32, 39
complementarity, 41, 43–4, 42
conduction, 207–8
contamination, interstellar, 7
continents, 95
convection, 207–9, 215
mobile-lid, 212
<table>
<thead>
<tr>
<th>Copernican Principle, Copernican revolution, 16, 245–6, 289, 301</th>
<th>De Duve, C., 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copernicus, Nicolaus, 245</td>
<td>deep hot biosphere, 38</td>
</tr>
<tr>
<td>Copley, Shelley, 48–67</td>
<td>Deinococcus radiodurans, 99</td>
</tr>
<tr>
<td>copper, 13</td>
<td>deoxyribose nucleic acid (DNA), 11, 62, 122</td>
</tr>
<tr>
<td>corals, 145</td>
<td>complementarity in, 41, 43–4</td>
</tr>
<tr>
<td>coronographs, 245, 256, 270</td>
<td>GACTZP, 44–5</td>
</tr>
<tr>
<td>corotation (zeroth order) resonance, 78–9</td>
<td>in LUCA, 58–9</td>
</tr>
<tr>
<td>CoRoT (CNES) missions, 197, 254, 262</td>
<td>as molecular genetic system, 26, 27, 29</td>
</tr>
<tr>
<td>CoRoT-7b (planet), 254, 262, 269</td>
<td>polymerses, 44</td>
</tr>
<tr>
<td>Cosmic Vision Plan, 195</td>
<td>and protein production, 40</td>
</tr>
<tr>
<td>Coustenis, Athena, 175–97, 202</td>
<td>sequencing, 30</td>
</tr>
<tr>
<td>crater-counting, 183</td>
<td>stability of, 38</td>
</tr>
<tr>
<td>crater relaxation, 210</td>
<td>synthetic, 41, 43–4</td>
</tr>
<tr>
<td>cratons, 52</td>
<td>Derry, L. A., 142</td>
</tr>
<tr>
<td>formation of, 133–4</td>
<td>Desch, S. J., 217, 219</td>
</tr>
<tr>
<td>Crick, F. H. C., 41, 42, 43</td>
<td>deserts: life in, 164, 172</td>
</tr>
<tr>
<td>crust, Earth’s, 52, 91–2</td>
<td>on Mars, 172</td>
</tr>
<tr>
<td>cryogenic biospheres, 289</td>
<td>oldest, 163</td>
</tr>
<tr>
<td>cryovolcanism, 190–1, 193, 209, 214, 217, 219</td>
<td>Desulfoasporusinus, 160</td>
</tr>
<tr>
<td>crystals, oldest, 92</td>
<td>deuterium, 251</td>
</tr>
<tr>
<td>Cyanidium, 160, 164</td>
<td>diagenesis, 116</td>
</tr>
<tr>
<td>cyanobacteria, 125, 126, 127, 133, 134, 141, 142, 162, 164</td>
<td>diamicrite, 117</td>
</tr>
<tr>
<td>Cyclops Report, The, 292</td>
<td>differentiation, 108</td>
</tr>
<tr>
<td>Darwin, Charles: voyage of, 5–6, 17, 18</td>
<td>diffusion-limited rate, 123</td>
</tr>
<tr>
<td>see also evolution, Darwinian: natural selection</td>
<td>Digital Speedometer exoplanet detector system, 295</td>
</tr>
<tr>
<td>Darwin mission, 245</td>
<td>dinitrogen, 185, 186</td>
</tr>
<tr>
<td>Davies, Paul, 25–45</td>
<td>Dione, 202, 203</td>
</tr>
<tr>
<td>Death Star, 76</td>
<td>diseases, 31</td>
</tr>
<tr>
<td>Debengda Formation, 142</td>
<td>dissolved inorganic carbon (DIC), 54</td>
</tr>
<tr>
<td>Decadal Survey, 194</td>
<td>Doppler method, 16, 182, 197, 233–4, 252, 264, 272, 300</td>
</tr>
<tr>
<td>Drake, Frank, 286, 287, 290</td>
<td>double helix, 41, 43–4</td>
</tr>
<tr>
<td>Drake equation, 287–91</td>
<td>Doushantuo Formation, 142, 144</td>
</tr>
<tr>
<td>complications and assumptions of, 288–9</td>
<td>Earth: as appropriate setting for life, 89–110, 216, 232, 291</td>
</tr>
<tr>
<td>formula for, 287–8</td>
<td>biological “Renaissance” of, 141–6</td>
</tr>
<tr>
<td>probabilities and predictions of, 289–91</td>
<td>climate history of, 116–22</td>
</tr>
<tr>
<td>drop stones, 117</td>
<td>composition of, 73</td>
</tr>
<tr>
<td>Drossart, P., 273</td>
<td>concept of habitability on, 92, 94</td>
</tr>
<tr>
<td>Dunaliella, 160, 165</td>
<td>early environment of, 89–110, 93, 97</td>
</tr>
<tr>
<td>Dune (Herbert), 172</td>
<td>evolution of habitability on, 115–28</td>
</tr>
<tr>
<td>dust, as building blocks for life, 11</td>
<td>as evolving planet, 132–47</td>
</tr>
<tr>
<td>dust analyzer, 183</td>
<td>expanding the definition of, 235–7</td>
</tr>
<tr>
<td>dwarf planets, 213, 216, 218–19, 269</td>
<td>extraterrestrial material imported to, 63–4, 67, 90</td>
</tr>
<tr>
<td>Earth: as appropriate setting for life, 89–110, 216, 232, 291</td>
<td>first billion years of, 48–67</td>
</tr>
<tr>
<td>as evolving planet, 132–47</td>
<td>geological “Dark Ages” period of, 133–4</td>
</tr>
<tr>
<td>as evolving planet, 132–47</td>
<td>geological “Middle Ages” period of, 134–41, 147</td>
</tr>
<tr>
<td>as evolving planet, 132–47</td>
<td>geological time scale of, 118</td>
</tr>
<tr>
<td>as appropriate setting for life, 89–110, 216, 232, 291</td>
<td>life on, see terrestrial life</td>
</tr>
<tr>
<td>as evolving planet, 132–47</td>
<td>Mars analogs on, 157–65</td>
</tr>
<tr>
<td>as evolving planet, 132–47</td>
<td>Mars system, 37</td>
</tr>
</tbody>
</table>
310 Index

Earth (cont.)
metabolism on, 48–67
microbial habitat of, 94–9, 98
perceived as exclusive domain of life, 5
spectra of, 240, 267
Titan compared to, 15, 185–6, 188–9, 190–1, 193–4, 196
topography of, 51–2
uniqueness of, 52
Venus vs., 232
Earth-like planets, 8, 9, 231–7, 262
candidates for, 238–9
definition of, 233, 237
detection techniques for, 233–5
finding biosignatures on, 239–45
incidence of, 238–9, 290
nomenclature associated with, 232
Earth twins (Earth analogs), 233, 244–5, 262
eclipses, 16, 234
Eemian Ice Drilling Project, 161, 162
Eemian Period, 162
Epsilon Eridani, 286
Equinox Mission, 220
Eris, 217
erosion, 102, 133
of Mars atmosphere, 171–2
error catastrophe, 61
ESA (European Space Agency), 184, 253, 264
European Extremely Large Telescope, 264
European Southern Observatory, 253, 264
European Space Agency (ESA), 184, 253, 264
exobiology, 7

Europa, 177, 218, 250
age of, 183–4
atmosphere of, 184
characterizing environments of, 185
habitability potential of, 176–7, 178, 179–85, 181, 183, 201, 202, 215, 216, 217
as large, icy satellite, 202
mapping seafloor of, 182–3
as potential Class III habitat, 180–1
proposed future mission to, 8, 181–5, 194–5
searching for biosignatures on, 185
subsurface ocean on, 8, 181–5
surface composition and chemistry, 183
surface/exosphere/magnetosphere interactions of, 184–5
surface morphology and dynamics of, 183–4
Titan compared to, 194
European Extremely Large Telescope, 264

exobiology, 7

Cambridge University Press
978-1-107-00641-6 - Frontiers of Astrobiology
Edited by Chris Impey, Jonathan Lunine and José Funes

© in this web service Cambridge University Press
www.cambridge.org
Exoplanet Characterization Observatory (EChO), 278, 279
Exoplanet Data Explorer, 258, 261
Exoplanet Orbit Database, 258, 261
exoplanet revolution, 268–9
exoplanets (extrasolar planets), 81, 82, 256, 258, 261
anticipated developments in search for, 263–4, 277–80
atmospheres of, 242–4, 266–80, 273
detection of, 8, 15–16, 76, 250, 251–6, 253
distant, massive, 257
distribution of parameters of, 258–9
diversity of, 256–60
eclipses on, 234
impediments in discovery of, 254, 258, 259, 260, 263–4
low mass, 260–4
molecular signatures in spectra of, 273–7
most Earth-like, 262
multi-planet systems of, 260–2
number of, 15, 16, 252
past, present, and future facilities in science of, 277
preliminary statistics for, 262–3
review of known, 250–64
searches for habitable, 231–46, 250–64
and terrestrial planet formation, 84
thermal and physical nature of, 254
exopolysaccharides (EPS), 160
expedition Fiord, 161
exploration:
and example of Earth, 29, 37–9
and example of Mars, 32–7
in life theory formation, 28, 30, 32–9
external occulter, 245
extrasolar planets, see exoplanets
extraterrestrial intelligence, search for, 3, 17–18
extraterrestrial life (ET):
communication with, 6
definitive signs of, 7, 16–18
extinct, 289
hypothetical non-water based, 189, 190
intelligent, 291
potential sites for, 14–16, 122, 288–9
primitive, 25–45
as radically different from terrestrial life, 6, 7, 9–10, 14–15, 19, 175, 189–90, 266–8
signals from, 292–3, 300–3
terrestrial life as model for, 10, 14, 19, 30–1, 146–7, 233
extraterrestrial life (ET), search for:
astrobiological basis of, 9
attempted communication in, 16, 286–303
challenges in, 17
compared to Darwin’s voyage, 5–6
Drake equation in, see Drake Equation
funding of, 8
null results of, 18, 286, 289–90
origins of terrestrial life in, 5, 9, 14
philosophical implications of, 6, 18–19
potential for colonization in, 289
SETI in, see Search for Extraterrestrial Intelligence (SETI)
social implications of, 6, 18, 301–2
strategies and search specifics in, 291–302
tools for, 292–3
extreme environments, 6, 9, 32, 94
desert, 164, 172
exploration approaches for, 38–9
of microbes, 48
on moons, 193
non-standard life in, 38
terrestrial adaptation to, 146
extremophiles, 287
limits of, 38
terrestrial, 6, 9, 14, 38, 291
water and, 15
Faint Young Sun, 119–22, 119–22, 158, 158, 169, 170
Fairén, A. G., 158, 217
Fennel, K., 127
fermentation, 125
Fermi, Enrico, 289
Firmicutes, 160, 164
Fischer Tropsch, 96
Fitz–Randolph telescope, 295
Flagstaff, Ariz., astrobiology symposium at, 7
“follow the energy” principle,
fossils, 30, 105, 142
animal, 51
biosignatures in, 103–4, 127, 141, 143–5
chemical components of, 100
eukarotic, 142–3
evidence of metabolism in, 100
extraction and identification of, 102–3
forests, 161
fuel, 121
history recorded in, 132–3, 159
living, 39
microbial, 53, 57–9, 67, 99–104
microorganic, 7, 35–6
mineral preservation process of, 101–2, 132
molecular, 57–9
molluscan, 116
physical structure of, 100–1
trace, 132
fractals, 120
fractionation, 10
"mass-dependent" vs. "mass-independent," 135
Frank, E. A., 204
frequency comb, 234
frequency compression, 293
freshwater environments, 141
Funes, José Gabriel, 4
fungal hyphae, 104
GACTZP synthetic genetic system, 44–5
Gaia mission (ESA), 269, 295
Gaidos, Eric, 132–47
galaxies, 231, 246
number of, 290
see also Milky Way galaxy
Galilei, Galileo, 250
Galileo spacecraft, 8, 176, 180, 182, 183
Gammaproteobacteria, 160, 161
Gamma Ray and Neutron Diffraction instrument, 221
gas Chromatograph and Mass Spectrometer (GCMS), 34, 35, 188, 191
gas giant planets, 16, 254, 257, 261, 269
formation of, 74, 76, 77, 79–83
habitatibity on moons of, 175–97, 176
low-mass planets vs., 263
moons of, 288–9
in rocky planet formation, 84
see also hot Jupiters; specific planets
Gaucher, E. A., 31
genes:
ancestral, 31
of LUCA, 59–60
in progenote, 60–1
sequencing, 31
"genes first" hypothesis, 64
genetic code:
in DNA, 12
proto-ribosomes in, 13
in RNA world, 11
genomes:
microbial metabolism recorded in, 51–67
replication errors in, 61
geological record, 30, 51–6, 90–1, 92, 94, 96, 100, 102, 109, 115–19, 132–3, 135
"gestaltian" issue, 10
Giant Magellan Telescope, 264
Gilmour, I., 219
GJ 436b (planet), 270
GJ 581d (planet), as potentially habitable, 269, 278
GJ 1214b (super-Earth), 269, 272
Glacial pavements, 117, 119
Glacial till, 117
Glaciation, 118
on Mars, 205
Paledroproterozoic, 117, 119, 125
Precambrian, 127–8
Proterozoic, 139, 140, 145
glomerate, 52
gravitational micro lensing, 235
gravity:
in planet formation, 75–6, 79, 80, 84
in planet migration, 78–80
Great Oxydation Event (GOE), 55–6
atmospheric composition before, 122–8
competing hypotheses for, 126–8, 134
consequences for life of, 134–6
"great silence," 18, 290
Green Bank, W.Va., 286, 287, 290
greenhouse effect, on Mars, 165–7, 168–70, 173
Index 313

greenhouse environment, 117, 120, 121n, 140, 160–1

greenhouse gases, 120–1, 123n, 125–6, 139–40, 170, 241

in GOE, 126

Greenland:

ice drilling in, 161, 162

old rocks in, 52, 90, 92, 95, 100, 101, 103, 104

Ground Penetrating Radar (GPR), 182

gypsum, 164

Gypsum Hill, 161

habitability, 209–19

criteria for, 175, 262, 269

of Earth, 92, 93, 94

of small bodies, 201–22

use of term, 92

habitable planets:

definition of, 232, 233

formation of, 83–4

SETI's catalog of, 295–7

habitable zones (HZ), 8, 175, 233, 235–7, 236, 253, 289, 290

definition of, 233

super-Earths close to, 262

Hadean Eon, 9, 52, 53, 102, 108, 118

Haldane, J. B. S., 63

Halley's Comet, 245

Hamamatsu fast photomultipliers, 297

Hand, K. P., 180

HARPS (ESO) survey, 197, 252, 253, 263–4

Harvard All-Sky Optical SETI Observatory, 298

Harvard University, OSETI at, 295, 297

Hat Creek Radio Observatory, 295

HAT-P-7b (planet), 270

haze:

organic, 120, 125

on Titan, 188–9

HD 10180 (star), 261

HD 40307 (star), 261

HD 69830 (star), 261

HD 97658 (planet), 278

HD 189733b (planet), 238, 243, 271, 272–4

HD 209458b (hot Jupiter), 254, 272, 274, 275

heat retention and transfer, 207–8

heavy metals, 159–60

helium:

-hydrogen fusion, 120, 250–1

in planet formation, 74, 253

hermitite, 160

Herbert, Frank, 172

Hesperian (volcanic) Period, 158, 167, 172

Earth analogs for, 160–2

heterotrophs

(“other”-feeding), 48, 164

high-resolution cameras, 184

Hill sphere, 79

Himalayas, 52

HNOPS (essential elements), 89, 94

Hooke, Robert, 36

hopanes, 101

horseshoe orbits, 78

hot Jupiters:

atmosphere of, 276

density of, 257, 274, 277

detection of, 243–4, 254, 257, 258–9, 269, 271, 272, 274

formation of, 81–2, 257, 269

orbits of, 81–3

Hoyle, Fred, 27

HR 8799 (star), 256, 256

Hsieh, H., 213

Hubble Space Telescope, 8, 74, 184, 221, 242, 243, 270, 271, 272

human beings:

connectedness of, 299

drive toward knowledge of, 5, 17

Huronian glacial interval, 119, 127

Huygens Aerosol Collector and Pyrolyzer (ACP), 188

Huygens Atmospheric Structure Instrument (HASI), 192

Huygens Descent Imager-Spectral Radiometer (DISR), 193

hydroxyl free radical, 127

hydrocarbons, 8, 189

hydrogen, 8, 13–14, 122, 126, 209, 286

atmospheric, 122–5, 260

in ET transmission, 286

-helium fusion, 120, 250–1

in planet formation, 74, 253

in respiration, 121–2

hydrogen bonding complementarity, 41, 43–4, 43

hydrogen cyanide, 189

hydrogen peroxide, 180

hydrogen sulfide, 13

hydrothermal systems, 13–14, 38, 48, 54, 61, 93, 97, 106, 117, 139, 215

on asteroids, 205–6, 208–9

on moons, 180–1, 193, 214

in origin of life, 63–5, 67, 92, 94, 96, 99, 159
hydroxyl radicals, 122
Hymenobacter, 164
IAU Telegrams, 301
Iberian Pyritic Belt, 159–60
ice, 8
on asteroids, 203–9
on larger planets, 76, 79
as Mars analog, 162, 165
on moons, 176–7, 178, 179
oldest known, 162
ice ages, see glaciation
icebergs, 117
ice cores, 162
ice giants, 77
advances in detection of, 260–3
ice house environment, 117, 140
icy satellites, habitability of, 176, 177, 209–13
impact erosion, 171
Impey, Chris, 5–19, 286–303
Infrared Interferometer Spectrometer (IRIS), 267
infrared light spectra, 180, 238, 240, 272–4, 275
Infrared Space Observatory, 191
INMS (Cassini Ion and Neutral Mass Spectrometer), 187, 191, 212, 220
intelligence, extraterrestrial, 3, 17–18, 25
intelligence, technological, 145, 146
intelligent design, 40
interferometers, 245, 256, 267
International Astronomical Union, 301
Internet, 301
invertebrates, marine, 137
ion mass spectrometers, 103
diversification of, 11, 133, 135, 143–5
early evolution of, 9, 11–13, 63–4, 99–109, 135
essentials for, 10, 13–14, 15, 26–7, 33–4, 89, 90, 94, 95, 100, 241
expanded view of requirements for, 241
future of, 9
historical context of, 30–2
key elements for (CHNOPS), 180
signatures of, 10, 16, 25
survival strategies for, 94
as system, 26
terracentric view of, 28, 33, 241
timing of, 100, 108
theory-based definitions of, 9–10, 25–45
two competing theories of, 63–4
light: curves, 273
as energy source, 6, 10, 48
infrared, 17
Lindblad resonances, 78
lipids, 101
biomarkers in, 133
lipid synthesis, 58
liquid water:
on Earth, 67, 89, 90, 92, 94, 115, 116
on Enceladus, 8, 212
on Europa, 182–3
in Hadean Eon, 52
on surface of Mars, 8
on Titan, 15
lithification, 102
lithopanspermia (transpermia), 37
Earth’s magnetic field:
Martian, 160–1
magnetite, 64, 121
magnetometers, 183
magnetospheric plasma, 184
Makemake, 203
Makganyene glaciation, 119, 119, 126, 128
manganese, 13
Manhattan, Dr. (character), 25
mantle, Earth’s, 89, 90, 91
Mariner spacecraft, 267
Mars, 74
atmosphere of, 158, 160–1, 165–73, 170, 191
attempts to detect life on, 7–8, 14, 17, 32–5, 110
Cauldron theory of, 172
conflicting views of, 158–9
crust of, 52
debate over life-detection on, 33–5, 172–3
doing habitability of, 157–73
early speculations about, 157
Earth analogs for, 162–5
–Earth system, 37
as example of life theory formation, 32–7, 38
extreme environment of, 32, 165–72
geological ages of, 157–65
human habitation on, 18
lack of plate tectonics on, 91
liquid water on, 8, 158–9, 160, 166–8, 169–71, 172–3
low gravity of, 171
meteorites from, 35–7
missions to, 267
<table>
<thead>
<tr>
<th>Page</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>316</td>
<td>Index</td>
</tr>
</tbody>
</table>

Mars (cont.)
- temperature on, 165–7, 166, 170
- see also Viking Mars mission
- "Mars as the Abode of Life" (Lowell), 157
- Mars environmental simulator, 162
- Mars Exploration rovers, 8
- Mars Global Surveyor orbiter, 8, 161, 166, 240
- Mars Odyssey orbiter, 8
- Mars Science Laboratory, 14
- mass fraction, 209, 210, 218
- mass–semi-major axis plot, 258–9, 258
- Mayor, Michel, 252, 269
- melting, 6
- melt layers, on Mars, 166–7
- Meridiani Planum, 160
- metabolism:
 - anaerobic, 123–5, 141
 - extant vs. early, 65–7
 - hydrogen-based, 8
 - as life essential, 33–5
 - proto, 12–13
 - in RNA world, 62–3
 - terran, 48–67, 49, 53, 65, 66
 - metabolism first hypothesis, 13, 64
- metamorphism, 133, 140
- meteorites, 30, 90
- amino acids in, 64
- as building blocks for life, 11
- "meter-sized barrier," 74–6
- as biomarker, 17, 161, 219, 221
- as greenhouse gas, 120, 122, 125–6, 140
- in hydrogen-based metabolism, 8
- on Mars, 8
- in methanogenesis, 123–5
- on Titan, 185–7, 188–90, 194, 195–6
- methane-based life, 189–90
- methanethiol, 241
- methanogenesis, 123–5, 140, 189, 240, 241
- methanol, 204, 214, 219, 241
- microbes:
 - as alien organism on Earth, 38–9
 - in Allan Hills Meteorite, 35–6
 - in Axel Heiberg Island, 161
 - early Earth environment of, 94–9, 98
 - fossilized, 53, 57–9, 67, 99–100
 - habitats of, 48, 139
 - hydrogen-based, 8
 - as majority terrestrial species, 38
 - survival strategies of, 48–51
- microbially induced sedimentary structures (MISS), 53, 67
- microbial mats, 53, 55, 97, 98, 99, 104, 105–8, 107, 109, 132, 142
- microbial metabolism, 48–67
- molecular fossil record of, 57–9, 100
- rock record of, 51–6
- microgradiometer, 183
- microorganisms, 9, 106
- chemoorganotrophic, 97, 99–100, 101
- traded between Earth and Mars, 37
- and UV radiation, 99
- mid-infrared (MIR) spectra, 240, 273–4, 275
- migration, 78–9, 80–2
- Milky Way galaxy:
 - age of, 286, 292, 299, 303
 - number of stars in, 296
 - possible planets in, 8, 231, 250, 252, 291
 - star formation in, 84
 - stars in, 73
 - universe beyond, 246, 290

Miller, Stanley, 12
- Miller–Urey experiment, 63, 188
- Mimas, 211
- minerals, catalytic, 13–14
- Minniti, Dante, 250–64
- Miranda, 203, 212
- mirror life, 39
- mirror soup, 39
- mitochondria, 134, 141
- modulation schemes, 302
- Mojsis, S. J., 204
- molecular "clocks," 143
- molybdenum, 13, 135, 136, 139, 143
- Moon:
 - cratering on, 52
 - crust of, 52
 - effect on Earth of, 90
 - formation of, 83, 90
 - missions to, 267
- moons:
 - exploratory missions to, 179
 - future explorations of, 194–7
 - habitability issues for, 176–9
 - icy, 176–7
 - large, habitable, 175–97
 - position and temperature of, 204
 - property table for, 203
 - as sites for ET life, 6, 288–9
- Moore's Law, 297
- Morrison, Philip, 287, 299
Index

mountain building, 52
M stars, 260, 269, 278, 290
habitable zones of, 236–7, 244, 262
Mullen, G., 120
multiple striated cobble, 117
mutations, 26–7, 44
Mycrobacterium, 160
Myhrvold, Nathan, 295
Nama Group, 144
Namibia, 144
Nanedi Vallis, 8
nanobacteria (nanobes), 39
NASA Astrobiology Institute (NAI), 7, 8, 9
National Academy of Sciences, 287
Space Studies Board of, 7
National Aeronautics and Space Administration (NASA), 7, 194, 196, 220
definition of life by, 26–8, 41
funding for, 8, 195
see also specific missions
National Radio Astronomy Observatory, 286
natural history, 29
natural selection, 6, 12, 13, 17, 145
Nature, 287
Naval Observatory, U.S., 295
Navarro-Gonzalez, R., 163
Near Infrared Mapping Spectrometer (NIMS), 183
near-infrared (NIR) spectra, 240, 272–4, 275
Neptune, 15, 77, 79, 216, 219, 234, 253, 254, 260, 263
neural networks, 145
Newfoundland, fossils in, 145
New Horizons Mission, 218, 221–2
Nimbus 3 satellite, 267
Nimmo, F., 219
nitrate, 134
nitrite, 134
nitrogen, 55, 192, 219, 221
isotopes, 10, 13, 159
in Mars atmosphere, 168
Nitrospira, 160
nitrous oxide, 17, 140
Noachian (warm and wet) Period, 157–8, 161, 167–8, 171–2
Earth analogs for, 159–60
North Pole Dome, as Mars analog, 159, 162
nuclear fusion, 73
nucleic acids, as catalysts for metabolism, 62–3
nucleosynthesis, 266
nucleotides, 43–4, 43, 49, 49, 65
Oak Ridge Observatory, OSETI telescope at, 295, 297
obliquity cycle, 167, 169, 172
observation, in life theory formation, 28–9, 31
oceans:
deeper, 38, 48, 109–10, 135–6
diversification of life in, 133, 134–5
early, 93, 95, 96
early life in, 63–4, 138–9, 141–6
magma, 89–90
mapping of, 182–3
on moons, 180–5, 186, 191–3, 194
oxygen stabilization and regulation in, 53, 136–8
planets with, 176
Proterozoic, 135–6
redox state of, 122
reducing of, 52
on small bodies, 211–12, 214, 217–19
Odishaw, H., 7
olivine, 13, 52, 64
Oparin, A. I., 63
Opportunity rover, 160
orbital migration, 257
orbits, planetary:
eccentric, 81–3, 207, 258, 259
of exoplanets, 257, 258, 259
formation of, 78–80
of gas giants, 81–3
periods of, 253
of rocky planets, 83
Orcas, 203
organic acids, 8
organic carbon burial, 142–3, 146
organic haze, 120, 125
organic solvents, 8
Origin of Species, The (Darwin), 6
Orion Nebula, 73
OSETI (Optical Search for Extraterrestrial Intelligence), 293, 294–5, 297
other Earths, see Earth-like planets
oxidants, 122
oxygenation:
of Earth atmosphere, 55–6, 67, 89, 91, 97
as energy source, 48
in redox process, 48, 209, 239–41
second event of, 142–5
see also Great Oxidation Event
oxygen, 13
 atmospheric, 53, 120, 122–8, 134, 239–41
 as biomarker, 17
 isotopes, 10, 116–17
 as life essential, 89, 107, 145, 147, 175–6
 in ocean, 138–9, 141–4
 in photosynthesis, see photosynthesis, oxygenic
 Proterozoic rise in, 134–6, 140–1
 rise of, 115–16
 stabilization and regulation of levels of, 136–8
 see also oxidation
 oxygen whiffs, 127
 ozone:
 atmospheric, 120, 123, 267
 as biomarker, 17, 240–1
 paleogenomics, 31–2
 paleosols, 56, 121
 perchlorates, 163–4
 permafrost, 94, 161–2, 165
 Phaeton, 215
 Planetary Protection officer, 7
 Pilbara Craton, 53, 54, 95, 98, 99, 100, 104, 105, 106, 108, 109, 159
 Pilcher, C. B., 241
 Pinnularia, 160
 placozoans, 145
 Planetary Protection officer, 7
 planetesimals, 202, 213, 215, 221
 belt, 216–17
 growth of planets from, 76, 83, 89
 hydrated, 83
 see also asteroids
 planet–planet scattering, 82
 planets:
 accretion of, 52
 beyond Solar System, see exoplanets
 definition of, 232, 250
 dwarf, 213, 216, 218–19, 269
 Earth-like, 290
 formation of, 8, 73–84, 77, 80, 251, 269
 giant vs. terrestrial, 269
 measuring mass of, 236
 measuring of, 253
 migration of, 78–84, 90, 269
 physical and chemical identities of, 268
 search for ET life on, see extraterrestrial life, search for
 stars vs., 250–1
 transiting, 234, 243, 253–4, 274
 see also specific planets and types of planets
 photosynthesis:
 anoxygenic, 14, 97, 99–100, 105, 106, 109, 125, 162, 164
 oxygenic, 17, 33, 53, 55, 67, 94, 97, 98, 99, 107, 109, 122–3, 125, 126, 127–8, 134, 136–7, 147, 242
 Photons, in ET communication, 293, 294–5, 300
 Photosystem-II, 127, 147
 phylls, 157n
 PICERAS definition of life, 26, 28–9, 36
 Pilcher, C. B., 241
 Proterozoic rise in, 134–6, 140–1
 rise of, 115–16
 stabilization and regulation of levels of, 136–8
 see also oxidation
 plankton, 51, 109
 plate tectonics:
 in Earth’s topography, 51–2
 as energy source, 15
 origin of, 91
 in origin of life, 14, 91–2
 Plato, 291
 Pluto, 201, 202, 218
 habitability potential of, 203, 219, 221–2
 reclassification of, 269
 polymers, 100
 Pongola glaciation, 119, 127
 Pontifical Academy of Sciences, 3–4
 prebiotic chemistry, 29
 predation, 134, 145
 present atmospheric level (PAL), of oxygen, 56, 135, 137
 pressure:
 in melting, 6
 temperature as function of, 274–5
 primordial soup, 12, 30
 mirror, 39
 Princeton University, 295
 progenote:
 definition of, 62
 vs. LUCA, 60–2
 Project Ozma, 286, 287
 prokaryotes, 122n, 134, 160
 proteins:
 catalysis, 50
 as life essential, 36–7, 38, 40, 64
 sequencing, 31
 synthesis, 11, 58, 59, 60
 use of term, 62
 Proterozoic Eon, 53, 107, 118, 132–47
Index

climate in, 139–41
life in, 138–9
oxydation in, 134–8, 140–1
Proterozoic era, 119
protocontinents, 95, 108, 109
proton probes, 103
protoplanetary disks, 80
composition of, 76
cooling of, 78
in gas giant formation, 81, 257, 259
in planet formation, 8, 73–9, 251
in rocky planet formation, 83
proto-ribosomes, vs. replicating RNA, 13
pulsars, 15, 235
pulsar timing, 235
pyrite, 56, 136
as catalyst for organic synthesis, 13
pyroxine, 52
Q (character), 27–8
Quaternary glacial interval, 127
Queloz, Didier, 252, 269
Radial Velocity, 197
radial velocity (RV) technique, 232, 234, 252–3, 253, 254, 258, 260, 261, 262–4, 274, 290–1
radioisotopic decay, heat from, 205–6, 206, 209–11, 211, 214, 221
radio telescopes, 293
Ranger spacecraft, 267
“Rare Earth” hypothesis, 291
Raymond, Sean N., 73–84
recrystallization, 52
“red edge,” 242
redox (oxydation and reduction) processes, 48, 209
searching for biosignatures through, 239–41
reef systems, 51
refractory elements, 76
regolith, 205
religion:
ET life and, 18
and science, 5
replication:
in LUCA, 60
mutations in, 26–7, 44, 61
in progenote, 60–1
replicator-first hypothesis, 13
replicators, 11, 12
reproduction:
as life essential, 26–7
replication vs., 26–7
in synthesis, 43–4
respiration, 122, 146
oxydation and global, 134, 137–8
resting stages, 145
resurfacing, 209, 210
ribonucleic acid (RNA), 31, 41, 43, 57
in LUCA, 58–9, 60
messenger, 40
as metabolic catalyst, 62–3, 66–7
primitive life as dependent on, 32, 37, 40
ribosomal, 56–9
as self-replicating, 11, 12, 13
ribose, 49
ribosomes, 31, 35, 36–7, 38, 56–9, 57, 60
Rich, Alex, 40
riifting, 52
Rio Tinto, 170, 172
extreme environment of, 32
as Mars analog, 159–60
“RNA first” hypothesis, 40
RNA world, 11, 12, 32, 39
Martian, 37
metabolism in, 62–3, 66–7
pre-biotic chemistry before, 63–5
Robuchon, G., 219
rock mass fraction, 211
rocks:
basaltic vs. continental, 52
history recorded in, see geological record
isotopic life signatures in, 100–1
Mars analogs in, 164
oldest, 52–3, 91, 92, 100
on Titan, 193
traded between Earth and Mars, 37
volcanic, 95–6
~water interactions, 8
see also fossils; sedimentary rocks
rocky (terrestrial) planets, 16
formation of, 74, 76, 77, 83–4
plate tectonics and size of, 91
potentially habitability of, 83, 146–7
see also Earth; Mars; Venus
Rodinia, breakup of, 135, 145
Rosing, M. T., 52–3, 95, 121
Rozhko, O., 127
Rye, R., 121
Russian Space Agency (Roskosmos), 195
rybozymes, 62
Rye, R., 121
Sagan, Carl, 63, 120
salts, in melting, 6, 214

© in this web service Cambridge University Press

www.cambridge.org

Cambridge University Press
978-1-107-00641-6 - Frontiers of Astrobiology
Edited by Chris Impey, Jonathan Lunine and José Funes
Index

More information
satellites, small, icy, 202, 210, 211
Saturn, 74, 90, 196, 253, 254, 260
moons of, 8, 15, 120, 176–8, 195–6, 202, 206, 209, 213, 216, 217
Schiaparelli, Giovanni, 157
Schleyden, M. J., 36
Schmidt, B. E., 216
Schmidt telescope, 238
Schwann, Theodor, 36
Schwartz, R. N., 294
science fiction, theories of life from, 27–8
Science in Space (Berkner and Odishaw), 7
scientific method:
establishment of, 5
value of errors in, 3
seafloor spreading, 14
Seager, Sara, 231–46
Search for Extraterrestrial Intelligence (SETI), 17–18, 25–6, 287, 288, 291–3
analysis of data from, 297
as archeology of the future, 299–300
catalogs of, 296
dedicated observation sites of, 293–8
eliminating hoaxes in, 300
established as discipline, 287
funding for, 295, 301
null results of, 18
optical (OSETI), 293, 294–5, 297
projected response to ET contact through, 300–2
signals in, 292–3, 302–3
world involvement in, 298–9
sedimentary rocks:
formation of, 51
history recorded in, 132–3, 135–6, 143
microbial metabolism recorded in, 51–6, 67
oldest preserved, 53, 95
transport and deposition in, 51–2
Sedna, 203
Segura, T. L., 172
seismometers, 182
self-sustainability, as life essential, 26, 28, 45
Sephton, M. A., 219
SERENDIP projects, 293–4
serpentine, on Mars, 8, 64
serpentinization reactions, 8, 208–9
SETI@home, 293–4, 299
setiQuest, 299
shadow biosphere, 38
Sheldon, N. D., 121
Shock, E. L., 218
Shostak, Seth, 292
Siberia, fossils in, 142
siderite, 121
silica, 96, 102–4, 105, 106, 179, 180, 182–3, 194
silicates, 89, 176, 179, 180, 182–3, 194, 215, 217
16S ribosomal RNA (rRNA), 57, 59
65 Cybele, 203, 205, 214
size complementarity, 41, 43–4
small bodies:
future exploration of, 219–22
geophysical evolution of, 210
habitat of, 201–22
habitable, 209–19
Snowball Earth, 119, 126, 140
snow line, 76, 83, 259
sodium chlorate, replication in, 27
solar extreme ultraviolet flux, 171
Solar System:
as atypical, 81, 259–60
formation of, 77, 205
as unique in Universe, 268–9
solar wind, 91
Sorondo, Sanchez, 4
Sotin, C., 208, 213
Soviet Union, Sputnik launched by, 7
spacecraft:
stereolization of, 7
see also specific vehicles
Spain, 159
spectrographs, 252
spectrometers, 34, 35, 103, 183, 187, 188, 191, 212, 300
Sphingomonas, 164
Spitzer Space Telescope, 270, 271, 272
sponges, 143, 145
springs, 160, 161
Sputnik launch, 7
sputtering, 183, 184
starlight, 250
supression of, 245, 254
stars:
convective zones of, 82–3
dead neutron, 235
dwarf, 16
exoplanets and, 250–1, 256, 259, 263–4, 263, 256
formation of, 73–4, 77, 289, 290
low-mass, 236–7, 244
number in Milky Way, 296
Index 321

planets vs., 250–1
Sun-like, 16, 237, 238, 243, 244, 267, 286, 289
star spots, 237
Star Trek: The Next Generation, 27–8
Star Wars, 76
Strelley Pool Formation, 53–4, 108
Streptomyces coelicolor, 60
stromatolites, 53–4, 55, 67, 100, 107–8, 109, 132, 142, 159
strontium, weathering measured in, 140
subduction, 52, 133
sublimation, 184, 214
subsiding basins, 52
sulfate, 134, 136, 138, 140, 157
sulfide, 56, 63–4, 125, 136, 140–1, 142, 145
oxidation, 138–9
sulfur, 13, 14, 121n, 135, 141, 168
isotopes, 10, 143, 159
in microbial metabolism, 54–5, 56
sulfur cycle, on Mars, 169–70
Summons, Roger, 48–67
Sun, 219
age of, 286
energy production of, 119
Faint Young, 170
heat from, 206, 207
sunlight:
as energy source, 107, 125
increased, 140
in oxygenation, 55, 99
suppression of, 245
supercontinents, breakup of, 135, 140
super-Earths (telluric planets),
15, 91, 158, 196–7, 236–7,
243, 253, 259, 261, 278
close to habitable zone, 262
as common in other
systems, 269
definition of, 234
detection of, 260–3, 264,
265, 278, 290
discovery of, 234
simulated spectrum of, 244
supernovas, 73, 290
superoxide free radical, 127
synchrotron radiation, 103
synthesis:
of life from scratch, 41–5
in life theory formation, 29
of new life forms, 29, 30
synthetic biology, 41–5
talc, 64
Tarter, Jill, 286–303, 296
TED prize of, 299
Tatel radio telescope, 286
Tau Ceti, 286
technology:
advances in, 30, 252–3,
254–6, 263–4, 267–8,
277–80
limits of, 17, 18, 29–30
in search for ET, 17–18, 288,
291–8, 301–3
see also specific technologies
tectonism, 51–2, 133, 136,
145, 159
on small bodies, 209, 210,
212
telescopes, 8, 16, 17, 74, 182,
184, 202, 220, 221, 233,
234, 238, 242–5, 250,
254–6, 264, 267, 270–1,
277, 298
of SETI, 293–8
telluric planets, see
super-Earths
temperature:
in Archean Eon, 116,
117–22, 125
condensation, 76
effect of greenhouse gases
on, 120–1
extreme, 6, 38
as a function of pressure,
274–5
and global respiration, 138
heat from Sun, 206, 207
of low-mass stars, 236
on Mars, 165–7, 166, 170
ocean, 96, 138
plate tectonics and, 91
in Proterozoic, 139–41
radioisotopic decay and,
206, 207
on small bodies, 205–8, 209,
212
for sustaining life, 205–8
10 Hygeia, 203
terrestrial life:
as analog for ET life, 14,
30–1, 233, 291
astrobiological questions
about, 6, 9
carbon-based, 9
Earth as appropriate setting
for, 89–110, 93
ET life radically different
from, 6, 7, 9–10, 14–15,
19, 175, 189–90, 266–8
as limited to one form, 32
metabolism in, 48–67
molecular level of, 31
non-standard, 37–9
origins of, 5, 9, 40–1, 109,
179
reconstruction of primitive,
32
Index

Terrestrial Planet Finder mission, 245
TES instrument, 166
TESS (Transiting Exoplanet Survey Satellite) space-based survey, 237, 244
Tghallophyca, 142
Tharsis, 172
Themis family, 216
thermal emission spectrum, 275
thioesters, 12
Thiomicrospira, 161
Thirty Meter Telescope, 264
tholins (aerosols) on Titan, 187, 188, 190, 193, 194
Tibetan Plateau, 52
tidal stress, 207, 211
tides:
 heating from, 206–8, 207, 209, 210, 212, 213, 218, 219, 220, 267, 288
 in orbital eccentricities, 82, 207
Tiger Stripes, 212
time perturbations, 235
timing discovery method, 235
Tinetti, Giovanna, 266–80
Titan, 241
 atmosphere of, 120, 185, 187–9, 192, 194
 compared to Earth, 15, 185–6, 188–9, 190–1, 193–4, 196
 extreme environment of, 32
 hydrogen lakes on, 189
 interior models for, 192–4
 lakes on, 191
 as large, icy satellite, 202
 organic chemistry on, 187–91, 196
 organic factory and habitat of, 185–94
organic solvent lakes on, 8
possible sub-surface ocean on, 191–3
as potential Class IV habitat, 185
potential for life on, 17, 176, 179, 185–94, 202
potential for water on, 15, 176–7, 185–6, 187, 190, 191–3, 192, 195–6, 205
proposed future missions to, 30, 195–6
temperature of, 189–90, 191
tonalite–trondjemite gneisses (ITGs), 92
top down approach, 11–12, 239
too-of-atmosphere erosion, 171
torques, in planetary orbits, 78
townes, C. H., 294
trace fossils, 132
transit photometry, 238, 251
transit spectroscopy, 270–2
transit technique, 234, 235–7, 236, 253–4, 257–8, 261, 267, 270–7, 270
transmission spectrum, 243
translation, 60, 62
trans-Neptunian objects (INOs), 201–2, 203, 206, 209
triple of habitability, 180–1, 181
tricarboxylic acid (TCA) cycle, 49
Triton, 203, 218, 219
tungsten, 13
turbidites, 95
Turnbull, M. C., 296
ultramafic rocks, 96
ultraviolet (UV) radiation, 99, 106, 120, 123, 127, 135, 171, 180, 184, 188, 194, 202, 237, 241
umbriel, 202, 213
type I migration, 78, 80, 81
universe:
 age of, 286
 ancient views of, 291
galaxies in, 231, 246, 266
humans perceived as center of, 5, 245, 301–2
origin of, 9
uniform chemical components of, 266
university valley, as Mars analog, 163, 165
unknown biosphere, 9
Upper Eleonore Bay Group, 142
Uranus, 77, 79, 202, 213, 216, 253
orbit of, 260
possible habitability of, 212
Urey reaction, 140
Utopia Planitia, 162, 163
Vatican Observatory, 4
vegetation, as biosignature, 242
Venera spacecraft, 267
Venus, 74, 191
atmosphere of, 168
Earth vs., 232
extreme environment of, 32
missions to, 267
Vesta, 220
Vicuña, Rafael, 157–73
Vienna Pee Dee Belemnite (VPDB) standard, 54
Viking Mars mission (NASA), 7, 14, 30, 162–3
life-detection experiments of, 33
in life theory formation, 33–5
viruses, 9
volatiles, in Earth’s environment, 89–90
volcanism, 51, 106, 107, 109, 121, 210–11
on Europa, 182, 184
as habitat for early terrestrial life, 93, 97, 98, 104–5, 161–2
on Mars, 158, 159, 160–2
on moons, 180
outgassing from, 123
rocks in, 95–6, 105
see also cryovolcanism
Voyager missions, 267
Waldman, I. P., 272
Walker, J. C. G., 123, 124
warm Neptunes, 270, 274
Warrawoona Group, 53, 54
Watchman, The, 25
water:
anoxic, 141–2
on asteroids, 83, 203–9
fog as source of, 164
and hot basalt, 13
as life essential, 10, 15, 83, 89, 90, 94, 95, 115, 122, 175–9, 180, 193, 204–5, 233, 235, 241, 244
liquid organic solvents vs., 6
living in vs. living on, 175–6
on Mars, 8, 158–9, 160, 166–8, 169–71, 172–3
on moons, 176–9, 177, 178, 185–6, 190, 191–3, 195–6
other liquids in place of, 241
in photosynthesis, 55, 97, 165
for potentially habitable planets, 83, 290
rock interactions, 8, 95, 209
in sediment transport, 51
transition, 76
see also ice; liquid water
water vapor, 120, 242, 267, 271, 274
Watson, James D., 41, 42, 43–4
weakly reduced atmosphere, 123
weathering, 121, 136–7, 140
weird life, 6, 28, 30
RNA-based, 32
Westall, Frances, 89–110
Whipple Telescope, 298
White Cliffs of Dover, 51
Woese, Carl, 60–1, 62
Wolf, E. T., 120
Wyth telescope, 295
Xanthe Terra region, 8
XO-1b (hot Jupiter), 274
Zaitsev, Alexander, 289
zeroth order (corotation) resonance, 78–9
zinc, 13
zircon crystals: as nature’s time capsules, 52, 115
oldest, 92, 95
Zolotov, M. Yu., 213