Quantum Optics

In the past decade many important advances have taken place in the field of quantum optics, with numerous potential applications. This textbook provides an up-to-date account of the basic principles of the subject, and is ideal for graduate courses.

Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement, quantum metrology, spin squeezing, control of decoherence, and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics.

The textbook features over 150 end-of-chapter exercises with solutions available for instructors at www.cambridge.org/9781107006409. It is invaluable to both graduate students and researchers in physics and photonics, quantum information science, and quantum communications.

Girish S. Agarwal is Noble Foundation Chair and Regents Professor at Oklahoma State University. A recognized leader in the field of theoretical quantum optics, he is a Fellow of the Royal Society and has won several awards, including the Max-Born Prize from the Optical Society of America and the Humboldt Research Award.

Quantum Optics

GIRISH S. AGARWAL Oklahoma State University

Cambridge University Press 978-1-107-00640-9 - Quantum Optics Girish S. Agarwal Frontmatter More information

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107006409

© G. S. Agarwal 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2013 Reprinted 2015

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Agarwal, G. S. (Girish S.), 1946– Quantum optics / Girish S. Agarwal. pages cm Includes bibliographical references and index. ISBN 978-1-107-00640-9 1. Quantum optics – Textbooks. I. Title. QC446.2.A33 2012 535'.15 – dc23 2012025069

ISBN 978-1-107-00640-9 Hardback

Additional resources for this publication at www.cambridge.org/9781107006409

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

© in this web service Cambridge University Press

> Dedicated to the memory of my wife Sneh who had hoped that the book would be completed and to my daughters Anjali and Mranjali who have been a constant source of inspiration.

Contents

Preface		page xv
1 Quan	tized electromagnetic field and coherent state representations	1
1.1	Quantization of the electromagnetic field	1
1.2	State space for the electromagnetic field – Fock space and Fock states	5
1.3	Quadratures of the field	6
1.4	Coherent states	7
1.5	Mixed states of the radiation field	12
1.6	Diagonal coherent state representation for electromagnetic fields -	
	P-representation	15
1.7	The Wigner function for the electromagnetic field	18
1.8	Bosonic systems with finite mass - coherent states and phase-space	
	representations	22
Exer	cises	24
Refe	rences	26
2 Nonc	assicality of radiation fields	28
2.1	The Mandel $Q_{\rm M}$ parameter	28
2.2	Phase-dependent measure of nonclassicality – squeezing parameter S	29
2.3	Single-mode squeezed states – squeezed vacuum	31
2.4	Squeezed coherent state	37
2.5	Other measures of nonclassicality	39
2.6	Mixed nonclassical states – degradation in squeezing	43
Exer	cises	45
Refe	rences	47
3 Two-i	node squeezed states and quantum entanglement	49
3.1	The two-mode squeezed states	49
3.2	Nonclassicality of the two-mode squeezed vacuum	50
3.3	Quantum phase-space distributions and quadrature distributions	52
3.4	Cauchy-Schwarz inequalities for nonclassicality in two-mode states	54
3.5	Conditional measurements on the two-mode squeezed vacuum	55
3.6	Quantum entanglement in the two-mode squeezed vacuum	56
3.7	Peres-Horodecki separability criterion for continuous variable systems	s 56
3.8	Generation of two-mode nonclassical and entangled states - optical	
	parametric down-conversion	58

vii

viii	Contents				
	3.9	Parametric amplification of signals	60		
	3.10	Type-II optical parametric down-conversion – production of entangled			
		photons	61		
	3.11	Four-photon entanglement using optical parametric down-conversion	63		
	3.12	Two-mode mixed nonclassical states	65		
	3.13	Entanglement in two-mode mixed Gaussian states	66		
	3.14	Application of entanglement to the teleportation of a quantum state	67		
	3.15	Nonclassical fields in optical fibers	69		
	Exerc		72		
	Refer	rences	74		
	4 Non-G	aussian nonclassical states	76		
	4.1	Schrödinger cat state and the cat paradox	76		
	4.2	Photon-added and -subtracted states	82		
	4.3	Single-photon-added coherent and thermal states	84		
	4.4	Squeezing and sub-Poissonian properties of single-photon-added states	86		
	4.5	Experimental realization of photon-added nonclassical non-Gaussian			
		states	88		
	4.6	Single-photon-subtracted states	89		
	4.7	Single-photon-subtracted two-mode states with vortex structure	93		
	4.8	Pair-coherent states	97		
	Exerc	cises	101		
	Refer	rences	102		
	5 Optica	al interferometry with single photons and nonclassical light	103		
	5.1	Transformation of quantized light fields at beam splitters	103		
	5.2	Beam splitter transformation equivalent to evolution under a			
		Hamiltonian	105		
	5.3	Transformation of states by the beam splitter	105		
	5.4	Transformation of photon number states by a beam splitter	106		
	5.5	Single photons at beam splitters	107		
	5.6	Pairs of single photons at beam splitters	108		
	5.7	Generalization of the Hong–Ou–Mandel interference to N photons			
		from both ports of the beam splitter	109		
	5.8	Transformation of a two-mode squeezed state by a 50-50 beam			
		splitter	109		
	5.9	Generation of two-mode entangled states by the interference of			
		coherent fields and single photons	110		
	5.10	Beam splitter as an attenuator	111		
	5.11	Transformation of quantized light fields by phase shifters	112		
	5.12	The Mach–Zehnder interferometer	113		
	5.13	Wheeler's delayed choice gedanken experiment	117		
	5.14	Interaction-free measurements	117		

ix	Contents				
	5.15	Two-photon Mach–Zehnder interferometer	119		
	5.16	Multiphoton interference and engineering of quantum states	121		
	5.17	Mach-Zehnder interferometer with two-mode squeezed vacuum as			
		input	123		
	5.18	Balanced homodyne interferometers for measuring the squeezing			
		of light	125		
	5.19	Manipulation of quantum states by homodyning and feed-forward	126		
	5.20	Quantum state tomography	128		
	5.21	Sensitivity of an optical interferometer	129		
	5.22	Heisenberg limited sensitivity of interferometers based on parametric			
		amplifiers or four-wave mixers	131		
	5.23	The quantum statistics of fields at the output ports	133		
	Exerc	cises	134		
	Refer	rences	136		
	6 Polari	zation and orbital angular momentum of quantum fields	138		
	6.1	Characterization of the polarization properties of quantized fields	138		
	6.2	Polarization of quantized fields – Stokes operators	139		
	6.3	Action of polarizing devices on quantized fields	141		
	6.4	Description of unpolarized light beyond Stokes parameters	143		
	6.5	Stokes operator tomography	144		
	6.6	Orbital angular momentum of fields – HG and LG modes	146		
	6.7	Orbital Stokes operators and the Poincaré sphere	149		
	6.8	Mixed states of orbital angular momentum	151		
	6.9	Entangled states of the orbital angular momentum	152		
	6.10	Transformation of entanglement between polarization and orbital			
		angular momentum q-plates	154		
	Exerc		155		
	Refer	rences	156		
	7 Absor	ption, emission, and scattering of radiation	158		
	7.1	The interaction of radiation and matter in the electric dipole			
		approximation	158		
	7.2	Rates for the absorption and emission of radiation	159		
	7.3	Single-mode limit – Einstein's B coefficient and the absorption			
		coefficient $\alpha(\omega)$	165		
	7.4	Scattering of radiation	166		
	7.5	Quantum interferences in scattering	169		
	7.6	Radiative decay of states - Weisskopf-Wigner theory	170		
	7.7	Control of spontaneous emission through the design of the			
		electromagnetic vacuum	174		
	Exerc		177		
	Refer	rences	178		

		Contents	
8		Il coherence in multimode quantum fields	179
	8.1	Correlation functions for electromagnetic fields	179
	8.2	Young's interferometer and spatial coherence of the field	181
	8.3	Photon-photon correlations – intensity interferometry	184
	8.4	Higher-order correlation functions of the field	187
	8.5	Interferometry in the spectral domain	188
	8.6	Squeezing spectrum and spectral homodyne measurement	191
	8.7	Coherence effects in two-photon absorption	192
	8.8	Two-photon imaging – ghost imaging using $G^{(2)}$	194
	Exerc		197
	Refe	rences	198
9) Open	quantum systems	200
	9.1	Master equation description of open systems	200
	9.2	Dissipative dynamics of harmonic oscillators	204
	9.3	Dissipative dynamics of a two-level system	206
	9.4	Dissipative dynamics of a multilevel system	208
	9.5	Time correlation functions for multilevel systems	210
	9.6	Quantum Langevin equations	212
	9.7	Exactly soluble models for the dissipative dynamics of the oscillator	213
	9.8	Exact dissipative dynamics of a two-level system under dephasing	215
	Exerc	cises	218
	Refe	rences	219
10) Ampli	ification and attenuation of quantum fields	220
	10.1	Quantum theory of optical amplification	220
	10.2	Loss of nonclassicality in the amplification process	223
	10.3	Amplification of single-photon states	229
	10.4	Amplification of entangled fields	230
	10.5	Realising a phase-insensitive amplifier from a phase-sensitive amplifier	232
	10.6	Degradation of nonclassicality and entanglement due to the absorption of quantum fields	233
	10.7	Loss of coherence on interaction with the environment	235
	Exer		238
		rences	240
11	Quant	tum coherence, interference, and squeezing in two-level systems	242
•	11.1	Two-level approximation: atomic dynamics in a monochromatic field	242
	11.1	Application of atomic coherence – Ramsey interferometry	247
	11.2	Atomic coherent states	247
	11.5	Minimum uncertainty states for two-level systems – spin squeezing	252
	11.4	Atomoc squeezed states by nonlinear unitary transformations	252
	11.5	Atomic squeezed states produced by supersensitivity of Ramsey	234
	11.0	interferometers	256
			200

_	Contents				
J					
	11.7	Phase-space representation for a collection of two-level systems	25		
	11.8	Phase-space description of EPR correlations of spin systems	26		
	Exerc		26		
	Refere	ences	26		
12	Cavity	quantum electrodynamics	26		
	12.1	Exact solution of the Jaynes-Cummings model: dressed states	26		
	12.2	Collapse and revival phenomena in JCM	27		
	12.3	Dispersive limit of the JCM	27		
	12.4	Dissipative processes in cavity QED – the master equation	27:		
	12.5	Spectroscopy of the ladder of dressed states	27		
	12.6	Multi-atom effects in cavity QED	284		
	12.7	Effective dipole-dipole interaction in a dispersive cavity from Lamb			
		shift of the vacuum	288		
	12.8	Atomic cat states using multi-atom dispersive JCM	290		
	12.9	Application of atomic cat states in Heisenberg limited measurements	293		
		Engineering anti-Jaynes-Cummings interaction	296		
		QED in coupled cavity arrays – single-photon switch	298		
	Exerc		300		
	Refere	ences	30		
13	Absorp	ption, emission, and scattering from two-level atoms	304		
	13.1	Effects of relaxation: optical Bloch equations	304		
	13.2	Absorption and amplification of radiation by a strongly pumped			
		two-level system	309		
	13.3	Resonance fluorescence from a coherently driven two-level atom	314		
	13.4	Quantum dynamics of the two-level atom and spectrum of fluorescence	311		
	Exerc	ises	325		
	Defe	ences	327		
	Keter				
14	Quanti	um interference and entanglement in radiating systems	328		
14	Quanti	um interference and entanglement in radiating systems Young's interference with microscopic slits – atoms as slits	328 328		
14	Quanti				
14	Quant 14.1	Young's interference with microscopic slits – atoms as slits	328		
14	Quant 14.1 14.2	Young's interference with microscopic slits – atoms as slits Spatial bunching and antibunching of photons	328 330		
14	Quant 14.1 14.2 14.3	Young's interference with microscopic slits – atoms as slits Spatial bunching and antibunching of photons Interference in radiation from two incoherently excited atoms	328 330 333		
14	Quant 14.1 14.2 14.3 14.4	Young's interference with microscopic slits – atoms as slits Spatial bunching and antibunching of photons Interference in radiation from two incoherently excited atoms Atom–photon entanglement	328 330 333		
14	Quant 14.1 14.2 14.3 14.4	Young's interference with microscopic slits – atoms as slits Spatial bunching and antibunching of photons Interference in radiation from two incoherently excited atoms Atom–photon entanglement Atom–atom entanglement via detection of spontaneously emitted	328 330 333 333		
14	Quanto 14.1 14.2 14.3 14.4 14.5	Young's interference with microscopic slits – atoms as slits Spatial bunching and antibunching of photons Interference in radiation from two incoherently excited atoms Atom–photon entanglement Atom–atom entanglement via detection of spontaneously emitted photons	328 330 333 337 338		
14	Quante 14.1 14.2 14.3 14.4 14.5 14.6	Young's interference with microscopic slits – atoms as slits Spatial bunching and antibunching of photons Interference in radiation from two incoherently excited atoms Atom–photon entanglement Atom–atom entanglement via detection of spontaneously emitted photons Multi-atom entanglement	328 330 332 332 332 338 34		
14	Quanta 14.1 14.2 14.3 14.4 14.5 14.6 14.7	Young's interference with microscopic slits – atoms as slits Spatial bunching and antibunching of photons Interference in radiation from two incoherently excited atoms Atom–photon entanglement Atom–atom entanglement via detection of spontaneously emitted photons Multi-atom entanglement Quantum entanglement in Dicke states and superradiance	328 330 332 332 332 332 338 342 343		
14	Quanta 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8	Young's interference with microscopic slits – atoms as slits Spatial bunching and antibunching of photons Interference in radiation from two incoherently excited atoms Atom-photon entanglement Atom-atom entanglement via detection of spontaneously emitted photons Multi-atom entanglement Quantum entanglement in Dicke states and superradiance Multi-path quantum interference as the source of Dicke superradiance Entanglement of photons produced in an atomic cascade	328 33(333 337 338 341 342 343		

xii	Contents					
	15	Near field radiative effects	254			
	15		354			
		15.1 Near field radiative effects – coupling between dipoles	354			
		15.2 Radiative coupling between dipoles and dynamics15.3 Vacuum-induced deterministic entanglement	358 360			
		•	362			
		15.4 Two-photon resonance induced by near field radiative effects15.5 The dipole blockade	362 365			
		Exercises	363 368			
		References	368			
		Kelefences	308			
	16	Decoherence and disentanglement in two-level systems	370			
		16.1 Decoherence due to the interaction of a two-level system with				
		the environment	370			
		16.2 Disentanglement in two-level systems	371			
		16.3 Decoherence-free subspace	373			
		16.4 Protection of decoherence due to dephasing via dynamical decoupling	374			
		16.5 Control of the spectral density of environment for protection against	270			
		decoherence	378			
		16.6 Modulation produced protection against disentanglement in cavity QED	380			
		Exercises	382			
		References	383			
	17	Coherent control of the optical properties	385			
		17.1 A simple model for coherent control	385			
		17.2 Dark states and coherent population trapping	394			
		17.3 EIT in single-atom fluorescence	397			
		17.4 Control of two-photon absorption	400			
		17.5 Vacuum-induced coherence and interference	404			
		Exercises	409			
		References	410			
	18	Dispersion management and ultraslow light	413			
		18.1 Group velocity and propagation in a dispersive medium	413			
		18.2 Electromagnetically induced waveguides	417			
		18.3 Storage and retrieval of optical pulses	418			
		18.4 Adiabatons and storage and retrieval of pulses	423			
		18.5 Non-EIT mechanisms for ultraslow light	426			
		Exercises	429			
		References	430			
	19	Single photons and nonclassical light in integrated structures	432			
		19.1 Quantum optics in a coupled array of waveguides	432			
		19.2 The Hong–Ou–Mandel interference in a system of two coupled				
		waveguides	434			

xiii		Contents		
	19.3			
		array	436	
	19.4	The Anderson localization of quantum fields in coupled waveguide arrays	442	
	19.5	5 Discrete quantum walks via waveguide couplers on a chip	447	
	Exe	rcises	452	
	Ref	erences	453	
	20 Qua	ntum optical effects in nano-mechanical systems	455	
	20.1	The radiation pressure on the nano-mechanical mirror	455	
	20.2	2 Basic quantum Langevin equations for the coupled system of cavity		
		and NMO	457	
	20.3	3 Steady-state solution of quantum Langevin equations in the mean field		
		limit and bistability	459	
	20.4	Quantum fluctuations in optomechanical systems	461	
	20.5	5 Sideband cooling of the nano-mechanical mirror	463	
	20.6		466	
	20.7	7 Squeezing of a nano-mechanical oscillator	471	
	20.8			
		effects of light	475	
	20.9	Quantized states of the nano-mechanical mirror coupled to the cavity	481	
		rcises	485	
	Ref	erences	487	
	T 1		400	

Index

489

Preface

The development of new sources of radiation that produce nonclassical and entangled light has changed the landscape of quantum optics. The production, characterization, and detection of single photons is important not only in understanding fundamental issues but also in the transfer of quantum information. Entangled light and matter sources as well as ones possessing squeezing are used for precision interferometry and for implementing quantum communication protocols. Furthermore, quantum optics is making inroads in a number of interdisciplinary areas, such as quantum information science and nano systems.

These new developments require a book which covers both the basic principles and the many emerging applications. We therefore emphasize fundamental concepts and illustrate many of the ideas with typical applications. We make every possible attempt to indicate the experimental work if an idea has already been tested. Other applications are left as exercises which contain enough guidance so that the reader can easily work them out. Important references are given, although the bibliography is hardly complete. Thus students and postdocs can use the material in the book to do independent research. We have presented the material in a self-contained manner. The book can be used for a two-semester course in quantum optics after the students have covered quantum mechanics and classical electrodynamics at a level taught in the first year of graduate courses. Some advanced topics in the book, such as exact non-Markovian dynamics of open systems, quantum walks, and nano-mechanical mirrors, can be used for seminars in quantum optics.

The material in the book is broadly divided into two parts. The first part deals with many old and emerging aspects of the quantized radiation fields, such as the engineering and characterization of quantum states and the generation of entanglement. The working of an interferometer using one or a few photons is extensively treated. A chapter is devoted to quantum optics with fields carrying orbital angular momentum. Many applications of entangled fields are given. A thorough discussion of quantum noise in amplification and attenuation is also given. The second part deals with the interaction of radiation with matter. Coherent, squeezed, and cat states of atoms are treated. Dissipative processes are treated from a microscopic approach. This part includes a discussion of electromagnetically induced transparency and a host of applications. Special emphasis is placed on quantum interference and entanglement. It is shown how measurement can produce entanglement. Furthermore, the deterministic production of entanglement is discussed. Many relatively newer aspects of cavity QED, such as single photon switches, photon blockade, and anti-Jaynes-Cummings interaction are presented. The book concludes with a look at developments such as quantum optics on a chip, quantum optical effects arising from radiation pressure and mechanical motion, quantum walks, control of decoherence, and disentanglement.

XV

Cambridge University Press 978-1-107-00640-9 - Quantum Optics Girish S. Agarwal Frontmatter More information

xvi

Preface

The focus in the book is on emerging areas in quantum optics and therefore important topics like the quantum theory of lasers, micromasers, optical multi-stability, self-induced transparency, etc. have been left out as these are well covered in earlier textbooks like those of Mandel and Wolf (*Optical Coherence and Quantum Optics*) and Scully and Zubairy (*Fundamentals of Quantum Optics*). Other topics like polarization are treated from the new perspective of quantum fluctuations in Stokes parameters. Clearly it is impossible to present in a single volume all that has happened since the discovery of the laser and the pioneering quantum optical works in the early 1960s. We have emphasized aspects that we consider essential for the newer directions in which quantum optics is moving.

This book is the outcome of teaching courses in Quantum Optics at the University of Hyderabad and the Oklahoma State University and extensive lecturing at the International Center for Theoretical Physics, Trieste, and at many scientific schools in India and elsewhere. Research carried out over several decades and my earlier writings, as well as interaction with students, postdocs, and collaborators, has shaped the book. A part of the chapters dealing with states of the radiation field was evolved while I spent half a year in 1992–93 at the Max-Planck Institute for Quantum Optics, Garching, Germany. My collaborator Subhash Chaturvedi contributed by refining some of this material.

The book would never have been completed except for the tireless efforts of my student Sumei Huang who extensively worked on it. I am grateful to her. I also acknowledge considerable assistance from my student Kenan Qu.

I thank my collaborators Jay Banerji, Subhash Chaturvedi, Tarak Dey, Jacques Perk, Gautam Vemuri, and Joachim von Zanthier for reading several chapters and for providing useful input. I thank Ravi Puri, Surya Tewari, Subhasish Dutta Gupta, and a large number of students whose works have been used for the writing of the book. I thank Mustansir Barma for the hospitality at TIFR, Mumbai where I continued to work on my book.

Over the years I have learnt a lot through interactions with a large number of physicists. These interactions have had a deep influence in the writing of the book and I thank especially Bob Boyd, Jinx Cooper, Joe Eberly, Marlan Scully, Herman Haken, Sudhansu Jha, Peter Knight, Emil Wolf, the late Len Mandel, and Herbert Walther.

I am grateful to the Oklahoma State University, especially Dean Peter Sherwood, and the Noble Foundation for supporting my work and for providing ideal facilities.

I thank Dr. John Fowler who was instrumental in getting the book project going and Dr. Simon Capelin for his deep interest in the project. Finally, I thank the very supportive staff at Cambridge University Press, and in particular Ms. Lindsay Barnes, who always came up with a solution to my problems.