The Psychology of Visual Art

What can art tell us about how the brain works? And what can the brain tell us about how we perceive and create art? Humans have created visual art throughout history and its significance has been an endless source of fascination and debate. Visual art is a product of the human brain, but is art so complex and sophisticated that brain function and evolution are not relevant to our understanding? This book explores the links between visual art and the brain by examining a broad range of issues including: the impact of eye and brain disorders on artistic output; the relevance of Darwinian principles to aesthetics; and the constraints imposed by brain processes on the perception of space, motion and colour in art. Arguments and theories are presented in an accessible manner and general principles are illustrated with specific art examples, helping students to apply their knowledge to new artworks.

George Mather is Professor of Vision Science in the School of Psychology at the University of Lincoln. He has over twenty-five years of experience in teaching courses on human visual perception and the psychology of visual art to undergraduate and postgraduate students and he is the author of Essentials of Sensation and Perception (2011), Foundations of Sensation and Perception (2009) and The Motion After-Effect: A Modern Perspective (1998; co-edited with Stuart Anstis and Frans Verstraten).
The Psychology of Visual Art

Eye, Brain and Art

GEORGE MATHER
For Anne
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of illustrations</td>
<td>xi</td>
</tr>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 Art through history

- Introduction: 1
- Prehistory: 4
- Ancient Greek art: 5
- Renaissance art: 6
- Modernism and abstraction: 9
- Postmodern art: 12
- Art in context: 13
- Theories of art: 14
- Summary and prospect: 15

2 Art and the eye

- Introduction: 16
- The structure of the human eye: 17
- Contrast coding in the retina: 19
- Optical defects and their consequences for art: 23
 - Accommodation: 23
 - Astigmatism: the El Greco fallacy: 26
 - Cataract: 26
- Retinal defects and their consequences for art: 28
 - Retinal degeneration: 28
 - Colour deficiency: 29
- Summary: 31

3 Art and the brain

- Introduction: 32
- Visual information processing and art: 34
- Lesions: 40
- Dementia: 44
 - Alzheimer's disease: 44
 - Frontotemporal dementia: 46
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Perceiving scenes</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>You see what you choose to see</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>You know what you see</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Overcoming object knowledge</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>Perceiving pictures</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Visual cues in pictures</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Pictures and culture</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>The development of pictorial competence</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Limitations of scene perception</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Reflections</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Where viewers look in artworks</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>Motion in art</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Representations of action in still images</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Implied motion</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Motion blur</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Animation</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Action perception</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Op Art</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>108</td>
</tr>
<tr>
<td>7</td>
<td>Colour in art</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Colour in the brain</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Representing spectral composition</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Representing spectral reflectance</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Colour in art</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>120</td>
</tr>
</tbody>
</table>
8 Visual aesthetics and art

Introduction 122
Empirical aesthetics 123
Theories of visual aesthetic beauty 125
Empirical studies of visual aesthetic preference 126
The biological root of aesthetic judgement 130
Aesthetic affordance 133
Summary 135

9 Visual aesthetics and nature

Introduction 137
Landscape art 138
Energy demand in the brain 142
Regularities in natural images 143
Spectral slope 147
Fractal dimension 150
Scale-invariance and visual processing 153
Scale-invariance and art 154
Organisation in natural images 161
Summary 163

10 Evolution and art

Introduction 165
Fitness indicators 166
The human body in art 169
Human fitness indicators 170
Bowerbird aesthetics 172
Art as a fitness indicator 173
Summary 176

Epilogue 177
References 179
Artworks 191
Index 193

Colour plate section between pages 108 and 109
Figures

1.1 36,000 year-old cave paintings of animals (re-drawn from Clottes, 2001).

2.1 The major anatomical components of the human eye, seen in cross-section from above.

2.2 Accommodation and accommodative error in vision.

2.4 Left: Results of a survey of 128 members of the Ecole des Beaux Artes in Paris in 1917, reported by Trevor-Roper (1988), compared against the results of a survey of 4,926 adults aged 43-84, reported by Wang et al. (1994). Right: Wang et al.’s (1994) results broken down by age.

3.1 The human brain, viewed from above (top) and from the left-hand side (bottom).

3.2 Processing hierarchies in the visual cortex.

3.3 Drawing by an artist suffering from visual agnosia. Parts of the plane are detached, or missing. Published in Cortex, 14, W. Wapner et al., ‘Visual agnosia in an artist’, © Elsevier 1978.

3.4 Self-portraits by Anton Raederscheidt, an artist who suffered unilateral neglect following a stroke in right parietal cortex. © DACS 2013.

3.5 Self-portraits produced by William Utermohlen, an artist diagnosed with Alzheimer’s Disease at the age of 62. Reprinted from
List of illustrations

4.1 Perspective projection. From Pirenne (1970), Figure 7.1, page 73. 52

4.2 The eyes could execute a series of fixations to build up a complete, high-resolution mental image of the painting in Plate 11. Each circle represents a possible fixation position, with arrows tracking the sequence of fixations. 55

4.3 Two views of Piazza San Marco in Venice. 56

4.4 A view of Piazza San Marco by Canaletto, painted c.1758. © The National Gallery, London. 57

4.5 Left: The statue on the left is actually the same size in the image as the other two statues, but appears smaller. Right: The statue on the left appears the same size as the others, but is actually larger in the image. 61

4.6 A plate is shown on the left. Which elliptical shape on the right matches the shape of the plate, as it appears in the image? The closest match is the fourth ellipse from the top. 62

5.1 Top: A view of a box. Middle: An oblique view of a real box through a window aperture. Bottom: An oblique view of a picture of a box within a frame. 70

5.2 Graph showing the variation in the projected image size of a soccer ball at the retina, as a function of its distance from the eye. 72

5.3 One of seven pictures used in Hudson’s (1960) test of pictorial competence. Reprinted from _Behavioral and Brain Sciences_, 12, Deregowski, J. B., ‘Real space and represented space: cross-cultural perspectives’. © 1989 with permission from Cambridge University Press. 74

5.4 Examples illustrating the importance of shadows in visual perception. 77

5.5 Geometry of the mirror reflection in the Rokeby Venus (Plate 5). 80

5.6 ‘Saint Michael Triumphant over the Devil’, Bartolome Bermejo, 1468. © The National Gallery, London. 82

5.7 ‘Erasmus’, Hans Holbein the Younger, 1523. © Private Collection / The Bridgeman Art Library. 85
5.8 An example of ‘pareidolia’ in the façade of a house in Switzerland.

6.3 Left: Forward lean in a vehicle implies forward momentum. Right: Lean in the photograph is a consequence of the camera’s shutter moving vertically through the frame as a thin slit (time advances from top to bottom); the wheel moves leftward and the shutter moves upward, sweeping a thin strip of the wheel across the film to form an ellipse.

6.5 ‘1960 Goodwood TT’. © Tim Layzell.

6.6 Animation sequences that create an impression of mechanical causality (left) or agency (right). Successive positions are denoted by dotted outlines.

7.1 Proportion of light reflected as a function of wavelength for two artists’ pigments.

7.2 Colour processing in the human visual system.

8.1 A summary of responses in four countries to Komar and Melamid’s question: ‘Which type of outdoor scene appeals the most?’

8.2 A tool case containing a collection of woodworking tools, presented to Sir Terence Conran by his company, Benchmark Woodworking Ltd. Image courtesy of Benchmark Woodworking Ltd (www.benchmarkfurniture.com).

9.1 Results of a study of preferences for scenic beauty in landscape photographs (data from Han, 2007, Table 3).

9.2 Top left: A random black-white pattern; the intensity at each point or ‘pixel’ is randomly selected from two alternatives, black or white, independently of all other points. Top right: The similarity or correlation between picture elements (pixels) in the pattern as a function of the distance between them. Bottom left: A natural scene. Bottom right: The similarity or correlation between picture elements.
elements (pixels) in the scene as a function of the distance between them.

9.3 Two sources of scale-invariance in natural images. Top: Elements in natural images such as sheep vary in size and in viewing distance, producing similar patterns at different scales or magnifications. Bottom: Trees have a similar visual structure at different magnifications or spatial scales.

9.4 Left: A photograph of a tree. Right: The spatial frequency spectrum of the tree image. Intensity variation or amplitude is plotted on the vertical axis, and spatial frequency is plotted on the horizontal axis (the rate of variation in intensity as a function of distance). Amplitude is greater at lower spatial frequencies (slower rates of change over space), reflecting the high degree of similarity between nearby image points.

9.5 Frequency plot of spectral slope values in a large sample of images. Solid line: landscapes (Olmos & Kingdom, 2004); dashed line: abstract paintings. Inset images show examples of landscapes lying at the extremes of the distribution of slope values.

9.6 Illustration of the image representation used in the 3-D box-counting algorithm for estimating D, based on the two images displayed in Figure 9.5. The near corner of the 3-D surface plot corresponds to the bottom-right corner of the image.

9.7 Frequency plot of D values for the same set of images as used in Figure 9.5. Notice that D values near 2.6 are much more common than values below 2.3 or above 2.8, though extreme values are more common in abstract paintings than in landscapes.

9.8 Spectral slope (left) and D (right) scores for fifteen matched pairs of paintings and photographs. The dashed lines represent unit slope, and the solid lines are the best-fitting straight lines through the data points. The range of slope or D values is narrower in paintings than in photographs (best-fitting lines have slopes below unity).

9.9 Ruskin’s example of how to construct a tree-like shape by following simple iterative rules, which actually specify a fractal pattern. Taken from Ruskin (1902), Figure 56 (p. 67).

10.1 Ocelli markings on Argus pheasant feathers, as observed by Darwin (taken from a photograph of one of Darwin’s specimens in the Museum of Zoology, University of Cambridge).
10.2 Detail from Laocoön and his Sons. The powerful male physique inspired many later depictions of the male form (taken from a photograph of the statue in the Vatican Museums, Rome).

Colour Plates (to be found between pages 108 and 109)

6. Absorbance spectra of human photoreceptors.

8. Left: A photograph of Rouen cathedral. Right: The same photograph, digitally processed to preserve chromatic variation but remove achromatic variation.

List of illustrations

12 A computer-based copying task used to investigate visual memory.
19 Artist’s colour wheel, which summarises the rules of subtractive colour mixture.
The opportunities for people to engage with visual art are greater now than they have ever been before. In recent years, increasing numbers of people choose to attend major international gallery exhibitions that celebrate visual art both past and present, often at significant cost in terms of time and money. Most houses, shops, restaurants and public buildings display some form of visual art on their walls. It seems that everyone has an opinion about visual art, perhaps a favourite artist, artistic genre or historical era. Where does this universal interest in art spring from? Why have certain visual forms preoccupied artists across generations? What visual qualities underlie our reactions to artworks? Such questions have traditionally been tackled from the perspective of the humanities, especially disciplines such as art history and philosophy.

Psychology is the scientific study of people, the mind and human behaviour. The creation and consumption of visual art is an ancient and universal human activity and, as such, it should also be a prime focus of research in psychology. As a discipline, psychology dates from the mid-nineteenth century, when a small group of European scientists devised new experimental methods for measuring simple human behavioural responses. Over the last 150 years, psychologists have adopted concepts and techniques from a very wide range of scientific disciplines in their quest to understand the human mind and behaviour. Advances in neuroscience have had a crucial impact on psychological theories, providing researchers with fundamental information about the structure and function of the human brain. Mathematics and computer science have supplied deep theoretical principles that help us to understand the information available in visual images and the constraints within which any physical system must operate when trying to make sense of visual information.

Therefore, modern psychology should be ideally placed to make a significant contribution to our understanding of visual art. However, research on the psychology of visual art presently does not occupy a mainstream position in science. Lack of progress in the past is partly a reflection of the fact that research on the psychology of art is undoubtedly more challenging than research on many other aspects of human cognition. As an experimental psychologist interested in visual perception, I usually design experiments with two principles constantly in mind: simplicity and control. The visual images I use as
experimental materials are kept as simple as they possibly can be, so that they isolate specific visual features for investigation. Typically they are very basic, precisely defined patterns of dots or bars, which permit inferences about the link between stimulus features and perception to be made with some degree of confidence. Presentation of the images to experimental participants is carefully controlled to minimise the intrusion of extraneous factors in their responses. In the case of research on visual art, on the other hand, the source material is inherently complex and subject to manipulation by the artist rather than the experimenter (mostly not in the interests of simplicity), so inferences are much more difficult to make. However, recent advances in methodology have opened up many new options for studying art from a scientific perspective, which I and many others are taking up with enthusiasm. Sophisticated mathematical techniques now allow us to analyse and describe the detailed physical characteristics of even the most complex artworks. Furthermore, new experimental techniques such as eye movement recording and brain imaging give researchers an unprecedented ability to access the perceptual effects of these images. Consequently, recent progress in our understanding has been rapid.

Another factor has also impeded progress in the developing science of visual art. During the twentieth century, a cultural divide grew between the arts and the sciences, partly driven by educational traditions that steered students towards one or the other but not both, especially at more advanced levels of study. I experienced this directly as a teenager when I was steered away from a childhood preoccupation with art-making towards training in science. Scientific methodology was considered by some to be an inappropriate tool for studying art (and still is in some quarters). In the centuries prior to this modern divide, there was a continuing dialogue between the two cultures. Leonardo da Vinci is now recognised as both a brilliant scientist and a renowned artist, although the term ‘scientist’ was coined only in the mid-nineteenth century, hundreds of years after his death. Artists have exploited scientific and technological advances for generations. Renaissance artists were well versed in the laws of perspective. Nineteenth-century painters such as Edgar Degas were directly influenced by photographic imagery. Exponents of Op Art in the 1960s were inspired by research in perceptual psychology.

The gap between the two cultures is beginning to close again, partly driven by scientific and technical advances that have become more sophisticated, yet, at the same time, more accessible to non-specialists. Interactive artists such as Daniel Rozin often use complex computer programs to control the interaction with the spectator. Many painters such as David Hockney have embraced the use
of digital media in their work. Creativity and originality is increasingly recognised as an essential quality of both great art and great science, closing the perceived gap between the two cultures. On the science side, the fundamental characteristics of the human sensory and perceptual systems are quite well understood now, so I and many other researchers in psychology and neuroscience have begun to apply this knowledge to the search for a deeper scientific understanding of visual art.

This book is an attempt to summarise and evaluate the recent advances that have been made and so encourage others to build on them and forge ahead to make new discoveries. It should appeal both to artists interested in science and to scientists interested in art; indeed, it is aimed at anyone who has an interest in the relationship between visual art and the brain. Little prior knowledge in either sphere is assumed, but an open-minded willingness to take on novel and sometimes controversial issues spanning the two is essential.

The book should find a place in undergraduate and graduate courses across a range of science and art disciplines including psychology, neuroscience, fine art, media and art history. Hopefully it can work well as the course text for a specialist course on the psychology of visual art. I have taught such an interdisciplinary course for a number of years and it is a pleasure to witness the enthusiasm and ingenuity with which students apply concepts and knowledge they have learnt in one domain of study to another domain, whether from science to art or vice versa.

I am grateful to several people for their critical and insightful comments on sections of the manuscript, in particular Al Rees, Stephen Herbert and Anna Franklin, as well as to the editorial team and their reviewers at Cambridge University Press. Any remaining errors are, of course, my own responsibility.