Index

ab initio calculations, 62
absorption coefficients
GaAs, 340
Ge, 346
Si and Ge, 210
Si, 204
acceptor, 11
accretion, 13, 14
acoustic phonon, 268
admittance density, 137
admittance from interface states, 136
admittance measurement, 132
admittance of MOS structure, 133
Arrhenius plot, 86
atomic energy levels, 79
atomic potential, 78
vibrational, 112
atomic relaxation, 81
atomic vibrational energies, 78
band diagram n-channel biased at V_{TH}, 298
band gap, temperature dependence, 85
band structure, silicon, 204
band-to-band generation, 90
Bardeen model, 48, 58
binary oxides, 36
black body radiation, 90
Boltzmann distribution, 17, 74
Boltzmann’s constant, 74
bond force, 39
bond strength, molecular, 36
border traps, 168
Brillouin zone, silicon, 203
bulk CMOS technology, 261
bulk oxide traps, carrier statistics, 104
$k \times \Delta E_c$ for high-k oxides, data, 265
canonical ensemble, 71
canonical partition function, 79
capacitance density, 137
capacitance of ideal MOS system, 21
low frequency, 21
capacitance of ideal MOS system, 21
high-frequency, 24
capacitance, measured, 132
capture cross section, 85
effective, 170
thermally activated, 87
interface states, 149
interface states, HfO$_2$/Si, 282
capture mechanisms in oxide, 112
capture rate, 99, 131
channel doping, 27, 261, 298
channel length, 27, 336
charge carrier dynamics, 134
charge carrier generation, 87
charge neutrality level, 47
charge pumping, 159
influence of carrier statistics, 162
current, 162
methodology, 159
chemical stability, 290
charge carrier traps, 11
Clausius–Mosotti equation, 42
conductance density, 137
conductance measurement, 132
conductance method, 153
Lehovec treatment, 154
numerical treatment, 154
configurational coordinate diagram, 81
Coulomb forces, 77
Coulomb potential, 77
coupled differential equations, 117
Cowley-Sze model
for metal/oxide structures, 55
for semiconductor/oxide barriers, 59
metal-semiconductor barriers, 46
crimped interface, 114
crystal structure of HfO$_2$, 271
current fluctuations, 93
C–V data, temperature dependence HfO$_2$/Si, 285
C–V technique
influence from interface states, 141
capture cross section, 144
frequency dependence, 142
three cases of interface states, 141
ΔEc for HfO2/Si, literature data, 278
dangling bond, 223
Deal–Grove oxidation model, 231
debye length, 29
deep level transient spectroscopy (DLTS), 173
degeneracy factor, 76
density of interface states
from HF C–V data, 149
HfO2, Gd2O3 and La2SiO5, 280
density of states, 137
GaAs, 340
Ge, 346
Si, 206
depletion, 14
depletion regions, 13
detailed balance, 96
condition of, 97
dielectric bandgap, 51
dielectric constant
frequency dependence, 270
high-k oxides, 264
high-k oxides, data, 265
isotropic three dimensional case, 40
schematic case, 38
diode coupled MOSFET, 98
dipoles between metals and bandgap materials, 44
DLTS
frequency scanned, 176
capacitance transient, 176
constant capacitance, 179
energy resolution, 184
gate voltage cycle, 182
influence of temperature variation, 187
lock-in filtering, 186
probed energy interval, 189
temperature scanned, 176
weight function, 175
donors, 11
doping, 25
dry and wet oxidation technique, 233
E’ center, 255
effective k-value, influence of interlayer, 272
effective metal work function
influence of annealing, 303
influence of interface charge, 305
effective workfunction, 299
vs. metal workfunction, 301
illustration (Fig. 12.2), 300
influence of MIGS, 302
electric potential, 14
electric vector field, 14
electron affinity, 43
electron energies, 78
electron injection into oxide, 119
electron paramagnetic resonance (EPR), 221
electron potential, 78
electron spin resonance (ESR), 221
electron negativity, 36, 49
emission and capture, general, 96
emission rate, 131
emission rate, effective, 169
energies of symmetry points, InGaAs, 335
energy and structure GaAs, 335
energy band diagram of oxide InGaAs interface, 337
energy band structure, Ge, 345
energy barriers
at bandgap materials, general, 43
Ec, comparison IPE and XPS, 277
models of, 66
energy levels, 79
energy offset values, high-k/Si, 276
energy relations, MOS, 55
enthalpy, 83
enthalpy and Gibbs free energy, temperature dependence, 84
entropy, 74, 80
entropy change, 77
equi-partition principle, 99
equivalent circuit, 21, 132, 146
equivalent oxide thickness (EOT), 30, 34
ergodic hypothesis, 72, 92
escape length, electrons, Ge, 347
ESR properties, GePb1 defect, 343
excess minority carriers, 99
excitons, 96
extended ensemble, 77
f-electrons, 32
Fermi function, 131
derivative of, 133
Fermi level
pinning, by gap states, 48
pinning, oxide/InGaAs, 334
definition, 75
pinning by chemical reaction, 53
first-principle calculations, 237
fixed charge, 16
flatband, 14, 28
capacitance, 29
condition, 13
voltage shift, versus time, 122
voltage shift, injection, 121
formation energies, oxygen vacancies in HfO2, 288
Fowler–Nordheim tunneling, 109
Fowler–Nordheim tunneling, 314
Frank–Condon shift, 109
free energy, 73
gamma-factor, 48
gate leakage by tunneling, 325
gate oxide charge, 104
gate stacks, 32
gate voltage, 18
Index

354

- g-factor, 222
- Gibbs ensemble, 80
- Gibbs free energy, 80
- g-matrix, 223
- grand canonical ensemble, 74
- grand canonical partition function, 79
- Hamilton operator, 113
- harmonic oscillators, 81
- heat of formation, 36
- heterojunction, 11
- high-\(k \) oxides data, 38
- influence of humidity, 292
- overview, 32
- high-mobility channel materials, 333
- hyperfine interaction, 225
- hysteretic tunneling, 113
- induced gap states, 109
- InGaAs MOS structure, calculated C–V curves, 337
- InGaAs MOS structure experimental C–V curves, 338
- experimental interface state distribution, 338
- insulator capacitance, 16
- insulator charge, 25
- insulator thickness, 25
- insulator/semiconductor interface, 11
- interface charge, 16
- interface state distributions, Ge/GeO\(_2\), 342
- interface states, 16, 171
- at oxide/III–V interfaces, 336
- interlayer, 113
- internal energy, 77
- internal photoemission (IPE), 196
- inversion, 21
- IPE influence of interlayers and tunneling, 210
- absorption coefficient, emitted carriers, 207
- absorption depth, 198
- barrier lowering, 203
- comparison measured data, 209
- emission probability, 198
- emission probability, 200
- energy band offset, 197
- energy range for emission, 206
- escape cone, 201
- escape probability, 198
- escape probability in oxide, 198
- method, 196
- photocurrent, 197
- photoyield, 207
- photoyield from bare silicon, 205
- Schottky effect, 201
- threshold energy, 197
- yield, 203
- yield curves, calculated, 208
- \(k \)-tensor, 271
- \(k \)-value and phonon dynamics, 266
- of crystalline structures, 270
- lambda factor in SOI, 262
- Lax states, 90, 144, 148
- leakage current, 153
- leakage data, high-\(k \) oxides, 263
- local bond strength, 77
- local heat, 82
- local vibrational frequency, 77
- localized wave function, 78
- longitudinal optical phonon, 268
- Lyddane–Sachs–Teller equation, 269
- matrix element, 318
- measured density of states distribution, temperature smoothing, 193
- metal gate, 297
- metal induced gap states (MIGS), 51
- metal/oxide Schottky barrier, 43
- minority carriers, generation, 90, 92
- MPAS data HfO\(_2\)/Si, 286
- multi-electron traps in oxide, 116
- multiparameter admittance spectroscopy (MPAS), 157
- (MPAS) influence of interface states, 157
- methodology, 157
- multiphonon process, 78
- multiphonon states, 90, 148
- Mönch’s relation, 52
- n-channels of InGaAs, 334
- negative U traps, 106
- nuclear spin, 225
- occupation probability, 80, 89, 105, 132
- operator, 318
- optical penetration depth, Ge, 347
- oscillating impurity, 78
- oscillator energy, 81
- oscillator potential, 78
- oxidation regimes, 233
- oxide traps, transition processes, 108
- partition function, 73, 79
- passivation and de-passivation of interface states, 248
- Pb center, 222
- and the density of states, 243
- diamagnetic, 255
- dissociation kinetics, 252
- Pb-peak, 142
- periodic table, 32
- perovskites, 33
phonon waves, 268
phonons, 96
photogeneration in oxides, 112
photons, 96
photoyield data Ge/HfO2, 344
photoyield, InGaAs/Al2O3 structure, 339
plasma frequency, 51
Poisson equation, 17
polarizability, schematic case, 39
polarization catastrophe, 42
tensor, 270
ionic, 40
schematic case, 39
polaron traps in HfO2, 290
polarons, 289
polycrystalline silicon gate, 297
Poole–Frenkel effect, 320
positive U traps, 106
quasiparticle, 96
quasi-static method, 151
random telegraph signals, 92
rare-earth metals, 32
rare-earth oxides, 36
rare-earth prevskites, k-values, data, 266
recombination at interfaces, 98
recombination enhanced defect creation, 249
reflection coefficient, 207
relaxation geometries, oxygen vacancy, HfO2, 287
remote carrier scattering, 275
remote phonon scattering, 267
Schottky barrier, 11, 46
Schottky–Mott model, 43, 58
second law of thermodynamics, 74
self trapping, 289
semiconductor charge, 18
S-factor, 49
Shockley–Read statistics, 99
Si/SiO2 bridge bonds, 239
effective k-value, 240
interface states, capture cross section, 246
interface, density of Pb states, 247
interface, hydrogen segregation, 251
Pb center, 242
transition region, 238, 241
silicates without interlayer, 273
silicon dioxide basic structure, 234
dielectrics, 231
hot electron injection, 250
single traps, 94
SOI technology, 261
spin density, 245
spin-dependent recombination, 225
splitting factor, 221
stoichiometry, gradual change, 114
Stokes shift, 109
sub-oxides, 231, 235
substrate injection, 110
surface potential, 18
surface recombination velocity, 100
ternary oxides, 33, 36
thermal emission rate, 85
thermal emission, validity in depletion regions, 95
thermal equilibrium, 11, 13
thermal velocity, electron, 86
thermally stimulated current (TSC), 168
threshold voltage, 21
transition layer traps, 169
transition metals, 32, 36
transversal optical phonon, 268
trap assisted tunneling, 317
tunneling and Heisenberg’s uncertainty relation, 308
through a trap potential, 315
through high-k oxides with interlayer, 327
correlation, 308
direct, 308
influence of effective mass, 308
influence of image force lowering, 313
influence of image force potential, 320
quantization effects, 326
two-step thermal, 173
two-electron trap, 118
two-step processes, 90
vacuum level, 44
vibrational eigenenergies, 81
vibrational eigenstates, 80
vibrational properties, interface traps, 283
virtual gap states, 51
Wentzel–Kramer–Brillouin (WKB) approximation, 35
derivation, 310
validity, 312
work function, 11, 43
XPS core spectra, 3, 214
derivation of energy offset values, 215
determination energy offset values, 213
influence of charge distributions, 217
influence of interlayers, 216
principle, 3, 212
X-ray photoemission spectroscopy (XPS), 196