Structure of Materials

An Introduction to Crystallography, Diffraction and Symmetry

This highly readable, popular textbook for upper undergraduates and graduates comprehensively covers the fundamentals of crystallography, symmetry, and diffraction, and applies these concepts to a large range of materials. This edition now includes more streamlined coverage of crystallography, additional coverage of magnetic point group symmetry, and updated material on extraterrestrial minerals and rocks. New exercises at the end of chapters, plus over 500 exercises available online, allow students to check their understanding of key concepts and put into practice what they have learnt. Over 400 illustrations within the text help students visualize crystal structures and more abstract mathematical objects, supporting more difficult topics, such as point group symmetries. Historical and biographical sections add colour and interest by giving an insight into those who have contributed significantly to the field. Supplementary online material includes password-protected solutions, over 100 crystal structure data files, and PowerPoint files of figures from the book (available at www.cambridge.org/degraef).

MARC DE GRAEF is a Professor in the Department of Materials Science and Engineering at the Carnegie Mellon University in Pittsburgh, USA, where he is also Co-director of the J. Earle and Mary Roberts Materials Characterization Laboratory. He received his Ph.D. in Physics in 1989 from the Catholic University of Leuven. An accomplished writer in the field, he is a Fellow of the Microscopy Society of America.

MICHAEL E. MCHENRY is Professor of Materials Science and Engineering, with an appointment in Physics, at the Carnegie Mellon University in Pittsburgh, USA. He received his Ph.D. in Materials Science and Engineering in 1988 from MIT, before which he spent three years working in industry as a Process Engineer. Also an accomplished writer, he is Publication Chair for the Magnetism and Magnetic Materials (MMM) Conference.

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

> "This book is a lucid, modern, visually attractive exposition of the fascinating and perennially useful subject of the structure of materials. With examples from various materials classes, it will be a valuable addition to the library of most materials scientists and engineers."

R.V. RAMANUJAN, Nanyang Technological University

"The book represents more than an introduction to crystallography, diffraction and symmetry. It is a thorough work explaining the structure of materials from the basic principles of crystallography and the techniques of characterization including analysis of representative materials (metals, ceramics, amorphous, molecular solids and nanomaterials). The easy reading together with the number of illustrations facilitates the understanding of complex structures. The book is a good reference, and the inclusion of problems at the end of each chapter makes it a very useful text book for beginners."

MARINA DÍAZ MICHELENA, Instituto Nacional de Técnica Aeroespacial

"De Graef and McHenry have written a masterpiece in a rich and historical subject that is critical in understanding many topics in materials science and engineering, chemistry, physics, and geology. They provide a comprehensive and unified blend of underlying theory and practice using innumerable illustrations, micrographs, exercises, and other resources such as 3-D interactive software to aid in the visualization of crystal and molecular structures. This book can serve as an advanced undergraduate or a graduate text, as well as a comprehensive resource that everyone working in all aspects of material structure, diffraction science, and crystallography will want to own."

THOMAS W. SCHARF, University of North Texas

Structure of Materials

AN INTRODUCTION TO CRYSTALLOGRAPHY, DIFFRACTION AND SYMMETRY

MARC DE GRAEF Carnegie Mellon University, Pittsburg

MICHAEL E. MCHENRY Carnegie Mellon University, Pittsburg

Second edition, fully revised and updated

© in this web service Cambridge University Press

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107005877

© M. De Graef and M. McHenry 2007, 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007 Second edition first published 2012 8th printing 2020

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data De Graef, Marc, author. Structure of materials : an introduction to crystallography, diffraction and symmetry / Marc De Graef, Carnegie Mellon University, Pittsburgh, Michael E. McHenry, Carnegie Mellon University, Pittsburgh. – [Second edition]. pages cm ISBN 978-1-107-00587-7 (Hardback) 1. Crystallography. 2. Diffraction. 3. Symmetry. 4. Materials science. I. McHenry, Michael E., author. II. Title. QD911.D396 2012 548'.8–dc23

2012015928

ISBN 978-1-107-00587-7 Hardback

Additional resources for this publication at www.cambridge.org/9781107005877

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

In memory of Mary Ann (McHenry) Bialosky (1962–1999), a devoted teacher, student, wife and mother, who was taken from us much too soon.M.E.M.For Marie, Pieter, and Erika.M.D.G.

Figure reproductions Symbols	xxı xxv xxvii xxix
1 Materials and material properties	1
1.1 Materials and structure	1
1.2 Organization of the book	2
1.3 About length scales	3
1.4 Wave–particle duality and the de Broglie relationship	7
1.5 What is a material property?	9
1.5.1 Definition of a material property	9
1.5.2 Directional dependence of properties	10
1.5.3 A first encounter with symmetry	12
1.5.4 A first encounter with magnetic symmetry	15
1.6 So, what is this book all about?	17
1.7 Chapter summary	19
1.8 Historical notes	20
1.9 Selected problems	21
2 The periodic table of the elements and interatomic bonds	23
2.1 About atoms	23
2.1.1 The electronic structure of the atom	23
2.1.2 The hydrogenic model	24
2.2 The periodic table	26
2.2.1 Layout of the periodic table	28
2.2.2 Trends across the table	31
2.3 Interatomic bonds	34
2.3.1 Quantum chemistry	34
2.3.2 Interactions between atoms	34
2.3.3 The ionic bond	36
2.3.4 The covalent bond	38
2.3.5 The metallic hand	39
	40
2.3.6 The van der Waals bond	40
2.3.5 The metanic bond2.3.6 The van der Waals bond2.3.7 Mixed bonding	40 41
2.3.5 The metanic bond2.3.6 The van der Waals bond2.3.7 Mixed bonding2.3.8 Electronic states and symmetry	40 41 41

viii	Contents	
	2.4 Chapter summary	43
	2.5 Historical notes	43
	2.6 Selected problems	47
3	What is a crystal structure?	49
	3.1 Periodic arrangements of atoms	49
	3.2 The space lattice	51
	3.2.1 Basis vectors and translation vectors	51
	3.2.2 Some remarks about notation	52
	3.2.3 More about lattices	54
	3.3 The four 2-D crystal systems	56
	3.4 The seven 3-D crystal systems	57
	3.5 The five 2-D Bravais nets and fourteen 3-D Bravais lattices	60
	3.6 Other ways to define a unit cell	64
	3.7 *2-D and 3-D magnetic Bravais lattices	66
	3.8 Chapter summary	71
	3.9 Historical notes	72
	3.10 Selected problems	73
4	Crystallographic computations	75
	4.1 Directions in the crystal lattice	75
	4.2 Distances and angles in a 3-D lattice	76
	4.2.1 Distance between two points	76
	4.2.2 The metric tensor	78
	4.2.3 The dot product in a crystallographic reference frame	80
	4.3 Worked examples	82
	4.3.1 Computation of the length of a vector	82
	4.3.2 Computation of the distance between two atoms	83
	4.3.3 Computation of the angle between atomic bonds	84
	4.3.4 Computation of the angle between lattice directions	84
	4.3.5 An alternative method for the computation of angles	85
	4.3.6 Further comments	85
	4.4 Chapter summary	86
	4.5 Historical notes	87
	4.6 Selected problems	89
5	Lattice planes	90
	5.1 Miller indices	90
	5.2 Families of planes and directions	93
	5.3 Special case: the hexagonal system	94
	5.4 Crystal forms	96
	5.5 Chapter summary	101
	5.6 Historical notes	101
	5.7 Selected problems	102

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

ix	Cont	ents	
6	Rec	inrocal space	104
0	61	The reciprocal basis vectors	104
	6.2	Reciprocal space and lattice planes	108
	6.3	The reciprocal metric tensor	110
		6.3.1 Computation of the angle between planes	112
		6.3.2 Computation of the length of the reciprocal lattice vector	112
	6.4	Worked examples	114
	6.5	Chapter summary	119
	6.6	Historical notes	119
	6.7	Selected problems	120
7	Add	litional crystallographic computations	122
	7.1	The stereographic projection	122
	7.2	About zones and zone axes	125
		7.2.1 The vector cross product	126
		7.2.2 About zones and the zone equation	130
		7.2.3 The reciprocal lattice and zone equation in the hexagonal system	131
	7.3	Relations between direct space and reciprocal space	133
	7.4	Coordinate transformations	135
		7.4.1 Transformation rules	135
		7.4.2 Example of a coordinate transformation	138
	75	7.4.3 Converting vector components into Cartesian coordinates	140
	1.5	7.5.1 Storeographic projections	143
		7.5.1 Stereographic projection of a monoclinic crystal	145
	76	Chapter summary	140
	7.0	Historical notes	150
	7.8	Selected problems	150
8	Svm	ametry in crystallography	152
· ·	8.1	Symmetry of an arbitrary object	152
	8.2	Symmetry operations	158
		8.2.1 Basic isometric transformations	159
		8.2.2 Compatibility of rotational symmetries with crystalline translational	
		periodicity	160
		8.2.3 Operations of the first kind: pure rotations	162
		8.2.4 Operations of the first kind: pure translations	164
		8.2.5 Operations of the second kind: pure reflections	166
		8.2.6 Operations of the second kind: inversions	167
		8.2.7 Symmetry operations that do not pass through the origin	168
	8.3	*Magnetic symmetry operations	169
		8.3.1 Time-reversal symmetry and axial vectors	169
		8.3.2 Time-reversing symmetry operations	173
	8.4	Combinations of symmetry operations	175
		8.4.1 Combination of rotations with the inversion center	175

Х

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

		8.4.2	Combination of rotations and mirrors	177
		8.4.3	Combination of rotations and translations	178
		8.4.4	Combination of mirrors and translations	181
		8.4.5	Relationships and differences between operations of the first and	
			second kind	183
		8.4.6	*Combinations of magnetic and regular symmetry operators	184
	8.5	Point	symmetry	186
	8.6	Chapt	er summary	188
	8.7	Histor	ical notes	190
	8.8	Select	ed problems	191
9	Poir	nt gro	ups	193
	9.1	What	is a group?	193
		9.1.1	A simple example	193
		9.1.2	Group axioms	194
		9.1.3	Principal properties of groups	196
	9.2	3-D c1	rystallographic point symmetries	197
		9.2.1	Step I: the proper rotations	198
		9.2.2	Step II: combining proper rotations with two-fold rotations	199
		9.2.3	Step IIIa: combining proper rotations with inversion symmetry	201
		9.2.4	Step IIIb: combining proper rotations with perpendicular reflection	202
		025	Step IV: combining proper rotations with coinciding reflection	205
		9.2.3	elements	204
		9.2.6	Step Va: combining inversion rotations with coinciding reflection	
			elements	204
		9.2.7	Step Vb: combining proper rotations with coinciding and	
			perpendicular reflection elements	205
		9.2.8	Step VI: combining proper rotations	206
		9.2.9	Step VII: adding reflection elements to Step VI	207
		9.2.10	General remarks	208
	9.3	2-D c1	rystallographic point symmetries	220
	9.4	*Mag	netic point groups	221
		9.4.1	Derivation	221
		9.4.2	Visualization of the magnetic point groups	223
		9.4.3	Color, charge, and time reversal	225
	9.5	Chapt	er summary	227
	9.6	Histor	ical notes	228
	9.7	Select	ed problems	228
10	Plar	ne gro	ups and space groups	230
	10.1	Comb	ining translations with point group symmetry	230
	10.2	Plane	groups	231
		10.2.1	A simple example	231
		10.2.2	A more complex example	233

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

	•	
v	Π.	
^		

11

12

10.2.3 The 17 plane groups	235
10.3 Space groups	236
10.3.1 A simple example	236
10.3.2 A second simple example	238
10.3.3 A more complex example	239
10.3.4 The symmorphic space groups	240
10.3.5 The non-symmorphic space groups	242
10.3.6 *Space group generators	243
10.3.7 General remarks	247
10.4 The International Tables for Crystallography	248
10.5 *Magnetic space groups	253
10.6 Chapter summary	255
10.7 Historical notes	256
10.8 Selected problems	257
X-ray diffraction: geometry	259
11.1 Properties and generation of X-rays	259
11.1.1 How do we generate X-rays?	261
11.1.2 Wavelength selection	265
11.2 X-rays and crystal lattices	268
11.2.1 Scattering of X-rays by lattice planes	272
11.2.2 Bragg's law in reciprocal space	276
11.3 Basic experimental X-ray diffraction techniques	280
11.3.1 The X-ray powder diffractometer	281
11.4 Chapter summary	289
11.5 Historical notes	289
11.6 Selected problems	290
X-ray diffraction: intensities	291
12.1 Scattering by electrons atoms and unit cells	291
12.1.1 Scattering by a single electron	291
12.1.1. Scattering by a single atom	293
12.1.2 Scattering by a single unit cell	298
12.1.5 Security of a single and con	300
12.2.1 Lattice centering and the structure factor	300
12.2.2.1.2.2.1.2.2.1.2.2.2.2.2.2.2.2.2.	304
12.2.3 Systematic absences and the <i>International Tables for</i>	501
Crystallography	307
12.2.4 Examples of structure factor calculations	307
12.3 Intensity calculations for diffracted and measured intensities	309
12.3.1 Description of the correction factors	310
12.3.2 Expressions for the total measured intensity	315
12.4 Chapter summary	317
12.5 Historical notes	317
12.6 Selected problems	318
	210

xii

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

	Contents	
13	Other diffraction techniques	320
	13.1 Introductory remarks	320
	13.2 *Neutron diffraction	321
	13.2.1 Neutrons: generation and properties	323
	13.2.2 Neutrons: wavelength selection	325
	13.2.3 Neutrons: atomic scattering factors	326
	13.2.4 Neutrons: scattering geometry and diffracted intensities	330
	13.2.5 Neutrons: example powder pattern	334
	13.3 *Electron diffraction	335
	13.3.1 The electron as a particle and a wave	335
	13.3.2 The geometry of electron diffraction	337
	13.3.3 The transmission electron microscope	338
	13.3.4 Basic observation modes in the TEM	340
	13.3.5 Convergent beam electron diffraction	343
	13.4 *Synchrotron X-ray sources for scattering experiments	347
	13.4.1 Synchrotron accelerators	348
	12.5 Charten summer	250
	13.5 Chapter summary	252 252
	13.7 Selected problems	354
	13.7 Selected problems	554
14	About crystal structures and diffraction patterns	356
	14.1 Crystal structure descriptions	356
	14.1.1 Space group description	356
	14.1.2 Graphical representation methods	357
	14.2 Crystal structures \leftrightarrow powder diffraction patterns	360
	14.2.1 The Ni powder pattern, starting from the known structure	361
	14.2.2 The NaCl powder pattern, starting from the known structure	365
	14.2.3 The Ni structure, starting from the experimental powder diffraction	2.00
	pattern	369
	14.2.4 The NaCl structure, starting from the experimental powder diffraction	272
	patient	275
	14.2.5 *General comments about crystal structure determination	3/3
	14.5 Chapter summary	380
	14.4 Instorical notes	382
	14.5 Selected problems	562
15	Non-crystallographic point groups	383
	15.1 Example of a non-crystallographic point group symmetry	383
	15.2 Icosahedral and related five-fold symmetry groups	384
	15.2.1 The icosahedral point groups	384
	15.2.2 Fullerene molecular structures	385
	15.2.3 Icosahedral group representations	387
	15.2.4 Other non-crystallographic point groups with five-fold symmetries	390
	15.2.5 Descents in symmetry: decagonal and pentagonal groups	393

xiii

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

Contents

	15.3	Non-crystallographic point groups with octagonal symmetry	395
	15.4	Listerical potes	400
	15.5	Selected problems	400
	15.0	Selected problems	402
16	Peri	odic and aperiodic tilings	403
	16.1	2-D plane tilings	403
		16.1.1 2-D regular tilings	404
		16.1.2 2-D Archimedean tilings	405
		16.1.3 <i>k</i> -uniform regular tilings	406
		16.1.4 Dual tilings – the Laves tilings	407
		16.1.5 Tilings without regular vertices	408
	16.2	*Color tilings	408
	16.3	*Quasiperiodic tilings	410
	16.4	*Regular polyhedra and <i>n</i> -D regular polytopes	411
	16.5	Crystals with stacking of 3 ⁶ tilings	415
		16.5.1 Simple close-packed structures: ABC stacking	415
		16.5.2 Interstitial sites in close-packed structures	416
		16.5.3 Representation of close-packed structures	417
		16.5.4 Polytypism and properties of SiC semiconductors	419
		16.5.5 3 ⁶ close-packed tilings of polyhedral faces	420
	16.6	Chapter summary	421
	16.7	Historical notes	422
	16.8	Selected problems	424
17	Met	allic structures I: simple, derivative, and superlattice	
• •	stru	ctures	425
	17.1	Introductory comments	425
	17.1	Classification of structures	425
	17.2	17.2.1. Strukturbericht symbols	426
		17.2.7 Pearson symbols	420
		17.2.2 Structure descriptions in this book	427
	173	Parent structures	427
	17.5	17.3.1. Geometrical calculations for cubic structures	430
	174	Atomic sizes bonding and alloy structure	431
	1/.7	17.4.1 Hume-Rothery rules	432
		17.4.2 Bonding in close-packed rare gas and metallic structures	433
		17.4.2 Donaling in close packed rate gas and inclume structures	437
	17 5	Superlattices and sublattices: mathematical definition	438
	17.6	Derivative structures and superlattice examples	430
	17.0	17.6.1. fcc-derived structures and superlattices	430
		17.6.2 <i>bcc</i> -derived superlattices	444
		17.6.3 Diamond cubic derived superlattices	446
		17.6.4 Hexagonal close-packed derived superlattices	448
		1 Interaction of the preside defined superindees	110

17.7 Elements with alternative stacking sequences or lower symmetry 450

xiv

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

	17.7.1 Elements with alternative stacking sequences	450
	17.7.2 Elements with lower-symmetry structures	451
	17.8 *Natural and artificial superlattices	455
	17.8.1 Superlattice structures based on the $L1_2$ cell	455
	17.8.2 Artificial superlattices	457
	17.8.3 X-ray scattering from long-period multi-layered systems	459
	17.8.4 Incommensurate superlattices	459
	17.9 Interstitial alloys	461
	17.10 Chapter summary	462
	17.11 Historical notes	463
	17.12 Selected problems	464
18	Metallic structures II: complex geometrically determined	
	structures	466
	18.1 Electronic states in metals	466
	18.2 Topological close packing	468
	18.2.1 The Kasper polyhedra	469
	18.2.2 Connectivity of Kasper polyhedra	471
	18.2.3 Metallic radii	471
	18.3 *Frank–Kasper alloy phases	472
	18.3.1 A15 phases and related structures	472
	18.3.2 The Laves phases and related structures	479
	18.3.3 The sigma phase	486
	18.3.4 The μ -phase and the <i>M</i> -, <i>P</i> -, and <i>R</i> -phases	488
	18.4 *Quasicrystal approximants	490
	18.4.1 Mg ₃₂ (Al,Zn) ₄₉ and α -Al–Mn–Si crystal structures	490
	18.4.2 Mg ₃₂ (Al,Zn) ₄₉ and α -Al–Mn–Si shell models	491
	18.5 Chapter summary	494
	18.6 Historical notes	495
	18.7 Selected problems	496
19	Metallic structures III: quasicrystals	497
	19.1 Introductory remarks	497
	19.2 The golden mean and pentagonal symmetry	498
	19.3 1-D quasicrystals	501
	19.3.1 The Fibonacci sequence and lattice derived by recursion	501
	19.3.2 Lattice positions in the Fibonacci lattice	503
	19.3.3 Construction of the Fibonacci lattice by the projection method	504
	19.3.4 *The Fourier transform of the Fibonacci lattice	505
	19.4 *2-D quasicrystals	507
	19.4.1 2-D quasicrystals: Penrose tilings	507
	19.4.2 The Penrose tiling derived by projection	512
	19.4.3 2-D quasicrystals: other polygonal quasicrystals	514
	19.5 *3-D quasicrystals	516
	19.5.1 3-D Penrose tilings	517

xv

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

	19.5.2 Indexing icosahedral quasicrystal diffraction patterns	519
	19.5.3 Icosahedral quasicrystal diffraction patterns and quasilattice	
	constants	521
	19.5.4 3-D Penrose tiles: stacking, decoration, and quasilattice constants	522
	19.5.5 3-D Penrose tiles: projection method	524
	19.6 *Multiple twinning and icosahedral glass models	525
	19.7 *Microscopic observations of quasicrystal morphologies	526
	19.8 Chapter summary	528
	19.9 Historical holes	520
	19.10 Selected problems	550
20	Metallic structures IV: amorphous metals	531
	20.1 Introductory comments	531
	20.2 Order in amorphous and nanocrystalline alloys	532
	20.3 Atomic positions in amorphous alloys	535
	20.4 Atomic volume, packing, and bonding in amorphous solids	536
	20.4.1 DRPHS model	537
	20.4.2 Binding in clusters: crystalline and icosahedral short-range	
	order	539
	20.4.3 Icosahedral short-range order models	539
	20.5 Amorphous metal synthesis	540
	20.6 Thermodynamic and kinetic criteria for glass formation	542
	20.7 Examples of amorphous metal alloy systems	543
	20.7.1 Metal-metalloid systems	544
	20.7.2 Rare earth–transition metal systems	545
	20.7.3 Early transition metal–late transition metal systems	546
	20.7.4 Multi-component nanocomposite systems.	546
	20.7.5 Multi-component bulk amorphous systems	548
	20.8 *X-ray scattering in amorphous materials	550
	20.9 *Extended X-ray absorption fine structure (EXAFS)	554
	20.10 Mossbauer spectroscopy	557
	20.12 Ustanian mary	558
	20.12 Filstofical fibles	550 560
	20.15 Selected problems	500
21	Ceramic structures I: basic structure prototypes	561
	21.1 Introductory remarks	561
	21.2 Ionic radii	562
	21.3 Bonding energetics in ionic structures	565
	21.4 Rules for packing and connectivity in ionic crystals	566
	21.4.1 Pauling's rules for ionic structures	566
	21.4.2 Radius ratio rules for ionic compounds	567
	21.5 Oxides of iron	570
	21.6 Halide salt structures: CsCl, NaCl, and CaF ₂	571
	21.7 Close-packed sulfide and oxide structures: ZnS and Al_2O_3	574

xvi

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

	21.8 Perovskite and spinel structures	577
	21.8.1 Perovskites: ABO ₃	577
	21.8.2 Spinels: AB_2O_4	580
	21.9 Non-cubic close-packed structures: NiAs, CdI ₂ , and TiO ₂	584
	21.10 *Layered structures	585
	21.10.1 Magnetoplumbite phases	586
	21.10.2 Aurivillius phases	586
	21.10.3 Ruddlesden–Popper phases	588
	21.10.4 Tungsten bronzes	589
	21.10.5 Titanium carbosulfide	591
	21.11 Additional remarks	591
	21.12 *Point defects in ceramics	592
	21.13 Chapter summary	594
	21.14 Historical notes	594
	21.15 Selected problems	596
22	Ceramic structures II: high-temperature superconductors	597
	22.1 Introductory remarks about superconductivity	597
	22.2 High-temperature superconductors: nomenclature	598
	22.3 *Perovskite-based high-temperature superconductors	599
	22.3.1 Single-layer perovskite high-temperature superconductors	599
	22.3.2 Triple-layer perovskite-based high-temperature superconductors	601
	22.4 *BSCCO, TBCCO, HBCCO, and ACBCCO HTSC layered structures	606
	22.4.1 The BSCCO double-layer high-temperature superconductors	606
	22.4.2 The TBCCO double-layer high-temperature superconductors	608
	22.4.3 The TBCCO single-layer high-temperature superconductors	611
	22.4.4 The HBCCO high-temperature superconductors	613
	22.4.5 The ACBCCO high-temperature superconductors	615
	22.4.6 Rutheno-cuprate high-temperature superconductors	615
	22.4.7 Infinite-layer high-temperature superconductors	616
	22.5 Chapter summary	616
	22.6 Historical notes	617
	22.7 Selected problems	619
23	Ceramic structures III: terrestrial and extraterrestrial	
	minerals	620
	23.1 Classification of minerals	620
	23.2 Silicates overview	622
	23.2.1 Orthosilicates (nesosilicates)	624
	23.2.2 Pyrosilicates (sorosilicates)	629
	23.2.3 Chains of tetrahedra, metasilicates (inosilicates)	630
	23.2.4 Double chains of tetrahedra	633
	23.2.5 Sheets of tetrahedra, phyllosilicates	634
	23.2.6 Networks of tetrahedra, tectosilicates	635
	23.2.7 Random networks of tetrahedra: silicate glasses	639

xvii

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

Contents

23.2.8 Mesoporous silicates 641 23.2.9 Sol-gel synthesis of silicate nanostructures 642 23.3 Magnetic minerals on Mars and their biogenic origins 643 23.3.1 Hydroxides 646 23.3.2 Sulfates 649 23.4 Chapter summary 650 23.5 Historical notes 651 23.6 Selected problems 652 Molecular solids and biological materials 24 653 24.1 Introductory remarks 653 24.2 Simple molecular crystals: ice, dry ice, benzene, the clathrates, and self-assembled structures 654 24.2.1 Solid H₂O: ice 654 24.2.2 Solid CO₂: dry ice 656 24.2.3 Hydrocarbon crystals 657 24.2.4 Clathrates 658 24.2.5 Amphiphiles and micelles 659 24.3 Polymers 660 24.3.1 Polymer classification 661 24.3.2 Polymerization reactions and products 662 24.3.3 Polymer chains: spatial configurations 664 24.3.4 Copolymers and self-assembly 666 24.3.5 Conducting and superconducting polymers 668 24.3.6 Polymeric derivatives of fullerenes 670 24.4 Biological macromolecules 671 24.4.1 DNA and RNA 671 24.4.2 Virus structures 674 24.5 Fullerene-based molecular solids 677 24.5.1 Fullerites 679 24.5.2 Fullerides 681 24.5.3 Carbon nanotubes 681 24.6 Chapter summary 685 24.7 Historical notes 685 24.8 Selected problems 687 References 688 Index 716

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

Preface to the second edition

We are grateful to the many readers, students and teachers alike, who have sent us comments and corrections, or who simply expressed their appreciation of the first edition of our book. As always, it is difficult, if not impossible, to please everyone and to accommodate all requests for changes or additional material. As we prepared this second edition of *Structure of Materials*, we attempted simultaneously to shorten the text and make it more complete by adding sections on magnetic symmetry (time-reversal symmetry, magnetic Bravais lattices, and magnetic point and space groups). The new text has 24 chapters, as before split into 1–13 (crystallography and symmetry) and 15–24 (examples of important structures), with Chapter 14 as a transition chapter, applying the material from the first half of the book. In addition to the new material on magnetic symmetry, we have added sections on the oxides of iron (Chapter 21) and magnetic minerals on Mars (Chapter 23), and we have made numerous small changes throughout the text. The resulting text is more succinct, and, we hope, a significant improvement over the first edition.

Each chapter now has an introductory and summary section, and a short set of four new problems. Additional new problems, as well as all the problems from the first edition, can be found on the book's website, http://som.web.cmu.edu/, for a total of nearly 600 problems. Solution sets to all problems are made available to instructors via the publisher. In addition, PowerPoint files with enlarged versions (some in color) of all the figures from the book are available from the website. We hope that these files will become a valuable teaching resource.

The 2011 Nobel prize in chemistry was awarded to D. Shechtman for his discovery of quasicrystals, which prompted us to update the historical section of Chapter 19. This award is a testament to the importance of crystal structures in modern science and engineering; it should serve as a reminder that even after decades or centuries of steady scientific progress, unexpected discoveries occur every now and then that force a review, and in this case a *redefinition*, of the basic assumptions of a field. We hope that the interested reader will always keep an open mind when reading our text; while most of the material has stood the test of time (and scientific scrutiny), there is no telling which aspects of this book may need to be redefined at some point in the future. This constant questioning of the validity of basic scientific assumptions also means that this book is, in a way, just a 2011 snapshot of the field of crystallography; we sincerely hope that this snapshot will serve our readers and we will be pleased if, in any way, we can stimulate new discoveries that cause us to extend and reinterpret this field.

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

Preface to the first edition

In the movie *Shadowlands*,¹ Anthony Hopkins plays the role of the famous writer and educator, C. S. Lewis. In one scene, Lewis asks a probing question of a student: "*Why do we read?*" (Which could very well be rephrased: *Why do we study?* or *Why do we learn?*) The answer given is simple and provocative: "*We read to know that we are not alone.*" It is comforting to view education in this light. In our search to know that we are not alone, we connect our thoughts, ideas, and struggles to the thoughts, ideas, and struggles of those who preceded us. We leave our own thoughts for those who will follow us, so that they, too, will know that they are not alone. In developing the subject matter covered in this book, we (MEM and MDG) were both humbled and inspired by the achievements of the great philosophers, mathematicians, and scientists who have contributed to this field. It is our fervent hope that this text will, in some measure, inspire new students to connect their own thoughts and ideas with those of the great thinkers who have struggled before them and leave new ideas for those who will struggle afterwards.

The title of this book (Structure of Materials) reflects our attempt to examine the atomic structure of solids in a broader realm than just traditional crystallography, as has been suggested by Alan Mackay (1975). By combining visual illustrations of crystal structures with the mathematical constructs of crystallography, we find ourselves in a position to understand the complex structures of many modern engineering materials, as well as the structures of naturally occurring crystals and crystalline biological and organic materials. That all important materials are not crystalline is reflected in the discussion of amorphous metals, ceramics, and polymers. The inclusion of quasicrystals conveys the recent understanding that materials possessing long-range orientational order without 3-D translational periodicity must be included in a modern discussion of the structure of materials. The discovery of quasicrystals has caused the International Union of Crystallographers to redefine the term *crystal* as "any solid having an essentially discrete diffraction pattern." This emphasizes the importance of diffraction theory and diffraction experiments in determining structure. It also means that extensions of the crystallographic theory to higher-dimensional spaces are necessary for the correct interpretation of the structure of quasicrystals.

Modern crystallography education has benefited tremendously from the availability of fast desktop computers; this book would not have been possible without the availability of wonderful free and commercial software for the visualization of crystal and molecular structures, for the computation of powder and single crystal diffraction patterns, and a host of other operations that would be nearly impossible to carry out by hand. We believe that the reader of this book will have an advantage over students of just a generation ago; he/she will be able to directly visualize all the crystal structures described in this text, simply by

¹ MEM is grateful to his good friend Joanne Bassilious for recommending this inspirational movie.

xxii

Preface to the first edition

entering them into one of these visualization programs. The impact of visual aids should not be underestimated, and we have tried our best to include clear illustrations for more than 100 crystal structures. The structure files, available from the book's website, will be useful to the reader who wishes to look at these structures interactively.

About the structure of this book

The first half of the book, Chapters 1 through 13, deals with the basics of crystallography. It covers those aspects of crystallography that are mostly independent of any actual material, although we make frequent use of actual materials as examples, to clarify certain concepts and as illustrations. In these chapters, we define the seven crystal systems and illustrate how lattice geometry computations (bond distances and angles) can be performed using the metric tensor concept. We introduce the reciprocal space description and associated geometrical considerations. Symmetry operations are an essential ingredient for the description of a crystal structure, and we enumerate all the important symmetry elements. We show how sets of symmetry elements, called point groups and space groups, can be used to describe crystal structures succinctly. We introduce several concepts of diffraction, in particular the structure factor, and illustrate how the *International Tables for Crystallography* can be used effectively.

In the second half of the book, Chapters 15 through 25, we look at the structures of broad classes of materials. In these chapters, we consider, among others, metals, oxides, and molecular solids. The subject matter is presented so as to build an understanding of simple to more complex atomic structures, as well as to illustrate technologically important materials. In these later chapters, we introduce many geometrical principles that can be used to understand the structure of materials. These geometrical principles, which enrich the material presented in Chapters 1 through 13, also allow us to gain insight into the structure of quasicrystalline and amorphous materials, discussed in advanced chapters in the latter part of the text.

In the later chapters, we give examples of crystallographic computations that make use of the material presented in the earlier chapters. We illustrate the relationship between structures and phases of matter, allowing us to make elementary contact with the concept of a *phase diagram*. Phase relations and phase diagrams combine knowledge of structure with concepts from thermodynamics; typically, a thermodynamics course is a concurrent or subsequent part of the curriculum of a materials scientist or engineer, so that the inclusion of simple phase diagrams in this text strengthens the link with thermodynamics. Prominent among the tools of a materials scientist are those that allow the examination of structures on the nanoscale. Chapters in the latter half of the book have numerous illustrations of interesting nanostructures, presented as extensions to the topical discussions.

Chapter 14 forms the connection between the two halves of the book: it illustrates how to use the techniques of the first half to study the structures of the second half. We describe this connection by means of four different materials, which are introduced at the end of the first chapter. Chapter 14 also reproduces one of the very first scientific papers on the determination of crystal structures, the 1913 paper by W. H. Bragg and W. L. Bragg on *The Structure of the Diamond*. This seminal paper serves as an illustration of the long path that scientists have traveled in nearly a century of crystal structure determinations.

xxiii

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef, Michael E. McHenry Frontmatter <u>More Information</u>

Preface to the first edition

Some topics in this book are more advanced than others, and we have indicated these sections with an asterisk at the start of the section title. The subjects covered in each chapter are further amplified by 400 end-of-chapter reader exercises. At the end of each chapter, we have included a short historical note, highlighting how a given topic evolved, listing who did what in a particular subfield of crystallography, or giving biographical information on important crystallographers. Important contributors to the field form the main focus of these historical notes. The selection of contributors is not chronological and reflects mostly our own interests.

We have used the text of this book (in course-note form) for the past 13 years for a sophomore-level course on the structure of materials. This course has been the main inspiration for the book; many of the students have been eager to provide us with feedback on a variety of topics, ranging from "This figure doesn't work," to "Now I understand!" Developing the chapters of the book has also affected other aspects of the Materials Science and Engineering curriculum at CMU, including undergraduate laboratory experiments on amorphous metals, magnetic oxides, and high-temperature superconductors. Beginning in June, 1995, in conjunction with the CMU Courseware Development Program, multi-media modules for undergraduate students studying crystallography were created. The first module, "Minerals and Gemstones," coupled photographic slides generously donated by Marc Wilson, curator of the Carnegie Museum of Natural History's Hillman Hall of Minerals and Gems (in Pittsburgh, PA), with crystal shapes and atomic arrangements. This and subsequent software modules were made available on a CD in the fall of 1996; as updated versions become available, they will be downloadable through the book's website. This software development work was heavily supported by our undergraduate students, and helped to shape the focus of the text. A module on the "History of Crystallography" served as a draft for the historical notes sections of this book.

The text can be used for a one-semester graduate or undergraduate course on crystallography; assuming a 14-week semester, with two 90-minute sessions per week, it should be possible to cover Chapters 1 through 14 in the first 11–12 weeks, followed by selected sections from the later chapters in the remainder of the semester. The second half of the book is not necessarily meant to be taught "as is"; instead, sections or illustrations can be pulled from the second half and used at various places in the first half of the book. Many of the reader exercises in the second half deal with the concepts of the first half.

Software used in the preparation of this book

Some readers might find it interesting to know which software packages were used for this book. The following list provides the name of the software package and the vendor (for commercial packages) or author website. Weblinks to all companies are provided through the book's website.

- Commercial packages:
- Adobe Illustrator [www.adobe.com];
- Adobe Photoshop [www.adobe.com];
- CrystalMaker and CrystalDiffract [www.crystalmaker.com].

xxiv

Preface to the first edition

- Shareware packages:
- QuasiTiler [www.geom.uiuc.edu/apps/quasitiler];
- Kaleidotile (Version 1.5) [http://geometrygames.org].
- Free packages:
- teT_EX [www.tug.org];
- TeXShop [www.texshop.org];
- POV-Ray [www.povray.org].

The website for this book runs on a dedicated Linux workstation located in MDG's office. The site can be reached through the publisher's website, or, directly, at http://som.web.cmu.edu/.

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

Acknowledgements

Many people have (knowingly or unknowingly) contributed to this book. We would like to thank as many of them as we can remember and apologize to anyone whom we have inadvertently forgotten. First of all, we would like to express our sincere gratitude to the many teachers who first instructed us in the field of the structure of materials. Michael McHenry's work on the subject of quasicrystals and icosahedral group theory dates back to his Massachusetts Institute of Technology (MIT) thesis research (McHenry, 1988). Michael McHenry acknowledges Professor Linn Hobbs, formerly of Case Western Reserve University and now at MIT, for his 1979 course Diffraction Principles and Materials Applications and the excellent course notes that have served to shape several of the topics presented in this text. Michael McHenry also acknowledges Professor Bernard Wuensch of MIT for his 1983 course Structure of Materials, which also served as the foundation for much of the discussion as well as the title of the book. The course notes from Professor Mildred Dresselhaus' 1984 MIT course Applications of Group Theory to the Physics of Solids also continue to inspire. Michael McHenry's course project for this course involved examining icosahedral group theory, and was suggested to him by his thesis supervisor, Robert C. O'Handley; this project has also had a profound impact on his future work and the choice of topics in this book.

Marc De Graef's first exposure to crystallography and diffraction took place in his second year of undergraduate studies in physics, at the University of Antwerp (Belgium), in a course on basic crystallography, taught by Professor J. Van Landuyt and Professor G. Van Tendeloo, and in an advanced diffraction course, also taught by Van Landuyt. Marc De Graef would also like to acknowledge the late Professor R. Gevers, whose course on analytical mechanics and tensor calculus proved to be quite useful for crystallographic computations as well. After completing a Ph.D. thesis at the Catholic University of Leuven (Belgium), MDG moved to the Materials Department at UCSB, where the first drafts of several chapters for this book were written. In 1993, he moved to the Materials Science and Engineering Department at Carnegie Mellon University, Pittsburgh, where the bulk of this book was written.

We are especially grateful to Professor Jose Lima-de-Faria for providing us with many of the photographs of crystallographers that appear in the historical notes sections of the book, as well as many others cited below. His unselfish love for the field gave the writers an incentive to try to emulate his wonderful work.

We would like to acknowledge the original students who contributed their time and skills to the multi-media courseware project: M. L. Storch, D. Schmidt, K. Gallagher, and J. Cheney. We offer our sincere thanks to those who have proofread chapters of the text. In particular, we thank Nicole Hayward for critically reading many chapters and for making significant suggestions to improve grammar, sentence structure, and so on. In addition, we would like to thank Matthew Willard, Raja Swaminathan, Shannon Willoughby, and Dan Schmidt for reading multiple chapters; and Sirisha Kuchimanchi, Julia Hess,

xxvi

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

Acknowledgements

Paul Ohodnicki, Roberta Sutton, Frank Johnson, and Vince Harris for critical reading and commenting on selected chapters. We also thank our colleague Professor David Laughlin for critical input on several subjects and his contribution to a special tutorial at the 2000 Fall Meeting of The Minerals, Metals & Materials Society (TMS), "A Crystallography and Diffraction Tutorial Sponsored by the ASM-MSCTS Structures Committee." We thank Marina Diaz-Michelena of INTA for introducing us to the magnetic minerals on Mars.

There is a large amount of literature on the subject of structure, diffraction, and crystallography. We have attempted to cite a manageable number of representative papers in the field. Because of personal familiarity with many of the works cited, our choices may have overlooked important works and included topics without full citations of *all* seminal books and papers in that particular area. We would like to apologize to those readers who have contributed to the knowledge in this field, but do not find their work cited. The omissions do not reflect on the quality of their work, but are a simple consequence of the human limitations of the authors.

The authors would like to acknowledge support from the National Science Foundation (NSF), grant nos. #1106943, #0804020 and #1005330, Los Alamos National Laboratory (LANL), the Air Force Office of Scientific Research (AFOSR), and Carnegie Mellon University for providing financial support during the writing of this book.

We would also like to thank several of our colleagues, currently or formerly at CMU, for their support during the years it has taken to complete the text: Greg Rohrer, Tresa Pollock, David Laughlin, and Alan Cramb. In particular, we would like to thank Jason Wolf, supervisor of the X-ray Diffraction facility; Tom Nuhfer, supervisor of the Electron Optics facility; and Bill Pingitore, MSE undergraduate laboratory technician at CMU.

We would like to thank our editors at Cambridge University Press, Tim Fishlock, Simon Capelin, Michelle Carey, and Anna Littlewood for their patience. This book has taken quite a bit longer to complete than we had originally anticipated, and there was no pressure to hurry up and finish it off. In this time of deadlines and fast responses, it was actually refreshing to be able to take the time needed to write and rewrite (and, often, rewrite again) the various sections of this book.

Marc De Graef would like to thank his wife, Marie, for her patience and understanding during the many years of evening and weekend work; without her continued support (and sporadic interest as a geologist) this book would not have been possible. Last but not least, the authors acknowledge their children. Michael McHenry's daughter Meghan and son Michael lived through all of the travails of writing this book. Meghan's friendship while a student at CMU has helped to further kindle the author's interest in undergraduate education. Her friends represent the best of the intellectual curiosity that can be found in the undergraduates at CMU. Michael has developed an interest in computer networking and helped to solve many problems that only an adept young mind can grasp. We hope that he finds the joy in continued education that his sister has.

Both of Marc De Graef's children, Pieter and Erika, were born during the writing of this book, so they have lived their entire lives surrounded by crystallographic paraphernalia; indeed, many of their childhood drawings, to this day, are made on the back of sheets containing chapter drafts and trial figures. Hopefully, at some point in the future, they will turn those pages and become interested in the front as well.

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

Figure reproductions

This book on the structure of materials has been enriched by the courtesy of other scientists in the field. A number of figures were taken from other authors' published or unpublished work, and the following acknowledgements must be made:

The following figures were obtained from J. Lima-de-Faria and are reproduced with his permission: 1.8(a),(b); 3.19(a), (b); 4.5(a),(b); 5.11(a),(b); 6.4(a),(b); 7.12(a),(b); 8.28(a),(b); 9.18(b); 10.14(a),(b); 15.16(a); 16.18(a),(b); 20.18(a),(b); 21.24(a); 23.28(a),(b).

The following figures were reproduced from the book *Introduction to Conventional Transmission Electron Microscopy* by M. De Graef (2003) with permission from Cambridge University Press: 3.3; 5.7; 7.1; 7.7; 7.8; 7.10; 8.20; 11.16; 13.5; 13.6; 13.8(a); 13.10; 13.11; 13.12.

Insets in Fig. 1.2 courtesy of D. Wilson, R. Rohrer, and R. Swaminathan; Fig. 11.8 courtesy of the Institute for Chemical Education; Fig. 13.13 courtesy of ANL; Fig. 13.14(a) photo courtesy of ANL, (b) picture courtesy of BNL; Fig. 13.16(b) courtesy of ANL; Fig. 13.17(a) courtesy of A. Hsiao and (b) courtesy of M. Willard; Figure in Box 16.1 courtesy of M. Skowronski; Figure in Box 17.1 courtesy of M. Tanase, D.E. Laughlin, and J.-G. Zhu; Fig. 17.29(a) courtesy of Department of Materials, University of Oxford; Fig. 17.29(b) courtesy of T. Massalski; Figure in Box 18.1 courtesy of E. Shevshenko and Chris Murray, IBM; Fig. 18.29(a) courtesy of the Materials Research Society, Warrendale, PA; Fig. 18.29(b) courtesy of A. L. Mackay; Fig. 19.7 courtesy of J.L. Woods; Fig. 19.10: Tilings were produced using QuasiTiler from the Geometry Center at the University of Minnesota - simulated diffraction patterns courtesy of S. Weber; Fig. 19.14, R. A. Dunlap, M. E. McHenry, R. Chaterjee, and R.C. O'Handley, Phys. Rev. B 37, 8484-7, 1988, Copyright (1988) by the American Physical Society; Fig. 19.17 courtesy of F. Gayle, NIST Gaithersburg; Fig. 19.18 courtesy of W. Ohashi and F. Spaepen; (a) and (b) were originally published in Nature (Ohashi and Spaepen, 1987) and (c) appears in the 1989 Harvard Ph.D. thesis of W. Ohashi; Fig. 19.19(a) courtesy of the Materials Research Society, Warrendale, PA; Figure in Box 20.1 courtesy of M. Willard; Fig. 20.6(a) and (b) courtesy of J. Hess and (c) N. Hayward; Fig. 20.16 courtesy of R. Swaminathan; Figure in Box 21.1 courtesy of R. Swaminathan; Figure in Box 22.1 courtesy of M. Hawley, LANL; Fig. 22.6(a) courtesy of S. Chu; Fig. 22.15(a) courtesy of B. Raveau; Fig. 24.1(b) L. Bosio, G. P. Johari, and J. Teixeira, Phys. Rev. Lett., 56, 460-3, 1986, Copyright (1986) by the American Physical Society; Figure in 24.1 courtesy of M. Bockstaller.

The following figures are new to this edition. Figure 2.10(a) appears on www.chemheritage.org/discover/onlune-resources/chemistry-in-history/themes/atomicand-nuclear-structure/rutherford.aspx, and is provided from the Edgar Fahs Smith Memorial Collection, Department of Special Collections, University of Pennsylvania Library. Figure 2.10(b) appears on wikipedia (http://en.wikipedia.org/wiki/File:Chadwick.jpj):

xxviii

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

Figure reproductions

photograph by Bortzells Esselte, Nobel Foundation, submitted to wikipedia through the AIP Emilio Segre Visual Archives, Weber and Fermi Film Collections. figure 3.19(c) is courtesy of the Oak Ridge National Laboratory. Figure 11.25(a) is taken from Les Prix Nobel, En 1913, Stockholm, Imprimerie Royal. P. A. Norstedt & Soner (frame between page 100 and 101) (1914). Figure 11.25(b) is taken from Les Prix Nobel, En 1913, Stockholm, Imprimerie Royal. P. A. Norstedt & Soner (frame between page 102 and 103) (1914). Figure 12.9(a) is reproduced from http://imagine.gsfc.nasa.gov/docs/people/Wilhelm_Roentgen.html. Figure 12.9(b), http://en.wikipedia.org/wiki/File:Max_von_Laue.jpg, comes from Les Prix Nobel, En 1913, Stockholm, Imprimerie Royal. P. A. Norstedt & Soner (frame between page 98 and 99) (1914). Figure 13.18(a) is reproduced with permission from the General Photograph Collection, Carnegie Mellon University Archives, Pittsburgh, PA. Figure 15.16(b) is courtesy of Kathleen A. Gallagher. Figure 21.24(b) comes from www.notablebiographies.com/Ni-Pe/Pauling-Linus.html. Figure 22.15(b) is courtesy of IBM Research - Zurich. Figure 24.29(a) comes from R. M Siegel and E. M. Callaway: Francis Crick's Legacy for Neuroscience: Between the α and the Ω . PLiS Biol 2/12/2004:e419. http://dx.doi.org/10.1371.jopurnal.pbio.0020419. Figure 24.29(b) is courtesy of the Chemical Heritage Foundation Collection.

Symbols

Roman letters

	Roman letters	g	Reciprocal lattice vector
(H, K, L)	Quasicrystal Miller	\mathbf{g}_{hkl}	Reciprocal lattice vector
× · · ·	~ indices	Ι	Body-centering vector
$(n_1n_2n_3n_4)$	Penrose vertex configura- tion	j	Electrical current density vector
(r, θ, ϕ)	Spherical coordinates	k	Wave vector
(u, v, w)	Lattice node coordinates	Μ	Magnetization vector
(x, y, z)	Cartesian coordinates	n	Unit normal vector
ΔE	Energy difference	Р	General material property
Δp_x ΔS	Momentum uncertainty Entropy change	Q	Higher-dimensional scat- tering vector
ΔT	<i>Temperature difference</i>	r	General position vector
Δx	Position uncertainty	S	Poynting vector
ħ	Normalized Planck	t	Lattice translation vector
	constant	Ŧ	General field
$\overline{M_{\mathrm{n}}}$	Number average molecu-	\mathcal{G}_m^n	<i>m-D symmetry group in n- D space</i>
16	lar weight	R	Canaral symmetry
$M_{ m w}$	Weight average molecular weight	U	operator
\overline{M}	Average molecular weight	P	Percentage ionic character
$\overline{r^2}$	Radius of gyration	P	Probability
$\overline{X_n}$	Degree of polymerization	$\mathcal R$	General material response
A, B, C	Face-centering vectors	$\mathscr{S}(k)$	kth order Fibonacci matrix
A*, C*	Hexagonal reciprocal	T	Bravais lattice
l	basis vectors	T	Plane tiling
a, b, c	Bravais lattice basis	W	4×4 symmetry matrix
	vectors	\tilde{x}_j	Normal coordinates
a*, b*, c*	Reciprocal basis vectors	$\{a, b, \gamma\}$	Net parameters
\mathbf{a}_i^*	Reciprocal basis vectors	$\{a, b, c, \alpha, \beta, \gamma\}$	Lattice parameters
\mathbf{a}_i	Bravais lattice basis vectors	A	Absorption correction factor
\mathbf{C}_h	Chiral vector	Α	Atomic weight
$\mathbf{D}_i(\theta)$	Rotation matrix in	Α	Electron affinity
1(-)	I-D space	a_R	Quasi lattice constant
Е	Electrical field vector	a_{ij}	Direct structure matrix
e _i	Cartesian basis vectors	B(T)	Debye–Waller factor
\mathbf{e}_r	Radial unit vector	B_i	Magnetic induction
F	Interatomic force vector		components

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

ХХХ

Symbols

b	Neutron scattering length	К	Normalization constant
$b_{\rm M}$	Neutron magnetic scatter- ing length	K, L, M,	Spectroscopic principal quan- tum numbers
b _{ii}	Reciprocal structure	kр	Roltzmann constant
- IJ	matrix	L	Potential range
С	Velocity of light in vacuum	L(x, y)	2-D lattice density
D	Detector	L(S)	Fibonacci segment lengths
D	Distance between two points	l	Angular momentum quantum number
D_i	Electric displacement	l_i	Direction cosines
	components	L_n	Lucas numbers
d_{hkl}	Interplanar spacing	$L_{\rm p}(\theta)$	Lorentz polarization factor
Ε	Electric field strength	M	Debye–Waller factor
Ε	Electronegativity	$M_{ m W}$	Molecular weight
Ε	Number of polygon edges	m	Magnetic quantum number
Ε	Photon energy	т	Particle mass
E_i	Electric field components	m_0	Electron rest mass
E_n	Energy levels	m_i	Mass flux components
$E_{\rm p}$	Potential energy	m _n	Neutron rest mass
Ekin	Kinetic energy	Ne	Number of free electrons
е	Electron charge	n	Principal quantum number
e^*_{ijk}	Normalized reciprocal per	n, l, m	Atomic quantum numbers
	mutation symbol	P	Synchrotron total power
e_{ijk}	Normalized permutation	p	Subgroup index
F	Symbol Namel an after the set for a s	$P(\mathbf{r})$	Patterson function
r F	Number of polygon faces	$P(\theta)$	Polarization factor
F _k F _{hkl}	Fibonacci numbers Structure factor	p_i, q_i, \ldots	General position vector components
f(s)	Atomic scattering factor	p_{hkl}	Multiplicity of the plane (hkl)
$f^{\rm el}$	Electron scattering factor	$R_{nl}(r)$	Radial atomic wave function
G	Optical gyration constant	$R_{\rm p}$	Profile agreement index
g(r)	Pair correlation function Reciprocal metric tensor	$R_{\rm wp}$	Weighted profile agreement index
οų φ*	Reciprocal lattice vector	RDF(r)	Radial distribution function
01	components	r	Radial distance
<i>o</i> .:	Direct space metric tensor	<i>r</i> we	Wigner–Seitz radius
89 Н;	Magnetic field components	ľN	Nuclear radius
h	Planck's constant	S	Sample
h;	Heat flux components	s	Scattering parameter
I	Intensity	S	Spin quantum number
I	Ionization potential	s. p. d. f. g	Spectroscopic angular momen-
In	Incident beam intensity	~, _F ,, _J ,8,	tum quantum numbers
Inter	Diffracted beam intensity	Si	Planar intercepts
i(k)	Reduced intensity function	T	Absolute temperature
J	Critical current density	T	Target
i	Electrical current density	T	Triangulation number
J		-	

xxxi

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

ymbols			
T_0	Equal free-energy temperature	ε	Lennard-Jones energy scale parameter
T _c	Superconductor critical tem- perature	ε^*_{ijk}	Reciprocal permutation symbol
Tg	Glass transition temperature	ε_0	Permittivity of vacuum
$T_{\rm L}$	Liquidus temperature	ε _F	Fermi energy level
$T_{\rm N}$	Néel temperature	ε_{iik}	Permutation symbol
T _{rg}	Reduced glass transition	ε _{ii}	Strain tensor
-	temperature	θ_{hkl}	Bragg angle
T_{x1}	Primary recrystallization temperature	λ	Photon electron neutron, or radiation wavelength
T_{x2}	Secondary recrystallization temperature	μ	Linear absorption coefficient
£	Grain size	μ/ ho	Mass absorption coefficient
u _i	Lattice translation vector	ν	Photon frequency
	components	ν_0	Zero-point motion frequency
V	Accelerating voltage	ρ	Density
V	Electrostatic potential drop	$\rho(\mathbf{r})$	Charge density
V	Number of polygon vertices	$\rho_{\rm atom}(r)$	Spatially dependent atomic
V	Unit cell volume		density
V(r)	Radial electrostatic potential	σ	Electrical conductivity
$V_{\rm c}(r)$	Coulomb interaction potential	σ	Scattering cross section
$V_{\rm r}(r)$	Repulsive interaction potential	σ	Lennard-Jones distance parameter
$Y_{lm}(\theta, \phi)$	Angular atomic wave function	σ_{ij}	Electrical conductivity tensor
		σ_{ij}	Stress tensor
	Subscripts	τ	Golden mean
7	Atomic number	ϕ	Chiral angle
2	Anorthic	ϕ	Phase of a wave
n D	Cubic	χ	Mulliken electronegativity
n m	Hexagonal Monoclinic	$\chi(k)$	Absorption function (EXAFS)
	Orthorhombic	$\Psi(\mathbf{r})$	General wave function
D D	Phombohodral	Ω	Atomic volume
t	Tetragonal		
	0		Special symbols
y	Greek letters Madelung constant	(ϕ, ρ)	Stereographical projection coordinates
 Χ.;;	General coordinate transfor	(D t)	Seitz symbol
Δ. <i>β</i>	mation matrix	(hkil)	Hexagonal Miller–Bravais
Δp_{ij}	Change of impermeability	(hk)	Miller indices of a plane
2	iensor Idontity matrix	$\left[uvtw \right]$	Heragonal Miller_Bravais
)ij	iuentity matrix	$\lfloor uviw \rfloor$	direction indices
ij	N ronecker aetta		aneciion maices

Cambridge University Press 978-1-107-00587-7 — Structure of Materials 2nd Edition Marc De Graef , Michael E. McHenry Frontmatter <u>More Information</u>

xxxii

Symbols

[uvw]	Direction symbol	\oplus	Direct product operator
	Vacancy	Ŧ	Fourier transform operator
	Vector dot product operator	\rightarrow	Homomorphism
det	Determinant operator	\subset	Group–subgroup
Э	"There exists"		relation symbol
\forall	"For all, for each"	×	Vector cross product
\in	"Belongs to, in"		operator
$\langle uvw \rangle$	Family of directions		Norm of a vector
\leftrightarrow	Isomorphism	$\{hkl\}$	Family of planes