Structure of Materials

An Introduction to Crystallography, Diffraction and Symmetry

This highly readable, popular textbook for upper undergraduates and graduates comprehensively covers the fundamentals of crystallography, symmetry, and diffraction, and applies these concepts to a large range of materials. This edition now includes more streamlined coverage of crystallography, additional coverage of magnetic point group symmetry, and updated material on extraterrestrial minerals and rocks. New exercises at the end of chapters, plus over 500 exercises available online, allow students to check their understanding of key concepts and put into practice what they have learnt. Over 400 illustrations within the text help students visualize crystal structures and more abstract mathematical objects, supporting more difficult topics, such as point group symmetries. Historical and biographical sections add colour and interest by giving an insight into those who have contributed significantly to the field. Supplementary online material includes password-protected solutions, over 100 crystal structure data files, and PowerPoint files of figures from the book (available at www.cambridge.org/degraef).

MARC DE GRAEF is a Professor in the Department of Materials Science and Engineering at the Carnegie Mellon University in Pittsburgh, USA, where he is also Co-director of the J. Earle and Mary Roberts Materials Characterization Laboratory. He received his Ph.D. in Physics in 1989 from the Catholic University of Leuven. An accomplished writer in the field, he is a Fellow of the Microscopy Society of America.

MICHAEL E. MCHENRY is Professor of Materials Science and Engineering, with an appointment in Physics, at the Carnegie Mellon University in Pittsburgh, USA. He received his Ph.D. in Materials Science and Engineering in 1988 from MIT, before which he spent three years working in industry as a Process Engineer. Also an accomplished writer, he is Publication Chair for the Magnetism and Magnetic Materials (MMM) Conference.
“This book is a lucid, modern, visually attractive exposition of the fascinating and perenni-
ally useful subject of the structure of materials. With examples from various materials
classes, it will be a valuable addition to the library of most materials scientists and
engineers.”

R.V. Ramanujan, Nanyang Technological University

“The book represents more than an introduction to crystallography, diffraction and symme-
try. It is a thorough work explaining the structure of materials from the basic principles of
crystallography and the techniques of characterization including analysis of representative
materials (metals, ceramics, amorphous, molecular solids and nanomaterials). The easy
reading together with the number of illustrations facilitates the understanding of complex
structures. The book is a good reference, and the inclusion of problems at the end of each
chapter makes it a very useful text book for beginners.”

Marina Díaz Micheleña, Instituto Nacional de Técnica Aeroespacial

“De Graef and McHenry have written a masterpiece in a rich and historical subject that
is critical in understanding many topics in materials science and engineering, chemistry,
physics, and geology. They provide a comprehensive and unified blend of underlying
theory and practice using innumerable illustrations, micrographs, exercises, and other
resources such as 3-D interactive software to aid in the visualization of crystal and molec-
ular structures. This book can serve as an advanced undergraduate or a graduate text, as
well as a comprehensive resource that everyone working in all aspects of material structure,
diffraction science, and crystallography will want to own.”

Thomas W. Scharf, University of North Texas
Structure of Materials

AN INTRODUCTION TO
CRYSTALLOGRAPHY, DIFFRACITION
AND SYMMETRY

MARC DE GRAEF
Carnegie Mellon University, Pittsburg

MICHAEL E. McHENRY
Carnegie Mellon University, Pittsburg

Second edition, fully revised and updated
In memory of Mary Ann (McHenry) Bialosky (1962–1999), a devoted teacher, student, wife and mother, who was taken from us much too soon.

M.E.M.

For Marie, Pieter, and Erika.

M.D.G.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the second edition</td>
<td>xix</td>
</tr>
<tr>
<td>Preface to the first edition</td>
<td>xxi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxv</td>
</tr>
<tr>
<td>Figure reproductions</td>
<td>xxvii</td>
</tr>
<tr>
<td>Symbols</td>
<td>xxix</td>
</tr>
<tr>
<td>1 Materials and material properties</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Materials and structure</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Organization of the book</td>
<td>2</td>
</tr>
<tr>
<td>1.3 About length scales</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Wave–particle duality and the de Broglie relationship</td>
<td>7</td>
</tr>
<tr>
<td>1.5 What is a material property?</td>
<td>9</td>
</tr>
<tr>
<td>1.5.1 Definition of a material property</td>
<td>9</td>
</tr>
<tr>
<td>1.5.2 Directional dependence of properties</td>
<td>10</td>
</tr>
<tr>
<td>1.5.3 A first encounter with symmetry</td>
<td>12</td>
</tr>
<tr>
<td>1.5.4 A first encounter with magnetic symmetry</td>
<td>15</td>
</tr>
<tr>
<td>1.6 So, what is this book all about?</td>
<td>17</td>
</tr>
<tr>
<td>1.7 Chapter summary</td>
<td>19</td>
</tr>
<tr>
<td>1.8 Historical notes</td>
<td>20</td>
</tr>
<tr>
<td>1.9 Selected problems</td>
<td>21</td>
</tr>
<tr>
<td>2 The periodic table of the elements and interatomic bonds</td>
<td>23</td>
</tr>
<tr>
<td>2.1 About atoms</td>
<td>23</td>
</tr>
<tr>
<td>2.1.1 The electronic structure of the atom</td>
<td>23</td>
</tr>
<tr>
<td>2.1.2 The hydrogenic model</td>
<td>24</td>
</tr>
<tr>
<td>2.2 The periodic table</td>
<td>26</td>
</tr>
<tr>
<td>2.2.1 Layout of the periodic table</td>
<td>28</td>
</tr>
<tr>
<td>2.2.2 Trends across the table</td>
<td>31</td>
</tr>
<tr>
<td>2.3 Interatomic bonds</td>
<td>34</td>
</tr>
<tr>
<td>2.3.1 Quantum chemistry</td>
<td>34</td>
</tr>
<tr>
<td>2.3.2 Interactions between atoms</td>
<td>34</td>
</tr>
<tr>
<td>2.3.3 The ionic bond</td>
<td>36</td>
</tr>
<tr>
<td>2.3.4 The covalent bond</td>
<td>38</td>
</tr>
<tr>
<td>2.3.5 The metallic bond</td>
<td>39</td>
</tr>
<tr>
<td>2.3.6 The van der Waals bond</td>
<td>40</td>
</tr>
<tr>
<td>2.3.7 Mixed bonding</td>
<td>41</td>
</tr>
<tr>
<td>2.3.8 Electronic states and symmetry</td>
<td>41</td>
</tr>
<tr>
<td>2.3.9 Overview of bond types and material properties</td>
<td>42</td>
</tr>
</tbody>
</table>
Contents

2.4 Chapter summary 43
2.5 Historical notes 43
2.6 Selected problems 47

3 What is a crystal structure? 49
3.1 Periodic arrangements of atoms 49
3.2 The space lattice 51
 3.2.1 Basis vectors and translation vectors 51
 3.2.2 Some remarks about notation 52
 3.2.3 More about lattices 54
3.3 The four 2-D crystal systems 56
3.4 The seven 3-D crystal systems 57
3.5 The five 2-D Bravais nets and fourteen 3-D Bravais lattices 60
3.6 Other ways to define a unit cell 64
3.7 *2-D and 3-D magnetic Bravais lattices 66
3.8 Chapter summary 71
3.9 Historical notes 72
3.10 Selected problems 73

4 Crystallographic computations 75
4.1 Directions in the crystal lattice 75
4.2 Distances and angles in a 3-D lattice 76
 4.2.1 Distance between two points 76
 4.2.2 The metric tensor 78
 4.2.3 The dot product in a crystallographic reference frame 80
4.3 Worked examples 82
 4.3.1 Computation of the length of a vector 82
 4.3.2 Computation of the distance between two atoms 83
 4.3.3 Computation of the angle between atomic bonds 84
 4.3.4 Computation of the angle between lattice directions 84
 4.3.5 An alternative method for the computation of angles 85
 4.3.6 Further comments 85
4.4 Chapter summary 86
4.5 Historical notes 87
4.6 Selected problems 89

5 Lattice planes 90
5.1 Miller indices 90
5.2 Families of planes and directions 93
5.3 Special case: the hexagonal system 94
5.4 Crystal forms 96
5.5 Chapter summary 101
5.6 Historical notes 101
5.7 Selected problems 102
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Reciprocal space</td>
<td>6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7</td>
<td>104-120</td>
</tr>
<tr>
<td>7</td>
<td>Additional crystallographic computations</td>
<td>7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8</td>
<td>122-151</td>
</tr>
<tr>
<td>8</td>
<td>Symmetry in crystallography</td>
<td>8.1, 8.2, 8.3, 8.4</td>
<td>152-175</td>
</tr>
</tbody>
</table>
9 Point groups

9.1 What is a group?
 9.1.1 A simple example
 9.1.2 Group axioms
 9.1.3 Principal properties of groups

9.2 3-D crystallographic point symmetries
 9.2.1 Step I: the proper rotations
 9.2.2 Step II: combining proper rotations with two-fold rotations
 9.2.3 Step IIIa: combining proper rotations with inversion symmetry
 9.2.4 Step IIIb: combining proper rotations with perpendicular reflection elements
 9.2.5 Step IV: combining proper rotations with coinciding reflection elements
 9.2.6 Step Va: combining inversion rotations with coinciding reflection elements
 9.2.7 Step Vb: combining proper rotations with coinciding and perpendicular reflection elements
 9.2.8 Step VI: combining proper rotations
 9.2.9 Step VII: adding reflection elements to Step VI
 9.2.10 General remarks

9.3 2-D crystallographic point symmetries

9.4 Magnetic point groups
 9.4.1 Derivation
 9.4.2 Visualization of the magnetic point groups
 9.4.3 Color, charge, and time reversal

9.5 Chapter summary
9.6 Historical notes
9.7 Selected problems

10 Plane groups and space groups

10.1 Combining translations with point group symmetry
10.2 Plane groups
 10.2.1 A simple example
 10.2.2 A more complex example
Contents

10.2.3 The 17 plane groups 235
10.3 Space groups 236
 10.3.1 A simple example 236
 10.3.2 A second simple example 238
 10.3.3 A more complex example 239
 10.3.4 The symmorphic space groups 240
 10.3.5 The non-symmorphic space groups 242
 10.3.6 Space group generators 243
 10.3.7 General remarks 247
10.4 The International Tables for Crystallography 248
10.5 Magnetic space groups 253
10.6 Chapter summary 255
10.7 Historical notes 256
10.8 Selected problems 257

11 X-ray diffraction: geometry 259
 11.1 Properties and generation of X-rays 259
 11.1.1 How do we generate X-rays? 261
 11.1.2 Wavelength selection 265
 11.2 X-rays and crystal lattices 268
 11.2.1 Scattering of X-rays by lattice planes 272
 11.2.2 Bragg’s law in reciprocal space 276
 11.3 Basic experimental X-ray diffraction techniques 280
 11.3.1 The X-ray powder diffractometer 281
 11.4 Chapter summary 289
 11.5 Historical notes 289
 11.6 Selected problems 290

12 X-ray diffraction: intensities 291
 12.1 Scattering by electrons, atoms, and unit cells 291
 12.1.1 Scattering by a single electron 291
 12.1.2 Scattering by a single atom 293
 12.1.3 Scattering by a single unit cell 298
 12.2 The structure factor 300
 12.2.1 Lattice centering and the structure factor 300
 12.2.2 Symmetry and the structure factor 304
 12.2.3 Systematic absences and the International Tables for
 Crystallography 307
 12.2.4 Examples of structure factor calculations 307
 12.3 Intensity calculations for diffracted and measured intensities 309
 12.3.1 Description of the correction factors 310
 12.3.2 Expressions for the total measured intensity 315
 12.4 Chapter summary 317
 12.5 Historical notes 317
 12.6 Selected problems 318
Contents

13 Other diffraction techniques 320

13.1 Introductory remarks 320

13.2 *Neutron diffraction 321
 13.2.1 Neutrons: generation and properties 323
 13.2.2 Neutrons: wavelength selection 325
 13.2.3 Neutrons: atomic scattering factors 326
 13.2.4 Neutrons: scattering geometry and diffracted intensities 330
 13.2.5 Neutrons: example powder pattern 334

13.3 *Electron diffraction 335
 13.3.1 The electron as a particle and a wave 335
 13.3.2 The geometry of electron diffraction 337
 13.3.3 The transmission electron microscope 338
 13.3.4 Basic observation modes in the TEM 340
 13.3.5 Convergent beam electron diffraction 343

13.4 *Synchrotron X-ray sources for scattering experiments 347
 13.4.1 Synchrotron accelerators 348
 13.4.2 Synchrotron radiation: experimental examples 350

13.5 Chapter summary 352

13.6 Historical notes 352

13.7 Selected problems 354

14 About crystal structures and diffraction patterns 356

14.1 Crystal structure descriptions 356
 14.1.1 Space group description 356
 14.1.2 Graphical representation methods 357

14.2 Crystal structures ↔ powder diffraction patterns 360
 14.2.1 The Ni powder pattern, starting from the known structure 361
 14.2.2 The NaCl powder pattern, starting from the known structure 365
 14.2.3 The Ni structure, starting from the experimental powder diffraction pattern 369
 14.2.4 The NaCl structure, starting from the experimental powder diffraction pattern 372
 14.2.5 *General comments about crystal structure determination 375

14.3 Chapter summary 380

14.4 Historical notes 380

14.5 Selected problems 382

15 Non-crystallographic point groups 383

15.1 Example of a non-crystallographic point group symmetry 383

15.2 Icosahedral and related five-fold symmetry groups 384
 15.2.1 The icosahedral point groups 384
 15.2.2 Fullerene molecular structures 385
 15.2.3 Icosahedral group representations 387
 15.2.4 Other non-crystallographic point groups with five-fold symmetries 390
 15.2.5 Descents in symmetry: decagonal and pentagonal groups 393
16 Periodic and aperiodic tilings

16.1 2-D plane tilings
16.1.1 2-D regular tilings
16.1.2 2-D Archimedean tilings
16.1.3 k-uniform regular tilings
16.1.4 Dual tilings – the Laves tilings
16.1.5 Tilings without regular vertices
16.2 #Color tilings
16.3 #Quasiperiodic tilings
16.4 #Regular polyhedra and n-D regular polytopes
16.5 Crystals with stacking of 36 tilings
16.5.1 Simple close-packed structures: ABC stacking
16.5.2 Interstitial sites in close-packed structures
16.5.3 Representation of close-packed structures
16.5.4 Polytypism and properties of SiC semiconductors
16.5.5 36 close-packed tilings of polyhedral faces
16.6 Chapter summary
16.7 Historical notes
16.8 Selected problems

17 Metallic structures I: simple, derivative, and superlattice structures

17.1 Introductory comments
17.2 Classification of structures
17.2.1 Strukturbericht symbols
17.2.2 Pearson symbols
17.2.3 Structure descriptions in this book
17.3 Parent structures
17.3.1 Geometrical calculations for cubic structures
17.4 Atomic sizes, bonding, and alloy structure
17.4.1 Hume-Rothery rules
17.4.2 Bonding in close-packed rare gas and metallic structures
17.4.3 Phase diagrams
17.5 Superlattices and sublattices: mathematical definition
17.6 Derivative structures and superlattice examples
17.6.1 fcc-derived structures and superlattices
17.6.2 bcc-derived superlattices
17.6.3 Diamond cubic derived superlattices
17.6.4 Hexagonal close-packed derived superlattices
17.7 Elements with alternative stacking sequences or lower symmetry
Contents

17.7.1 Elements with alternative stacking sequences 450
17.7.2 Elements with lower-symmetry structures 451
17.8 * Natural and artificial superlattices 455
17.8.1 Superlattice structures based on the \(L_1^2 \) cell 455
17.8.2 Artificial superlattices 457
17.8.3 X-ray scattering from long-period multi-layered systems 459
17.8.4 Incommensurate superlattices 459
17.9 Interstitial alloys 461
17.10 Chapter summary 462
17.11 Historical notes 463
17.12 Selected problems 464

18 Metallic structures II: complex geometrically determined structures 466
18.1 Electronic states in metals 466
18.2 Topological close packing 468
18.2.1 The Kasper polyhedra 469
18.2.2 Connectivity of Kasper polyhedra 471
18.2.3 Metallic radii 471
18.3 * Frank–Kasper alloy phases 472
18.3.1 \(\{15 \) phases and related structures 472
18.3.2 The Laves phases and related structures 479
18.3.3 The sigma phase 486
18.3.4 The \(\mu \)-phase and the \(M-, P-, \) and \(R \)-phases 488
18.4 * Quasicrystal approximants 490
18.4.1 \(Mg_2(Al, Zn)_{19} \) and \(\alpha-\text{Al–Mn–Si} \) crystal structures 490
18.4.2 \(Mg_2(Al, Zn)_{19} \) and \(\alpha-\text{Al–Mn–Si} \) shell models 491
18.5 Chapter summary 494
18.6 Historical notes 495
18.7 Selected problems 496

19 Metallic structures III: quasicrystals 497
19.1 Introductory remarks 497
19.2 The golden mean and pentagonal symmetry 498
19.3 1-D quasicrystals 501
19.3.1 The Fibonacci sequence and lattice derived by recursion 501
19.3.2 Lattice positions in the Fibonacci lattice 503
19.3.3 Construction of the Fibonacci lattice by the projection method 504
19.3.4 * The Fourier transform of the Fibonacci lattice 505
19.4 * 2-D quasicrystals 507
19.4.1 2-D quasicrystals: Penrose tilings 507
19.4.2 The Penrose tiling derived by projection 512
19.4.3 2-D quasicrystals: other polygonal quasicrystals 514
19.5 * 3-D quasicrystals 516
19.5.1 3-D Penrose tilings 517
19.5 Indexing icosahedral quasicrystal diffraction patterns
- 19.5.2 Indexing icosahedral quasicrystal diffraction patterns
- 19.5.3 Icosahedral quasicrystal diffraction patterns and quasilattice constants
- 19.5.4 3-D Penrose tiles: stacking, decoration, and quasilattice constants
- 19.5.5 3-D Penrose tiles: projection method

19.6 Multiple twinning and icosahedral glass models

19.7 Microscopic observations of quasicrystal morphologies

19.8 Chapter summary

19.9 Historical notes

19.10 Selected problems

20 Metallic structures IV: amorphous metals
- 20.1 Introductory comments
- 20.2 Order in amorphous and nanocrystalline alloys
- 20.3 Atomic positions in amorphous alloys
- 20.4 Atomic volume, packing, and bonding in amorphous solids
 - 20.4.1 DRPHS model
 - 20.4.2 Binding in clusters: crystalline and icosahedral short-range order
- 20.5 Icosahedral short-range order models
- 20.6 Thermodynamic and kinetic criteria for glass formation
- 20.7 Examples of amorphous metal alloy systems
 - 20.7.1 Metal–metalloid systems
 - 20.7.2 Rare earth–transition metal systems
 - 20.7.3 Early transition metal–late transition metal systems
 - 20.7.4 Multi-component nanocomposite systems.
- 20.8 Icosahedral short-range order models
- 20.9 X-ray scattering in amorphous materials
- 20.10 Mössbauer spectroscopy
- 20.11 Chapter summary
- 20.12 Historical notes
- 20.13 Selected problems

21 Ceramic structures I: basic structure prototypes
- 21.1 Introductory remarks
- 21.2 Ionic radii
- 21.3 Bonding energetics in ionic structures
- 21.4 Rules for packing and connectivity in ionic crystals
 - 21.4.1 Pauling’s rules for ionic structures
 - 21.4.2 Radius ratio rules for ionic compounds
- 21.5 Oxides of iron
- 21.6 Halide salt structures: CsCl, NaCl, and CaF₂
- 21.7 Close-packed sulfide and oxide structures: ZnS and Al₂O₃
Contents

21.8 Perovskite and spinel structures 577
 21.8.1 Perovskites: $A\text{B}_3\text{O}_5$ 577
 21.8.2 Spinels: $A\text{B}_2\text{O}_4$ 580
21.9 Non-cubic close-packed structures: NiAs, CdI$_2$, and TiO$_2$ 584
21.10 Layered structures 585
 21.10.1 Magnetoplumbite phases 586
 21.10.2 Aurivillius phases 586
 21.10.3 Ruddlesden–Popper phases 588
 21.10.4 Tungsten bronzes 589
 21.10.5 Titanium carbosulfide 591
21.11 Additional remarks 591
21.12 Point defects in ceramics 592
21.13 Chapter summary 594
21.14 Historical notes 594
21.15 Selected problems 596

22 Ceramic structures II: high-temperature superconductors 597
 22.1 Introductory remarks about superconductivity 597
 22.2 High-temperature superconductors: nomenclature 598
 22.3 Perovskite-based high-temperature superconductors 599
 22.3.1 Single-layer perovskite high-temperature superconductors 599
 22.3.2 Triple-layer perovskite-based high-temperature superconductors 601
 22.4 BSCCO, TBCCO, HBCCO, and ACBCCO HTSC layered structures 606
 22.4.1 The BSCCO double-layer high-temperature superconductors 606
 22.4.2 The TBCCO double-layer high-temperature superconductors 608
 22.4.3 The TBCCO single-layer high-temperature superconductors 611
 22.4.4 The HBCCO high-temperature superconductors 613
 22.4.5 The ACBCCO high-temperature superconductors 615
 22.4.6 Rutheno-cuprate high-temperature superconductors 615
 22.4.7 Infinite-layer high-temperature superconductors 616
 22.5 Chapter summary 616
 22.6 Historical notes 617
 22.7 Selected problems 619

23 Ceramic structures III: terrestrial and extraterrestrial minerals 620
 23.1 Classification of minerals 620
 23.2 Silicates overview
 23.2.1 Orthosilicates (nesosilicates) 624
 23.2.2 Pyrosilicates (sorosilicates) 629
 23.2.3 Chains of tetrahedra, metasilicates (inosilicates) 630
 23.2.4 Double chains of tetrahedra 633
 23.2.5 Sheets of tetrahedra, phyllosilicates 634
 23.2.6 Networks of tetrahedra, tectosilicates 635
 23.2.7 Random networks of tetrahedra: silicate glasses 639
24 Molecular solids and biological materials

24.1 Introductory remarks

24.2 Simple molecular crystals: ice, dry ice, benzene, the clathrates, and self-assembled structures
 24.2.1 Solid H₂O: ice
 24.2.2 Solid CO₂: dry ice
 24.2.3 Hydrocarbon crystals
 24.2.4 Clathrates
 24.2.5 Amphiphiles and micelles

24.3 Polymers
 24.3.1 Polymer classification
 24.3.2 Polymerization reactions and products
 24.3.3 Polymer chains: spatial configurations
 24.3.4 Copolymers and self-assembly
 24.3.5 Conducting and superconducting polymers
 24.3.6 Polymeric derivatives of fullerenes

24.4 Biological macromolecules
 24.4.1 DNA and RNA
 24.4.2 Virus structures

24.5 Fullerene-based molecular solids
 24.5.1 Fullerites
 24.5.2 Fullerides
 24.5.3 Carbon nanotubes

24.6 Chapter summary

24.7 Historical notes

24.8 Selected problems

References

Index
Preface to the second edition

We are grateful to the many readers, students and teachers alike, who have sent us comments and corrections, or who simply expressed their appreciation of the first edition of our book. As always, it is difficult, if not impossible, to please everyone and to accommodate all requests for changes or additional material. As we prepared this second edition of *Structure of Materials*, we attempted simultaneously to shorten the text and make it more complete by adding sections on magnetic symmetry (time-reversal symmetry, magnetic Bravais lattices, and magnetic point and space groups). The new text has 24 chapters, as before split into 1–13 (crystallography and symmetry) and 15–24 (examples of important structures), with Chapter 14 as a transition chapter, applying the material from the first half of the book. In addition to the new material on magnetic symmetry, we have added sections on the oxides of iron (Chapter 21) and magnetic minerals on Mars (Chapter 23), and we have made numerous small changes throughout the text. The resulting text is more succinct, and, we hope, a significant improvement over the first edition.

Each chapter now has an introductory and summary section, and a short set of four new problems. Additional new problems, as well as all the problems from the first edition, can be found on the book’s website, http://som.web.cmu.edu/, for a total of nearly 600 problems. Solution sets to all problems are made available to instructors via the publisher. In addition, PowerPoint files with enlarged versions (some in color) of all the figures from the book are available from the website. We hope that these files will become a valuable teaching resource.

The 2011 Nobel prize in chemistry was awarded to D. Shechtman for his discovery of quasicrystals, which prompted us to update the historical section of Chapter 19. This award is a testament to the importance of crystal structures in modern science and engineering; it should serve as a reminder that even after decades or centuries of steady scientific progress, unexpected discoveries occur every now and then that force a review, and in this case a redefinition, of the basic assumptions of a field. We hope that the interested reader will always keep an open mind when reading our text; while most of the material has stood the test of time (and scientific scrutiny), there is no telling which aspects of this book may need to be redefined at some point in the future. This constant questioning of the validity of basic scientific assumptions also means that this book is, in a way, just a 2011 snapshot of the field of crystallography; we sincerely hope that this snapshot will serve our readers and we will be pleased if, in any way, we can stimulate new discoveries that cause us to extend and reinterpret this field.
In the movie *Shadowlands*, Anthony Hopkins plays the role of the famous writer and educator, C. S. Lewis. In one scene, Lewis asks a probing question of a student: “Why do we read?” (Which could very well be rephrased: Why do we study? or Why do we learn?) The answer given is simple and provocative: “We read to know that we are not alone.” It is comforting to view education in this light. In our search to know that we are not alone, we connect our thoughts, ideas, and struggles to the thoughts, ideas, and struggles of those who preceded us. We leave our own thoughts for those who will follow us, so that they, too, will know that they are not alone. In developing the subject matter covered in this book, we (MEM and MDG) were both humbled and inspired by the achievements of the great philosophers, mathematicians, and scientists who have contributed to this field. It is our fervent hope that this text will, in some measure, inspire new students to connect their own thoughts and ideas with those of the great thinkers who have struggled before them and leave new ideas for those who will struggle afterwards.

The title of this book (*Structure of Materials*) reflects our attempt to examine the atomic structure of solids in a broader realm than just traditional crystallography, as has been suggested by Alan Mackay (1975). By combining visual illustrations of crystal structures with the mathematical constructs of crystallography, we find ourselves in a position to understand the complex structures of many modern engineering materials, as well as the structures of naturally occurring crystals and crystalline biological and organic materials. That all important materials are not crystalline is reflected in the discussion of amorphous metals, ceramics, and polymers. The inclusion of quasicrystals conveys the recent understanding that materials possessing long-range orientational order without 3-D translational periodicity must be included in a modern discussion of the structure of materials. The discovery of quasicrystals has caused the International Union of Crystallographers to redefine the term *crystal* as “any solid having an essentially discrete diffraction pattern.” This emphasizes the importance of diffraction theory and diffraction experiments in determining structure. It also means that extensions of the crystallographic theory to higher-dimensional spaces are necessary for the correct interpretation of the structure of quasicrystals.

Modern crystallography education has benefited tremendously from the availability of fast desktop computers; this book would not have been possible without the availability of wonderful free and commercial software for the visualization of crystal and molecular structures, for the computation of powder and single crystal diffraction patterns, and a host of other operations that would be nearly impossible to carry out by hand. We believe that the reader of this book will have an advantage over students of just a generation ago; he/she will be able to directly visualize all the crystal structures described in this text, simply by

1 MEM is grateful to his good friend Joanne Bassilious for recommending this inspirational movie.
Preface to the first edition

entering them into one of these visualization programs. The impact of visual aids should not be underestimated, and we have tried our best to include clear illustrations for more than 100 crystal structures. The structure files, available from the book’s website, will be useful to the reader who wishes to look at these structures interactively.

About the structure of this book

The first half of the book, Chapters 1 through 13, deals with the basics of crystallography. It covers those aspects of crystallography that are mostly independent of any actual material, although we make frequent use of actual materials as examples, to clarify certain concepts and as illustrations. In these chapters, we define the seven crystal systems and illustrate how lattice geometry computations (bond distances and angles) can be performed using the metric tensor concept. We introduce the reciprocal space description and associated geometrical considerations. Symmetry operations are an essential ingredient for the description of a crystal structure, and we enumerate all the important symmetry elements. We show how sets of symmetry elements, called point groups and space groups, can be used to describe crystal structures succinctly. We introduce several concepts of diffraction, in particular the structure factor, and illustrate how the *International Tables for Crystallography* can be used effectively.

In the second half of the book, Chapters 15 through 25, we look at the structures of broad classes of materials. In these chapters, we consider, among others, metals, oxides, and molecular solids. The subject matter is presented so as to build an understanding of simple to more complex atomic structures, as well as to illustrate technologically important materials. In these later chapters, we introduce many geometrical principles that can be used to understand the structure of materials. These geometrical principles, which enrich the material presented in Chapters 1 through 13, also allow us to gain insight into the structure of quasicrystalline and amorphous materials, discussed in advanced chapters in the latter part of the text.

In the later chapters, we give examples of crystallographic computations that make use of the material presented in the earlier chapters. We illustrate the relationship between structures and phases of matter, allowing us to make elementary contact with the concept of a phase diagram. Phase relations and phase diagrams combine knowledge of structure with concepts from thermodynamics; typically, a thermodynamics course is a concurrent or subsequent part of the curriculum of a materials scientist or engineer, so that the inclusion of simple phase diagrams in this text strengthens the link with thermodynamics. Prominent among the tools of a materials scientist are those that allow the examination of structures on the nanoscale. Chapters in the latter half of the book have numerous illustrations of interesting nanostructures, presented as extensions to the topical discussions.

Chapter 14 forms the connection between the two halves of the book: it illustrates how to use the techniques of the first half to study the structures of the second half. We describe this connection by means of four different materials, which are introduced at the end of the first chapter. Chapter 14 also reproduces one of the very first scientific papers on the determination of crystal structures, the 1913 paper by W. H. Bragg and W. L. Bragg on *The Structure of the Diamond*. This seminal paper serves as an illustration of the long path that scientists have traveled in nearly a century of crystal structure determinations.
Preface to the first edition

Some topics in this book are more advanced than others, and we have indicated these sections with an asterisk at the start of the section title. The subjects covered in each chapter are further amplified by 400 end-of-chapter reader exercises. At the end of each chapter, we have included a short historical note, highlighting how a given topic evolved, listing who did what in a particular subfield of crystallography, or giving biographical information on important crystallographers. Important contributors to the field form the main focus of these historical notes. The selection of contributors is not chronological and reflects mostly our own interests.

We have used the text of this book (in course-note form) for the past 13 years for a sophomore-level course on the structure of materials. This course has been the main inspiration for the book; many of the students have been eager to provide us with feedback on a variety of topics, ranging from “This figure doesn’t work,” to “Now I understand!” Developing the chapters of the book has also affected other aspects of the Materials Science and Engineering curriculum at CMU, including undergraduate laboratory experiments on amorphous metals, magnetic oxides, and high-temperature superconductors. Beginning in June, 1995, in conjunction with the CMU Courseware Development Program, multi-media modules for undergraduate students studying crystallography were created. The first module, “Minerals and Gemstones,” coupled photographic slides generously donated by Marc Wilson, curator of the Carnegie Museum of Natural History’s Hillman Hall of Minerals and Gems (in Pittsburgh, PA), with crystal shapes and atomic arrangements. This and subsequent software modules were made available on a CD in the fall of 1996; as updated versions become available, they will be downloadable through the book’s website. This software development work was heavily supported by our undergraduate students, and helped to shape the focus of the text. A module on the “History of Crystallography” served as a draft for the historical notes sections of this book.

The text can be used for a one-semester graduate or undergraduate course on crystallography; assuming a 14-week semester, with two 90-minute sessions per week, it should be possible to cover Chapters 1 through 14 in the first 11–12 weeks, followed by selected sections from the later chapters in the remainder of the semester. The second half of the book is not necessarily meant to be taught “as is”; instead, sections or illustrations can be pulled from the second half and used at various places in the first half of the book. Many of the reader exercises in the second half deal with the concepts of the first half.

Software used in the preparation of this book

Some readers might find it interesting to know which software packages were used for this book. The following list provides the name of the software package and the vendor (for commercial packages) or author website. Weblinks to all companies are provided through the book’s website.

- **Commercial packages:**
 - Adobe Illustrator [www.adobe.com];
 - Adobe Photoshop [www.adobe.com];
 - CrystalMaker and CrystalDiffract [www.crystalmaker.com].
Preface to the first edition

- **Shareware packages:**
 - QuasiTiler [www.geom.uiuc.edu/apps/quasitiler];
 - Kaleidotile (Version 1.5) [http://geometrygames.org].
- **Free packages:**
 - \TeX{} [www.tug.org];
 - TeXShop [www.texshop.org];
 - POV-Ray [www.povray.org].

The website for this book runs on a dedicated Linux workstation located in MDG’s office. The site can be reached through the publisher’s website, or, directly, at http://som.web.cmu.edu/.
Many people have (knowingly or unknowingly) contributed to this book. We would like to thank as many of them as we can remember and apologize to anyone whom we have inadvertently forgotten. First of all, we would like to express our sincere gratitude to the many teachers who first instructed us in the field of the structure of materials. Michael McHenry’s work on the subject of quasicrystals and icosahedral group theory dates back to his Massachusetts Institute of Technology (MIT) thesis research (McHenry, 1988). Michael McHenry acknowledges Professor Linn Hobbs, formerly of Case Western Reserve University and now at MIT, for his 1979 course Diffraction Principles and Materials Applications and the excellent course notes that have served to shape several of the topics presented in this text. Michael McHenry also acknowledges Professor Bernard Wunsch of MIT for his 1983 course Structure of Materials, which also served as the foundation for much of the discussion as well as the title of the book. The course notes from Professor Mildred Dresselhaus’ 1984 MIT course Applications of Group Theory to the Physics of Solids also continue to inspire. Michael McHenry’s course project for this course involved examining icosahedral group theory, and was suggested to him by his thesis supervisor, Robert C. O’Handley; this project has also had a profound impact on his future work and the choice of topics in this book.

Marc De Graef’s first exposure to crystallography and diffraction took place in his second year of undergraduate studies in physics, at the University of Antwerp (Belgium), in a course on basic crystallography, taught by Professor J. Van Landuyt and Professor G. Van Tendeloo, and in an advanced diffraction course, also taught by Van Landuyt. Marc De Graef would also like to acknowledge the late Professor R. Gevers, whose course on analytical mechanics and tensor calculus proved to be quite useful for crystallographic computations as well. After completing a Ph.D. thesis at the Catholic University of Leuven (Belgium), MDG moved to the Materials Department at UCSB, where the first drafts of several chapters for this book were written. In 1993, he moved to the Materials Science and Engineering Department at Carnegie Mellon University, Pittsburgh, where the bulk of this book was written.

We are especially grateful to Professor Jose Lima-de-Faria for providing us with many of the photographs of crystallographers that appear in the historical notes sections of the book, as well as many others cited below. His unselfish love for the field gave the writers an incentive to try to emulate his wonderful work.

We would like to acknowledge the original students who contributed their time and skills to the multi-media courseware project: M. L. Storch, D. Schmidt, K. Gallagher, and J. Cheney. We offer our sincere thanks to those who have proofread chapters of the text. In particular, we thank Nicole Hayward for critically reading many chapters and for making significant suggestions to improve grammar, sentence structure, and so on. In addition, we would like to thank Matthew Willard, Raja Swaminathan, Shannon Willoughby, and Dan Schmidt for reading multiple chapters; and Sirisha Kuchimanchi, Julia Hess,
Acknowledgements

Paul Ohodnicki, Roberta Sutton, Frank Johnson, and Vince Harris for critical reading and commenting on selected chapters. We also thank our colleague Professor David Laughlin for critical input on several subjects and his contribution to a special tutorial at the 2000 Fall Meeting of The Minerals, Metals & Materials Society (TMS), “A Crystallography and Diffraction Tutorial Sponsored by the ASM-MSCTS Structures Committee.” We thank Marina Diaz-Michelen of INTA for introducing us to the magnetic minerals on Mars.

There is a large amount of literature on the subject of structure, diffraction, and crystallography. We have attempted to cite a manageable number of representative papers in the field. Because of personal familiarity with many of the works cited, our choices may have overlooked important works and included topics without full citations of all seminal books and papers in that particular area. We would like to apologize to those readers who have contributed to the knowledge in this field, but do not find their work cited. The omissions do not reflect on the quality of their work, but are a simple consequence of the human limitations of the authors.

The authors would like to acknowledge support from the National Science Foundation (NSF), grant nos. #1106943, #0804020 and #1005330, Los Alamos National Laboratory (LANL), the Air Force Office of Scientific Research (AFOSR), and Carnegie Mellon University for providing financial support during the writing of this book.

We would also like to thank several of our colleagues, currently or formerly at CMU, for their support during the years it has taken to complete the text: Greg Rohrer, Tresa Pollock, David Laughlin, and Alan Cramb. In particular, we would like to thank Jason Wolf, supervisor of the X-ray Diffraction facility; Tom Nuhfer, supervisor of the Electron Optics facility; and Bill Pingitore, MSE undergraduate laboratory technician at CMU.

We would like to thank our editors at Cambridge University Press, Tim Fishlock, Simon Capelin, Michelle Carey, and Anna Littlewood for their patience. This book has taken quite a bit longer to complete than we had originally anticipated, and there was no pressure to hurry up and finish it off. In this time of deadlines and fast responses, it was actually refreshing to be able to take the time needed to write and rewrite (and, often, rewrite again) the various sections of this book.

Marc De Graef would like to thank his wife, Marie, for her patience and understanding during the many years of evening and weekend work; without her continued support (and sporadic interest as a geologist) this book would not have been possible. Last but not least, the authors acknowledge their children. Michael McHenry’s daughter Meghan and son Michael lived through all of the travails of writing this book. Meghan’s friendship while a student at CMU has helped to further kindle the author’s interest in undergraduate education. Her friends represent the best of the intellectual curiosity that can be found in the undergraduates at CMU. Michael has developed an interest in computer networking and helped to solve many problems that only an adept young mind can grasp. We hope that he finds the joy in continued education that his sister has.

Both of Marc De Graef’s children, Pieter and Erika, were born during the writing of this book, so they have lived their entire lives surrounded by crystallographic paraphernalia; indeed, many of their childhood drawings, to this day, are made on the back of sheets containing chapter drafts and trial figures. Hopefully, at some point in the future, they will turn those pages and become interested in the front as well.
This book on the structure of materials has been enriched by the courtesy of other scientists in the field. A number of figures were taken from other authors’ published or unpublished work, and the following acknowledgements must be made:

The following figures were obtained from J. Lima-de-Faria and are reproduced with his permission: 1.8(a),(b); 3.19(a), (b); 4.5(a),(b); 5.11(a),(b); 6.4(a),(b); 7.12(a),(b); 8.28(a),(b); 9.18(b); 10.14(a),(b); 15.16(a); 16.18(a),(b); 20.18(a),(b); 21.24(a); 23.28(a),(b).

The following figures were reproduced from the book *Introduction to Conventional Transmission Electron Microscopy* by M. De Graef (2003) with permission from Cambridge University Press: 3.3; 5.7; 7.1; 7.7; 7.8; 7.10; 8.20; 11.16; 13.5; 13.6; 13.8(a); 13.10; 13.11; 13.12.

Insets in Fig. 1.2 courtesy of D. Wilson, R. Rohrer, and R. Swaminathan; Fig. 11.8 courtesy of the Institute for Chemical Education; Fig. 13.13 courtesy of ANL; Fig. 13.14(a) photo courtesy of ANL, (b) picture courtesy of BNL; Fig. 13.16(b) courtesy of ANL; Fig. 13.17(a) courtesy of A. Hsiao and (b) courtesy of M. Willard; Figure in Box 16.1 courtesy of M. Skowronski; Figure in Box 17.1 courtesy of M. Tanase, D.E. Laughlin, and J.-G. Zhu; Fig. 17.29(a) courtesy of Department of Materials, University of Oxford; Fig. 17.29(b) courtesy of T. Massalski; Figure in Box 18.1 courtesy of E. Shevshenko and Chris Murray, IBM; Fig. 18.29(a) courtesy of the Materials Research Society, Warrendale, PA; Fig. 18.29(b) courtesy of A. L. Mackay; Fig. 19.7 courtesy of J.L. Woods; Fig. 19.10: Tilings were produced using QuasITiler from the Geometry Center at the University of Minnesota – simulated diffraction patterns courtesy of S. Weber; Fig. 19.14, R.A. Dunlap, M.E. McHenry, R. Chaterjee, and R.C. O’Handley, *Phys. Rev. B* 37, 8484–7, 1988, Copyright (1988) by the American Physical Society; Fig. 19.17 courtesy of F. Gayle, NIST Gaithersburg; Fig. 19.18 courtesy of W. Ohashi and F. Spaepen; (a) and (b) were originally published in *Nature* (Ohashi and Spaepen, 1987) and (c) appears in the 1989 Harvard Ph.D. thesis of W. Ohashi; Fig. 19.19(a) courtesy of the Materials Research Society, Warrendale, PA; Figure in Box 20.1 courtesy of M. Willard; Fig. 20.6(a) and (b) courtesy of J. Hess and (c) N. Hayward; Fig. 20.16 courtesy of R. Swaminathan; Figure in Box 21.1 courtesy of R. Swaminathan; Figure in Box 22.1 courtesy of M. Hawley, LANL; Fig. 22.6(a) courtesy of S. Chu; Fig. 22.15(a) courtesy of B. Raveau; Fig. 24.1(b) L. Bosio, G.P. Johari, and J. Teixeira, *Phys. Rev. Lett.*., 56, 460–3, 1986, Copyright (1986) by the American Physical Society; Figure in 24.1 courtesy of M. Bockstaller.

The following figures are new to this edition. Figure 2.10(a) appears on www.chemheritage.org/discover/online-resources/chemistry-in-history/themes/atomic-and-nuclear-structure/rutherford.aspx, and is provided from the Edgar Fahs Smith Memorial Collection, Department of Special Collections, University of Pennsylvania Library. Figure 2.10(b) appears on wikipedia (http://en.wikipedia.org/wiki/File:Chadwick.jpg):
photograph by Bortzells Esselte, Nobel Foundation, submitted to wikipedia through the AIP Emilio Segre Visual Archives, Weber and Fermi Film Collections. Figure 3.19(c) is courtesy of the Oak Ridge National Laboratory. Figure 11.25(a) is taken from *Les Prix Nobel, En 1913, Stockholm*, Imprimerie Royal. P. A. Norstedt & Soner (frame between page 100 and 101) (1914). Figure 11.25(b) is taken from *Les Prix Nobel, En 1913, Stockholm*, Imprimerie Royal. P. A. Norstedt & Soner (frame between page 102 and 103) (1914). Figure 12.9(a) is reproduced from http://imagine.gsfc.nasa.gov/docs/people/Wilhelm_Roentgen.html. Figure 12.9(b), http://en.wikipedia.org/wiki/File:Max_von_Laue.jpg, comes from *Les Prix Nobel, En 1913*, Stockholm, Imprimerie Royal. P. A. Norstedt & Soner (frame between page 98 and 99) (1914). Figure 13.18(a) is reproduced with permission from the General Photograph Collection, Carnegie Mellon University Archives, Pittsburgh, PA. Figure 15.16(b) is courtesy of Kathleen A. Gallagher. Figure 21.24(b) comes from IBM Research – Zurich. Figure 24.29(a) comes from R. M Siegel and E. M. Callaway: *Francis Crick’s Legacy for Neuroscience: Between the α and the Ω*. PLoS Biol 2/12/2004:e419. http://dx.doi.org/10.1371/journal.pbio.0020419. Figure 24.29(b) is courtesy of the Chemical Heritage Foundation Collection.
Symbols

Roman letters

- \((H, K, L)\)
 Quasicrystal Miller indices
- \((n_1, n_2, n_3)\)
 Penrose vertex configuration
- \((r, \theta, \phi)\)
 Spherical coordinates
- \((a, v, w)\)
 Lattice node coordinates
- \((x, y, z)\)
 Cartesian coordinates
- \(\Delta E\)
 Energy difference
- \(\Delta \rho_c\)
 Momentum uncertainty
- \(\Delta T\)
 Temperature difference
- \(\Delta z\)
 Position uncertainty
- \(\tilde{h}\)
 Normalized Planck constant
- \(\bar{M}_n\)
 Number average molecular weight
- \(\bar{M}_w\)
 Weight average molecular weight
- \(\bar{M}\)
 Average molecular weight
- \(\bar{r}\)
 Radius of gyration
- \(X_n\)
 Degree of polymerization
- \(A, B, C\)
 Face-centering vectors
- \(A^*, C^*\)
 Hexagonal reciprocal basis vectors
- \(a, b, c\)
 Bravais lattice basis vectors
- \(a^*, b^*, c^*\)
 Reciprocal basis vectors
- \(a_i, b_i, c_i\)
 Bravais lattice basis vectors
- \(C_h\)
 Chiral vector
- \(D_i(\theta)\)
 Rotation matrix in 1-D space
- \(E\)
 Electrical field vector
- \(e_l\)
 Cartesian basis vectors
- \(e_r\)
 Radial unit vector
- \(F\)
 Interatomic force vector
- \(g\)
 Reciprocal lattice vector
- \(R\)
 Reciprocal lattice vector
- \(I\)
 Body-centering vector
- \(j\)
 Electrical current density vector
- \(k\)
 Wave vector
- \(M\)
 Magnetization vector
- \(n\)
 Unit normal vector
- \(P\)
 General material property
- \(Q\)
 Higher-dimensional scattering vector
- \(r\)
 General position vector
- \(S\)
 Poynting vector
- \(t\)
 Lattice translation vector
- \(\mathcal{F}\)
 General field
- \(\mathcal{P}\)
 General symmetry operator
- \(\mathcal{P}\)
 Percentage ionic character
- \(\mathcal{P}\)
 Probability
- \(\mathcal{R}\)
 General material response
- \(\mathcal{F}(k)\)
 Generalized Fibonacci matrix
- \(\mathcal{F}\)
 Bravais lattice
- \(\mathcal{T}\)
 Plane tiling
- \(4 \times 4\)
 \(4 \times 4\) symmetry matrix
- \(\tilde{x}_j\)
 Normal coordinates
- \(\{a, b, c\}\)
 Lattice parameters
- \(\{a, b, c, \alpha, \beta, \gamma\}\)
 Lattice parameters
- \(A\)
 Absorption correction factor
- \(A\)
 Atomic weight
- \(A\)
 Electron affinity
- \(a_i\)
 Quasi lattice constant
- \(a_i\)
 Direct structure matrix
- \(B(T)\)
 Debye–Waller factor
- \(B_i\)
 Magnetic induction components
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Neutron scattering length</td>
</tr>
<tr>
<td>b_M</td>
<td>Neutron magnetic scattering length</td>
</tr>
<tr>
<td>b_{ij}</td>
<td>Reciprocal structure matrix</td>
</tr>
<tr>
<td>C</td>
<td>Velocity of light in vacuum</td>
</tr>
<tr>
<td>D</td>
<td>Detector</td>
</tr>
<tr>
<td>D_i</td>
<td>Electric displacement components</td>
</tr>
<tr>
<td>d_{hkl}</td>
<td>Interplanar spacing</td>
</tr>
<tr>
<td>E</td>
<td>Electric field strength</td>
</tr>
<tr>
<td>E_i</td>
<td>Electric field components</td>
</tr>
<tr>
<td>E_m</td>
<td>Energy levels</td>
</tr>
<tr>
<td>E_p</td>
<td>Potential energy</td>
</tr>
<tr>
<td>E_{kin}</td>
<td>Kinetic energy</td>
</tr>
<tr>
<td>e</td>
<td>Electron charge</td>
</tr>
<tr>
<td>$e^{ij} = \epsilon^{ijk}$</td>
<td>Normalized reciprocal permutation symbol</td>
</tr>
<tr>
<td>$e_k = e_{ijk} = \epsilon_{ijk}$</td>
<td>Normalized permutation symbol</td>
</tr>
<tr>
<td>F</td>
<td>Number of polygon faces</td>
</tr>
<tr>
<td>F_k</td>
<td>Fibonacci numbers</td>
</tr>
<tr>
<td>F_{hkl}</td>
<td>Structure factor</td>
</tr>
<tr>
<td>$f(x,y)$</td>
<td>Atomic scattering factor</td>
</tr>
<tr>
<td>f_{el}</td>
<td>Electron scattering factor</td>
</tr>
<tr>
<td>G</td>
<td>Optical gyration constant</td>
</tr>
<tr>
<td>$g(r)$</td>
<td>Pair correlation function</td>
</tr>
<tr>
<td>g_{ij}</td>
<td>Reciprocal metric tensor</td>
</tr>
<tr>
<td>g_i</td>
<td>Reciprocal lattice vector components</td>
</tr>
<tr>
<td>g_{ij}</td>
<td>Direct space metric tensor</td>
</tr>
<tr>
<td>H_i</td>
<td>Magnetic field components</td>
</tr>
<tr>
<td>h</td>
<td>Planck’s constant</td>
</tr>
<tr>
<td>h_i</td>
<td>Heat flux components</td>
</tr>
<tr>
<td>I</td>
<td>Intensity</td>
</tr>
<tr>
<td>I</td>
<td>Ionization potential</td>
</tr>
<tr>
<td>I_0</td>
<td>Incident beam intensity</td>
</tr>
<tr>
<td>I_{hkl}</td>
<td>Diffracted beam intensity</td>
</tr>
<tr>
<td>$i(k)$</td>
<td>Reduced intensity function</td>
</tr>
<tr>
<td>J_0</td>
<td>Critical current density</td>
</tr>
<tr>
<td>j</td>
<td>Electrical current density</td>
</tr>
</tbody>
</table>

Symbols:
- K: Normalization constant
- K, L, M, \ldots: Spectroscopic principal quantum numbers
- k_B: Boltzmann constant
- L: Potential range
- $L(x,y)$: 2-D lattice density
- L, S: Fibonacci segment lengths
- I: Angular momentum quantum number
- l_i: Direction cosines
- L_n: Lucas numbers
- $L_p(\theta)$: Lorentz polarization factor
- M: Debye–Waller factor
- M_W: Molecular weight
- m: Magnetic quantum number
- m_i: Particle mass
- m_0: Electron rest mass
- m_l: Mass flux components
- m_n: Neutron rest mass
- N_e: Number of free electrons
- N: Principal quantum number
- n, l, m: Atomic quantum numbers
- P: Synchrotron total power
- $P(r)$: Patterson function
- $P(\theta)$: Polarization factor
- p_i, q_i, \ldots: General position vector components
- p_{hkl}: Multiplicity of the plane (hkl)
- $p_{0l}(r)$: Radial atomic wave function
- R: Profile agreement index
- R_{wp}: Weighted profile agreement index
- $RDF(r)$: Radial distribution function
- r: Radial distance
- r_{ws}: Wigner–Seitz radius
- r_N: Nuclear radius
- S: Sample
- s: Scattering parameter
- s: Spin quantum number
- s, p, d, f, g, \ldots: Spectroscopic angular momentum quantum numbers
- s_i: Planar intercepts
- T: Absolute temperature
- T: Target
- T: Triangulation number