Index

Alexandrov topology, 272, 275, 277, 288n1, 301
algebraic quantum field theory (AQFT)
 Bell inequalities and, 324
 \(C^* \)-algebras and. See \(C^* \)-algebras
 causality and, 335, 350, 355, 359
 entanglement and, 324, 359
 heuristic theory and, 318
 independence in, 143, 354
 locality and, 343–361
 observables and, 134–135, 319, 350
 operationalism and, 439
 relativity theory and, 343, 350, 354
 separability and, 344, 357, 359
 spacetime and, 350, 354
 vacuum state and, 324, 327
 von Neumann algebras and, 318–319
 See also specific topics
antonymous functions, 227–235, 260–261
anyons, 62
AQFT. See algebraic quantum field theory
Ashtekar, A., 80
associahedra, 31, 33, 96, 105
associativity, 31, 75
Atiyah, M., 25, 67
Baez, J. C., 4, 48
Baez–Dolan theory, 108–114. See n-category theory
Bar-Natan model, 117
Barrett, J. W., 91, 171
Batanin model, 111
Bayes’s rule, 416, 430, 434, 435
Bell, J., 8
AQFT and, 324
entanglement and, 324, 359, 386
hidden variables and, 393, 394, 405
noncontextuality constraint, 399
nonlocality and, 7, 325, 399
observables and, 325, 386
Popescu–Rohrlich correlations and, 413
probabilistic theory and, 366
realism and, 386
vacuum and, 7, 325, 326
von Neumann proof and, 393
bialgebras, 77–79
bicategories, 15, 33–35, 55
braiding and, 84, 99, 107
categorification and, 99, 102, 103
elements of, 34
Hopf categories and, 102, 103
linear natural transformations, 84
MacLane coherence theorem and,
 107–108
monoidal categories and, 50, 82, 98, 99, 102,
 107
morphisms in, 34
representation theory and, 99, 103
spin foams and, 81
sylleptic, 110
TQFTs and, 97, 99, 102
Birkhoff, G., 5
Birkhoff–von Neumann logic, 130, 132, 208,
 211, 220
Bloch representation, 372
Bohm, D., 134
Brogli–Bohm theory, 385
correlation variables and, 201
EPR and, 443. See EPR experiment
hidden variables and, 404–405, 451. See also
 hidden variable theory
Bohrification, 271–313
C*-algebras and, 286–292, 291
Gelfand spectra and, 291, 297
probability and, 301
quantum logic and, 298
Rickart algebra and, 297, 305
state space and, 291

Boolean algebras
classical theory and, 193–194, 210
excluded middle and, 193–194, 210
Hasse diagrams and, 301
Heyting algebra and, 196, 197, 273, 299
independence and, 148
lattice theory and, 193–194, 263, 273, 299
partial, 298
probability valuation and, 305
Sasaki hooks and, 300
sheafs and, 299
spectral families and, 267
Stone spectrum and, 294
Borel functions, 210, 212
Born, M., 20
Bose field, 328
bosons, 41, 73, 150
braiding, 32, 52, 54
bicategories and, 84, 99, 107
duals and, 100
Eckmann–Hilton argument, 109
free, 52
hexagon identities and, 32
interchange law, 97
Joyal–Street theorem and, 63–64
knot theory and, 51. See knot theory
monoidal categories and, 29, 64, 85, 97–99,
109, 112
n-categories and, 109
natural isomorphisms and, 53
string diagrams and, 29–32, 38, 58, 90–93
symmetry and, 29, 32, 54
tangles and, 58, 112
tensor products and, 29
TQFT and, 67, 85
weakening and, 53
Yang–Baxter equation and, 64
Broglie–Bohm theory, 385
Brouwer, L. E. J., 1
Brukner, C., 8
Brus–Lakser completion, 300, 301
Brussels school, 5
Bub, J., 9
Butterfield–Isham theory, 5–6. See topos theory
C*-algebras, 214, 334
annihilators, 293, 294
Einstein causality, 321, 335, 337, 343, 350, 355–356
entanglement and. See entanglement evolutions and, 150
graph structure and, 141
independence and, 143
indeterminacy and, 8, 156, 411
information and, 366, 413, 419
lattices and, 258, 268
locality and, 321, 350. See also locality
microcausality, 350
nonisolation and, 165
probability and, 436–437. See probability theory
process and, 141, 144. See also processes relativistic, 147, 446
spacetime and, 446. See also spacetime vacuum and, 324
variable structure, 8, 156
See also specific topics
CGMA. See Condition of Geometric Modular Action
Chern–Simons theory, 62, 80, 85, 99
choice, axiom of, 279
Cirelson limit, 366
classical theory
abelian algebras and, 212
causality and. See causality complementarity and, 374
texts and, 212
daseinisation and, 209, 226
determinism and, 169. See determinism
Frobenius algebras and, 165–166, 176
hidden variables and. See hidden variables theory
logical structure of, 193
measurement and, 165–178. See also measurement
Newtonian physics and, 192, 365
observables and, 222, 239–269, 374
power sets in, 219
processes and, 130
propositions in, 217
quantization and, 130, 193, 214, 251, 267
quantum theory and, 130, 193, 214, 251, 267. See also specific topics
real numbers on, 235
realism and, 191–193, 210. See also realism
relativity and, 187. See also relativity theory
representation in, 209–211
spectral families and, 268
state spaces and, 210, 236
topos theory and, 211
two kinds of, 166
vacuum and, 322, See also vacuum state
valuation and, 226–227
von Neumann model and, 171–172
cloning operations, 167–168, 175
coalgebras, 77
coarse-graining, 213, 218, 222, 224
cobordisms, 70, 71, 101
cobordism hypothesis and, 113
conformal field theory and, 66
n-dimensional, 66
Pachner moves and, 91
spherical categories and, 94
string diagrams and, 86, 93
three-dimensional, 93, 94
TQFTs and, 67, 86, 100
coherence laws, 54, 82
Common Cause Principle, 359
compatibility, 175–176
compactness, 156
compatibilism, 450
complementarity, 176, 386
complex numbers, 35, 44, 83, 88, 190, 201, 284
composition, 130, 137, 139–154
braiding and, 52
causality and, 153, 156
correlatability and, 433–435
dependent, 142
foliations and, 426–427
FUNC and, 200
functors and, 24, 69
groups and, 25
independence constraint, 143–144
interaction rule for, 144
measurement and, 431–435
of morphisms, 23–24, 37–38, 47
probability theory and, 369, 426–427
process and, 141
sufficient isolation, 144
systems and, 139–154
tangles and, 62
tensors and, 70, 175, 176
Condition of Geometric Modular Action (CGMA), 330
configuration variables, 201
conformal field theory, 50, 66, 67, 102
consistent histories approach, 271
constructionism, 279
countextuality, 202, 212, 224, 263–266
continuum. See real numbers
contravariant functors, 69, 202
convex set approach, 130
Conway, J., 9. See also free will theorem
cosmological constant, 86
cosmology, 86, 188, 200
covariance, 236, 320, 328, 332, 334, 350, 427
CQM. See categorical quantum mechanics program
Crane–Frenkel model, 102, 103
Crane–Yetter construction, 96
cryptography, 386
dagger categories, 72, 161
closed, 134, 160
dagger functor, 160
duality and, 69, 162
monoidal categories and, 73, 140
observables, 140
Dakic, B, 8
daseinisation
classical contexts and, 209
coarse-graining and, 213
defined, 220
Hilbert spaces and, 208
locales and, 306, 308
map for, 271, 273
ontological commitment and, 192
probability and, 301
projections and, 207, 217–221, 235
self-adjoint operators and, 207, 208, 222–235
spectral presheaves and, 219, 235
topos theory and, 203, 207–238
two processes of, 208
de Sitter space, 330, 335
decoherence
broadcasting and, 168
classicality and, 171
environment and, 168
hyperdecoherence, 367n2
open systems and, 141
Dedekind real line, 280. See real numbers
Deligne conjecture, 111
determinism, 168, 169
causality and, See causality
Einstein and, 450
free will theorem and, 9, 443–453
probability and. See probability theory
randomness and, 450. See also randomness
relativity theory and, 451
uniqueness and, 145
Deutsch–Josza problems, 374
Dijkgraaf, R., 70–72, 77
dimensions, 15, 64, 366–369. See also spacetime: specific topics
Dirac, P. A. M., 191n4, 345
discreteness, 131, 138–139. See also specific topics
distillability, 327
distribution postulate, 5
Dolan, J., 48
Donaldson theory, 67, 103, 117, 118. See also Seiberg–Witten theory
Doplicher–Roberts theorem, 72, 74
Drinfel’d, V., 64–65
duals, 68–72
Dyson, F. J., 27
Eckmann–Hilton theory, 97, 98, 107, 108
Eilenberg, S., 18, 23–25
Eilenberg–Moore algebras, 281
Einstein, A.
AQFT and, 355
causality and, 321, 335, 350, 355
determinism and, 450
Dialectica paper, 343–345, 346, 359
EPR paradox and, 345–346, 443, 446. See also entanglement
field theoretical paradigm, 347
general theory and, 16, 19. See general relativity
indeterminism and, 7
nonlocality and, 7, 350
quantum theory and, 7
separability and, 6, 7
special theory and, 8
von Neumann and, 343–361
Einstein summation convention, 35
electrons, 40, 394
elementary particles, 22, 26, 28, 449–450. See also specific types, properties
energy, 22, 403
entanglement, 8, 165, 365–391
algebraic quantum field theory and, 359
Bell inequality and, 324, 381, 386
distillability and, 327
EPR paradox and, 345–346, 443, 446
generalized bits and, 378
hidden variables and, 400. See hidden variable theory
measurement and, 369, 376, 381–382
mirror states and, 381
no-signalling property and, 418
nonlocality and, 460. See locality
paradoxical behavior, 323
probability theory and, 367, 370, 386
quantum information theory and, 323, 325
Reeh–Schlieder Theorem and, 323
Schrödinger and, 359
vacuum state and, 324, 326, 327
von Neumann and, 359
weak additivity and, 326
environment, system and, 140, 143–145
<table>
<thead>
<tr>
<th>INDEX</th>
<th>459</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPR experiment, 346, 443, 446. See also entanglement; locality</td>
<td></td>
</tr>
<tr>
<td>Euler characteristic, 115, 116</td>
<td></td>
</tr>
<tr>
<td>excluded middle, 197, 279</td>
<td></td>
</tr>
<tr>
<td>experiment</td>
<td></td>
</tr>
<tr>
<td>closability and, 418</td>
<td></td>
</tr>
<tr>
<td>free will and, 446</td>
<td></td>
</tr>
<tr>
<td>inertial frames in, 449</td>
<td></td>
</tr>
<tr>
<td>linear compressions and, 424</td>
<td></td>
</tr>
<tr>
<td>MIN axiom, 446</td>
<td></td>
</tr>
<tr>
<td>observables and. See observables</td>
<td></td>
</tr>
<tr>
<td>operationalism and. See operationalism</td>
<td></td>
</tr>
<tr>
<td>scientific method and, 144</td>
<td></td>
</tr>
<tr>
<td>wave function collapse, 452</td>
<td></td>
</tr>
<tr>
<td>Fermat’s last theorem, 107</td>
<td></td>
</tr>
<tr>
<td>fermions, 41, 73</td>
<td></td>
</tr>
<tr>
<td>Feynman diagrams, 4, 13, 15, 26</td>
<td></td>
</tr>
<tr>
<td>Dyson and, 27</td>
<td></td>
</tr>
<tr>
<td>intertwining operators, 26</td>
<td></td>
</tr>
<tr>
<td>loops and, 40</td>
<td></td>
</tr>
<tr>
<td>morphisms and, 27</td>
<td></td>
</tr>
<tr>
<td>Penrose diagrams, 37</td>
<td></td>
</tr>
<tr>
<td>Poincaré group and, 26–27, 28</td>
<td></td>
</tr>
<tr>
<td>spin networks and, 42, 80</td>
<td></td>
</tr>
<tr>
<td>string theory and, 50</td>
<td></td>
</tr>
<tr>
<td>topology of, 50</td>
<td></td>
</tr>
<tr>
<td>Feynman, R., 444</td>
<td></td>
</tr>
<tr>
<td>Fibonacci series, 401n7</td>
<td></td>
</tr>
<tr>
<td>films, spacetime and, 62</td>
<td></td>
</tr>
<tr>
<td>filters, 227–228, 230, 240</td>
<td></td>
</tr>
<tr>
<td>Fock space, 320n5</td>
<td></td>
</tr>
<tr>
<td>foliable structures</td>
<td></td>
</tr>
<tr>
<td>commutativity and, 428–429</td>
<td></td>
</tr>
<tr>
<td>hypersurfaces in, 416</td>
<td></td>
</tr>
<tr>
<td>Lorentz transformations and, 409–410</td>
<td></td>
</tr>
<tr>
<td>measurement and, 424–437</td>
<td></td>
</tr>
<tr>
<td>mixtures and, 424–426</td>
<td></td>
</tr>
<tr>
<td>no-signalling axiom, 418–419</td>
<td></td>
</tr>
<tr>
<td>operationalism and, 409–410</td>
<td></td>
</tr>
<tr>
<td>Popescu–Rohrlich correlations, 413</td>
<td></td>
</tr>
<tr>
<td>probability and, 416</td>
<td></td>
</tr>
<tr>
<td>quantum theory and, 437–439</td>
<td></td>
</tr>
<tr>
<td>r-p framework, 412</td>
<td></td>
</tr>
<tr>
<td>spacetime and, 411–412</td>
<td></td>
</tr>
<tr>
<td>states in, 421–422</td>
<td></td>
</tr>
<tr>
<td>system, notion of, 411–420</td>
<td></td>
</tr>
<tr>
<td>trace measurement, 424</td>
<td></td>
</tr>
<tr>
<td>Foulis–Randall school, 132</td>
<td></td>
</tr>
<tr>
<td>fractional quantum Hall effect, 62</td>
<td></td>
</tr>
<tr>
<td>frames. See locales</td>
<td></td>
</tr>
<tr>
<td>free will theorem, 9, 443–453</td>
<td></td>
</tr>
<tr>
<td>Freed, D. S., 104</td>
<td></td>
</tr>
<tr>
<td>Frenkel, I., 102</td>
<td></td>
</tr>
<tr>
<td>Freyd–Yetter theory, 58–64</td>
<td></td>
</tr>
<tr>
<td>Frobenius algebras, 70, 71, 77, 167</td>
<td></td>
</tr>
<tr>
<td>classicality and, 165–166, 176</td>
<td></td>
</tr>
<tr>
<td>coalgebras and, 71</td>
<td></td>
</tr>
<tr>
<td>commutativity and, 71, 106, 174–176</td>
<td></td>
</tr>
<tr>
<td>complementarity and, 176</td>
<td></td>
</tr>
<tr>
<td>conformal field theories and, 102</td>
<td></td>
</tr>
<tr>
<td>Frobenius law, 169n39</td>
<td></td>
</tr>
<tr>
<td>monoidal category on, 101, 106</td>
<td></td>
</tr>
<tr>
<td>open strings and, 106–107</td>
<td></td>
</tr>
<tr>
<td>string diagrams and, 90, 106–107</td>
<td></td>
</tr>
<tr>
<td>Fukuma–Hosono–Kawai model, 91–97, 101</td>
<td></td>
</tr>
<tr>
<td>functors, 16–17</td>
<td></td>
</tr>
<tr>
<td>adjoint, 133</td>
<td></td>
</tr>
<tr>
<td>Bohrification and, 272</td>
<td></td>
</tr>
<tr>
<td>categories and, 24–25</td>
<td></td>
</tr>
<tr>
<td>cobordisms and, 94</td>
<td></td>
</tr>
<tr>
<td>covariance and, 69, 202, 236, 272</td>
<td></td>
</tr>
<tr>
<td>defined, 23</td>
<td></td>
</tr>
<tr>
<td>equivalence and, 25</td>
<td></td>
</tr>
<tr>
<td>f-algebras, 284–285, 304</td>
<td></td>
</tr>
<tr>
<td>invariants and, 23</td>
<td></td>
</tr>
<tr>
<td>inverses of, 25</td>
<td></td>
</tr>
<tr>
<td>linear, 93–95</td>
<td></td>
</tr>
<tr>
<td>monoidal, 53–55, 159</td>
<td></td>
</tr>
<tr>
<td>presheaves and, 235–236</td>
<td></td>
</tr>
<tr>
<td>semantics of, 24, 33</td>
<td></td>
</tr>
<tr>
<td>subfunctors, 292–293, 297</td>
<td></td>
</tr>
<tr>
<td>topos theory and, 275–279</td>
<td></td>
</tr>
<tr>
<td>transformations of, 24, 84</td>
<td></td>
</tr>
<tr>
<td>weakening and, 25, 53</td>
<td></td>
</tr>
<tr>
<td>See also specific types, topics</td>
<td></td>
</tr>
<tr>
<td>Galilean transformations, 410</td>
<td></td>
</tr>
<tr>
<td>Galileo, 18</td>
<td></td>
</tr>
<tr>
<td>Galileo–Lorentz group, 148</td>
<td></td>
</tr>
<tr>
<td>Galois adjoints, 133</td>
<td></td>
</tr>
<tr>
<td>gauge theories, 17, 27–28, 188</td>
<td></td>
</tr>
<tr>
<td>Gaussian rationals, 281</td>
<td></td>
</tr>
<tr>
<td>Gelfand spectra, 203, 215, 217, 241, 247, 293</td>
<td></td>
</tr>
<tr>
<td>Bohrification and, 291, 297</td>
<td></td>
</tr>
<tr>
<td>C*-algebras and, 214, 272, 283, 285, 286, 291</td>
<td></td>
</tr>
<tr>
<td>duality and, 271, 283</td>
<td></td>
</tr>
<tr>
<td>filters and, 228–231</td>
<td></td>
</tr>
<tr>
<td>Gelfand–Neimark theorem, 282</td>
<td></td>
</tr>
<tr>
<td>lattice theory and, 271</td>
<td></td>
</tr>
<tr>
<td>locales and, 283</td>
<td></td>
</tr>
<tr>
<td>localic, 107</td>
<td></td>
</tr>
<tr>
<td>presheaves and, 214–217, 264</td>
<td></td>
</tr>
<tr>
<td>representation for, 215</td>
<td></td>
</tr>
<tr>
<td>Rickart algebra and, 297</td>
<td></td>
</tr>
<tr>
<td>self-adjoint operators and, 262</td>
<td></td>
</tr>
</tbody>
</table>
Gelfand spectra (cont.)
spectral transformation, 203, 215, 246, 262–264, 283
Stone spectrum and, 240, 242, 294
general relativity, 268, 445
classical physics and, 187
Einstein and, 16, 19
gravity and, 16. See also quantum gravity
metric on, 187
observables and, 268
probabilistic, 440
quantum theory and, 187, 203
spacetime and. See spacetime
vacuum state and, 317
Geneva school, 131, 132, 134, 139, 142
global modular action, 330
Ghirardi-Rimini-Weber (GRW) theories, 451
Girard linear logic, 135
Gleason theorem, 136n13, 241–242, 264, 265, 403n8
GNS representation, 320
golden ratio, 401n1
Gordon–Power–Street model, 107–108
Gottesman–Chuang theory, 134
graph theory
categories and, 139
causal structure and, 141, 412
combinatorics and, 111, 139
complexes and, 93
composition and, 139
connectedness and, 139, 143
four-color theorem, 3–4
hypersurfaces in, 415
Kuratowski theorem, 146
Markopoulou model and, 412
planar graphs, 146
undirected graphs, 152
Gray categories, 108
Grothendieck, A., 18, 47–49
Grothendieck group, 115
group theory, 16, 25, 64–65, 162
Abelian groups, 287
algebras and, 76, 78, 79
braiding. See braiding
canonical basis in, 81
category theory and, 4, 81, 99. See specific topics
class of, 154
complex forms of, 78
Feynman diagrams and, 28
fundamental group. See Poincaré group
homology groups, 25, 104–107, 115–118
Hopf algebra and, 65. See Hopf algebras
intertwiners and, 4
isometry groups, 335–336
Jones polynomial and, 115
lattices and. See lattice theory
Lie groups, 37, 40, 43, 78–79, 369, 371
n-groupoids, 18
orthogonal representation, 371
perverse sheaves and, 81
Poincaré group. See Poincaré group
quantum groups, 43, 64, 73–82, 99, 104, 105.
See specific topics
SU(2) subgroup, 27, 78, 86
symmetry groups, 16, 18, 21, 139, 150–151
tensors and, 85
TQFT and, 84–85
triangular decompositions and, 81
unitary representation and, 21
universal properties, 52
Yang–Baxter equation and, 83
See also specific types, topics
hadrons, 187
Hakeda-Tomiyama theory, 147
Hall effect, 62
Hardy, L., 8, 137, 151
Hardy model, 366, 367, 369
Hasse diagrams, 301
Hausdorff spaces, 214, 215, 242, 271, 283, 293
Heegaard-Floer homology, 118
Heidegger, M., 191, 192, 203
Heisenberg, W., 2, 20
Hermitian operators, 394, 395, 403
hexagon identities, 32
Heyting algebras, 195–197, 280
Boolean algebras and, 196, 197, 273, 299
distributivity of, 273
locales and, 274
morphisms and, 273
spectral presheaves and, 219, 235
hidden variable theory, 8–9, 344, 385, 434
Bell and, 394, 403, 405
Bohm and, 404, 451
collapse models, 365
contextuality and, 212, 263–266, 394–395, 404
tenentanglement and, 400
free will theorem and, 451
Hilbert space operators and, 404
locality and, 399, 404
measurement and, 365, 385, 395, 403, 404, 405
probability theory and, 393–407
qubits and, 385
relativity and, 451
spin and, 402, 405
stochastic states and, 399
von Neumann and, 393–407
Hilbert, D., 2
Hilbert spaces, 20, 21
AQFT and, 348. See also algebraic quantum field theory
C*-algebras and. See C*-algebras
category theory and, 4, 14, 80, 105, 158, 204
completeness and, 8
dagger compactness and, 162
daseinisation and, 207–208
dimension two, 264
Feynman diagrams and, 26. See also Feynman diagrams
first principles of, 191
formalism of, 2–9, 208
free will and, 9
Frobenius algebra and, 176
graph structure and, 412
Hermitian operators on, 395, 403, 404, 406
hidden variables and, 404. See hidden variables theory
infinite-dimensional, 68, 214, 217, 235
Kraus theorem and, 349
lattices and, 211. See also lattice theory
linear operators and, 16, 68. See also linear operators
loop quantum gravity and, 80
Minkowski spacetime and, 419
n-category theory and. See n-category theory
naturalness and, 290
noncontextuality property, 290
observables and, 2, 200, 226, 239, 243, 395, 397
operation locality and, 438
operators on. See operator algebras
orthonormal basis on, 175–176
photon and, 26
physical quantities in, 403
probability theory and, 435. See also probability theory
pseudo-states and, 203
quantum theory and, 4, 20, 64, 132, 165, 190, 204, 208, 345, 348, 435, 437. See specific topics
real numbers and, 211
self-adjoint operators on, 200, 238. See self-adjoint operators
spin and, 8, 140. See also spin; specific topics
Stinespring theorem and, 349
Stone spectra and, 241
tensor product for, 66, 134, 158, 438
topos theory and, 200, 207, 208. See topos theory
vacuum state and, 327
valuations in, 200
von Neumann algebras and. See von Neumann algebras
weak closedness and, 214
See also specific parameters, types, topics
Hilbert–Poincaré series, 116
Hiley, B. J., 134
HOMFLY-PT polynomial, 58
homotopy theory, 18
category theory and, 49
chain homotopies, 105, 115
framing in, 112
Grothendieck and, 49
groupoids and, 105
homology and, 25, 104–107, 115–118
homotopy types, 49
n-categories, 47, 49
Hopf algebras, 177n40
bialgebras and, 79
defining equation of, 177n40
groups and, 65
Hopf categories, 103
Planck constant and, 65
quasitriangular, 74, 75, 79, 100, 104
representations and, 102
three-dimensional, 103
TQFTs and, 102, 103, 104
trialgebras and, 103
independence, 148, 344
commutativity and, 351
spacetime and, 354
von Neumann algebras and, 352–354
information theory, 419
bits in, 372–375
capacity in, 368
causality and, 366, 413, 419
computer science and, 4, 13, 73
constraints for, 366
dimension and, 366, 368
distillability and, 327
matter and, 129–186
measurement and, 386. See measurement
no-signalling axiom and, 419
probability and, 366, 368. See also probability theory
properties and, 447
quantum information theory, 4, 73, 129, 323, 325–327
qubits and. See qubits
spacetime and, 449
transmission of, 444
instrumentalism, 187, 201, 366
laboratory devices, 370–372
measurement and, 368, 370. See measurement
operationalism and. See operationalism
probability and. See probability theory
quantum correlations and, 366
quantum gravity and, 208
relative-frequency interpretation and, 190
intuitionistic logic, 138, 197, 279
Isham, C., 1, 5–6. See topos theory
Jones polynomial, 55, 80, 115–116
Joyal, A., 50
Joyal–Street theorem, 63
Kan complexes, 48
Kant, I., 1
Kapranov, M., 82
Kauffman bracket, 56–58, 60, 79
Khovanov homology theory, 115–118
Klyachko model, 397
KMS-states, 329
knot theory, 129
braiding and, 51
framing in, 112
Jones polynomial and, 55, 80
Kauffman bracket and, 56
links in, 55, 57
monoidal categories and, 56
quantum invariants and, 56, 57, 73
Reidemeister moves, 51, 57, 82
skein relations, 56
stabilization hypothesis and, 112
tangles and, 51, 112
tricategories and, 107
Yang–Baxter equation and, 65
Knots and Physics (Kauffman), 58
Kochen, S., 9
Kochen–Specker theorem
contextuality and, 200
functional relation constraint, 395
Gleason theorem and, 136n13
Klyachko on, 394–399
observables and, 222
paradox and, 443–446, 448
physical quantities and, 193, 210, 222, 267
reformulation of, 290
spectral presheaf and, 202–203, 226
topos theory and, 198, 271, 290
von Neumann algebras and, 210–211
Kontsevich, M., 99–100, 104–107, 111
Kraus operators, 355
Kripke toposes, 280, 283, 284, 286, 295
Kripke–Joyal semantics, 291
Kuratowski theorem, 146
Kurbek model, 135n12
Landauer’s principle, 167
Langlands program, 107
language, structure of, 135n12
lasers, 386
lattice theory, 132, 193–194
algebraic restriction and, 259–260
antitone functions, 296
Bohrification of, 296
Boolean algebra and, 263, 299. See Boolean
algebras
Bruns–Lakser completion and, 300, 301
C*-algebras and, 285
complementarity in, 296, 298
dual ideal in, 240, 262
filters and, 228, 240. See filters
finite types and, 241
Gelfand spectrum and, 271. See also Gelfand
spectra
Heyting algebra and. See Heyting algebras
ideals and, 285, 300. See ideals
locales and, 271
normality and, 286
observables and, 267
orthomodular, 240, 241, 298
paradigm of, 132
presheaves and, 239
projections and, 203, 211, 242
quasipoints and, 242
regularity condition, 285
Reisz space and, 284
semilattices, 275
spacetime and, 258
spectral families and, 239–241, 245, 247,
251–252, 256, 259
Stone spectrum and, 239–241, 240
Lauda, A. D., 4
Laughlin, R. B., 62
Lawvere, F. W., 33
Leibniz–Mach theory, 7
Lie groups, 37, 78–79
light, speed of, 189, 321, 366, 410
Lindenbaum algebra, 280
linear operators
C*-algebras and, 282, 290. See also
C*-algebras
category theory and, 16, 28
coarse-graining and, 213
Feynman diagrams and, 13
Gelfand spectra and. See Gelfand spectra
homotopy and, 105. See also homotopy
theory
measurement and. See measurement
observables and, 2, 200, 226, 239, 243, 395
Pachner moves and, 87, 94, 100
projections. See projection operators
topos theory and, 290. See also topos theory
TQFTs and, 67–68, 105
See also specific types, topics
local tomography assumption, 171
locales, 138, 189, 273
C^*-algebras and, 281
compact, 282–283
daseinisation and, 306, 308
Gelfand spectrum and, 283
logical aspect, 280
points and, 271
sheaf over, 277
spacetime and, 274, 275, 280
topos theory and, 276, 277, 279
locality, 215, 318, 335, 386
algebraic quantum field theory and, 343–361
Bell inequality and, 7, 325, 399. See also
Bell, J.
Einstein causality and, 7, 350
entanglement. See entanglement
EPR problem, 346, 443, 446
f-algebras and, 284, 285
local systems, 355
logic-gate teleportation, 134
microcausality and, 350
nonlocality and, 325
operationalism and, 343–361
probabilistic theory and, 368
quantum information theory and, 325
quasilocality, 350
relativity theory and, 343
separatedness and, 355
spacetime and, 321
vacuum state and, 7
logic, 5
Boolean. See Boolean algebra
classical, 5
intuitionistic, 6, 138, 197, 279
linear, 135, 135n12
quantum. See quantum logic
Loomis-Sikorski theorem, 254
loop quantum gravity, 14, 80, 187, 440
Lorentz group, 19, 328
Lorentz, H. A., 18, 406
Lorentz transformations, 18, 409, 410
Ludwik, 450
Ludwig school, 132
Mach’s principle, 136
Mach–Zehnder interferometer, 386
MacLane coherence theorem, 107
MacLane, S., 18, 23, 28–32
MacLane strictification theorem, 160
mass, of particles, 22
Mathematical Fondations of Quantum
Mechanics (von Neumann), 413
Mathematical Foundations of Quantum
Mechanics (von Neumann), 393
Mathematics, foundations of, 48
Maxwell equations, 409–410
Maxwell, J. C., 17–18
MBQC. See measurement-based quantum
computational model
measurement
Bohm theory of, 404–406
classical theory and, 165–178
coarse-graining and, 213, 218, 222, 224
collapse models, 365, 385, 451–452
complementarity and, 374
composite systems and, 431–433 (XX) JIM
contextuality and, 202, 212, 224, 263–266
continuity axiom and, 380
determinism and, 395, 399
Deutsch-Josza problems, 374–375
dimension and, 369, 384–385
ergy and, 403
entanglement and, 369, 376, 381–382
experiment and, 366, 368–372
liducial sets and, 372, 374, 431–433
foundation principles and, 368
generalized bits and, 378–380
Hardy model and, 380
hidden variables and, 365, 385, 395, 403,
404, 405
independence and, 400, 452
information theory and, 386
instrumentalism and, 368, 370. See
instrumentalism
laboratory operations, 366, 370–372
linear operators and. See linear operators
locality and, 376, 399, 409, 433–435. See
locality
MBQC. See measurement-based quantum
computational model
measurable functions, 253–254
measurement problem, 136
mirror theory and, 380
mixed states and, 372, 373, 376
no signaling condition, 399
noncontextuality constraint and, 399
observables and, 169, 253–254, 319, 348,
349, 405. See observables
operators in, 131, 366, 409, 413–416. See
also operator algebras
INDEX

INDEX

Poincaré group and, 37, 320
presheaves and, 263
processes and, 14
pullback and, 276
purification of, 163
relationalism and, 136
Shum’s category and, 62
simplices, 48
symmetry and, 164
tangles and, 58, 59, 112, 117
tensors and, 28, 35
time and, 68
topos theory and, 278–279
unitary, 23, 59, 69
weak equivalences, 49
zig-zag identities and, 39
Morse theory, 70
Murray, J., 343
n-category theory, 49
braiding and, 52
category theory and, 49
cobordisms and, 113, 114
computer science and, 13
definition of, 49
development of, 13–128
duals and, 63, 112
equivalence and, 49
homotopy theory and, 49
opetopic approach, 47–48
periodic table for, 97, 108, 110
semistrict, 108
stabilization hypothesis, 110
string theory and, 50
topology and, 118
TQFTs and, 68, 101, 108, 114
Newtonian physics. See classical theory
Newton’s constant, 189
no-broadcasting theorem, 365
no-cloning theorem, 365
no-go theorems, 136, 236, 344
no-signalling assumption
closability and, 418
Einstein causality and, 355–356, 366
entanglement and, 418
information causality and, 419
Minkowski spacetime and, 419
Popescu-Rohrlich correlations and, 413
Noether, E., 115
noncontextuality constraint, 399. See contextuality
nonlocality, 5, 7, 325. See locality
observables
antonymous functions, 227–235, 260–261
AQFT and, 350
Bell’s inequality and, 325, 386
Bohmian particles, 404
C*-algebras and. See C*-algebras
classical, 168, 222, 239–269. See also
classical theory
complementarity and, 374, 386
contextuality and, 212, 224, 263–266
dagger symmetry and, 140
defined, 229
determinism and, 395. See also determinism
elementary propositions and, 306
energy and, 22
experiments and, 134, 333, 395. See experiment
general relativity and, 268
Hilbert spaces and, 2, 200, 226, 239, 243, 404
Kochen–Specker theorem and, 222
lattice theory and, 267
locality and, 201, 344. See also locality
measurement and, 169, 201, 253–254, 319, 348, 349, 393n1, 405. See measurement
modular involutions and, 329
monoidal categories and, 140
nets and, 329–330, 331, 335, 350
observable functions, 243–251, 255–256, 261
physical quantities and, 131, 207, 222, 394–396. See measurement; specific topics
real numbers and, 239
representation of, 222–235
self-adjoint operators and, 21, 239, 348. See self-adjoint operators
spacetime and, 318. See spacetime
spin, 395. See spin
state and, 301–309, 318
topological theory and, 255–256
vacuum and, 322
ontological commitment, 146, 192, 385. See also classical theory; specific theories
operationalism, 131, 385, 410
AQFT and, 439
background time in, 410f, 411
causal structure and, 411
closable sets in, 417, 439
continuum and, 439
experiment and, 413–414
foliable structures. See foliable structures
independence and, 344
local tomography and, 435–436
locality and, 343–361
measurement and, 131, 413–416. See measurement
operator algebras. See operator algebras
Operationalism (cont.)
- Probability and, 409–410, 439. See Probability theory
- Processes and, 142
- Quaternionic quantum theory, 435
- Realism and, 132
- Systems and, 420

Operator algebras
- C*-algebras and. See C*-algebras
- Duals in, 348
- Foliability. See Foliably structured
- Gelfand spectra and. See Gelfand spectra
- Hilbert space and, 6
- Independence, 357–358
- Intertwining operator, 76–77
- Linear operators. See Linear operators
- Locality and, 318
- Operads, 33
- Projection and. See Projection operators
- Self-adjoint. See Self-adjoint operators
- Separability and, 357
- Tomita–Takesaki theory and, 327
- Von Neumann algebras. See von Neumann algebras

Pachner moves
- Cobordisms and, 91–92
- Invariance under, 100
- Pentagon identity and, 95f
- String diagrams and, 87
- Parity, 22

Particles, elementary
- Bohm and, 405
- Free will and, 449–450
- Locales and, 322
- Momentum of, 405
- Phase multiplication and, 73
- Poincaré groups and, 26
- Standard Model, 28
- See also specific types, properties

Pauli operators
- PCT theorem, 329
- Penrose, R., 35–43, 60, 188
- Pentagon identity, 31, 32, 95
- Peres configuration, 444, 446, 450
- Perturbation theory, 330
- Phase groups, 162
- Phase space, 210
- Photons, 368, 411
- Piron's theorem, 137
- Planck scale, 65, 189, 375
- Poincaré group, 40, 80, 317
- Elementary particles and, 26
- Feynman diagrams and, 26–27, 37, 80

Infinite dimensionality and
- Morphisms and, 37
- Observables and, 40
- Poincaré dual, 87, 89, 93
- Positive-energy representations, 22, 28, 67
- Relativity theory and, 21–22
- SU(2) and, 81
- Vacuum state and, 330
- Poincaré, H., 18–19
- Poincaré invariants, 320
- Poincaré spin network, 44
- Pointfree topology, 271
- Point, primacy of, 64, 72, 114, 117, 366
- Ponzano–Regge model, 44–45, 80, 85
- Popper, K., 188
- Potentiality, 139–140
- Power sets, 195
- Probability theory, 20, 131, 145, 416
- Bayes rule, 416, 430, 434, 435
- Bell inequalities and, 366. See Bell, J.
- Bohrification and, 301
- Boolean algebra and, 305
- C*-algebras and, 304, 305. See also C*-algebras
- Causality and, 411
- Classical, 436–437
- Commutativity and, 319
- Continuity and, 190–191, 370, 386
- Correlation and, 433
- Daseinisation and, 301
- Degrees of freedom and, 366, 367
- Determinism and, 394, 398, 400
- Dimension and, 368
- Dispersion-free ensembles, 402–403
- Entanglement and, 367f, 370, 386
- Expectation and, 350, 394, 403
- Fiducial measurements and, 371, 374, 431
- Finitely structured and, 416–418. See finitely structured
- Generalized truth values and, 191
- Hidden probabilities, 399
- Hidden variables and, 393–407
- Information and, 366, 368
- Interpretations of, 416
- KLaychko model and, 396
- Latency, 190
- Local tomography, 412, 413
- Locales and, 443
- Locality and, 368, 437
- Matrix theory and, 423
- Measurement and, 187, 371, 372, 373, 376, 377. See also Measurement
- Mixed states and, 372, 426
INDEX

467

operationalism and, 409–411, 437, 439
potentiality and, 190
probability vector, 372
problems with, 443
projection and. See projection operators
purification of, 163–165
quantum gravity and, 142, 411, 440
r-p framework and, 412
randomness and. See randomness
real numbers and, 190–191, 370, 386
relative frequency and, 190, 416
reversibility and, 20, 368
Schrödinger on, 345
state space and, 367, 371
topos theory and, 273
trace and, 403, 424
transition amplitude, 20
transpose and, 423
uncorrelatability and, 433
update rules, 384–385
von Neumann algebras and. See von Neumann algebras
weights and, 142, 144–145
processes
classicality and, 130, 166–169, 168
composition of, 141–143
environment and, 143
examples of, 154
feed-into-the-environment, 144
graphical representation of, 145–146
identical, 149–152
interactions, logic of, 135–136
inverses to, 149
matter and, 141
open systems and, 144
operations and, 142
probes and, 160
relations and, 130, 136–137
reversibility and, 20
stochastic, 169. See probability theory
structure and, 129–186
symmetry relations, 20, 141
systems from, 134–135
virtual, 148
projection operators, 203, 292
abelian algebras and, 213–214
C*-algebras and. See C*-algebras
clopeness in, 216
coarse-graining and, 218
complex numbers and, 201, 201n14
daseinisation and, 207, 208, 217–221, 219
Klyachko model and, 396
lattice theory and, 211, 220
maximal filters, 227
measurement and, 142, 144. See also measurement
operators and, 292. See also operator algebras
orthogonal bases for, 213–214
physical quantities and, 218. See also observables
projection postulate, 349
projective geometry, 133n33
propositions and, 218
self-adjoint, 224. See self-adjoint operators
spectral theorem and, 211, 242
von Neumann algebra and, 241–243, 292. See von Neumann algebras
proof theory, 135–136
properties, physical, 131–133, 222. See observables; specific topics
Pursuing Stacks (Grothendieck), 49
Putman, H., 5
QFT. See quantum field theory
quantization, 111, 130, 239–269
quantum cosmology, 188, 200
quantum field theory (QFT), 6, 86, 140, 328
AQFT. See algebraic quantum field theory
Atiyah and, 25
Chern–Simons theory and, 62
Donaldson theory and, 118
functorial semantics, 33
gravity and. See quantum gravity
infinities and, 40
locality and. 7. See also locality
Milnor conjecture and, 117
Minkowski space and, 330. See also Minkowski space
quantum groups and, 99
renormalization in, 137
Seiberg–Witten theory, 118
spacetime in. See spacetime
spin-statistics theorem, 62
string theory and, 50, 118
system in, 131
Tomita–Takesaki theory and, 7, 318, 327–329
TQFTs and, 25, 47, 53, 67. See topological quantum field theory
two-dimensional, 64
vacuum state and, 330
quantum gravity, 15
conventional formalism and, 203
gravity and, 44, 188
instrumentalism and, 208
loop quantum gravity, 14, 80, 187, 440
matter and, 46
Ponzano–Regge model and, 44, 45–46
probabalistic theory and, 440
quantum gravity (cont.)
problems of, 187, 189
quantum theory and, 189
real numbers and, 190–191
spacetime and, 44, 45. See also spacetime
topos methods and, 187–207
quantum information theory
distillability and, 327
entanglement and, 323, 325–326
locality and, 325
logic and. See quantum logic
quantum computing, 4, 73, 129
qubits and. See qubits
quantum logic, 130, 344, 345
Bohrification and, 298
C*-algebras and, 273
classical logic and, 5
conceptual problems of, 220
implication relation, 218n12
information theory. See quantum information theory
operator algebras and, 292
proof theory and, 136
qubits and. See qubits
topos theory and, 207
quantum teleportation, 156–157
quasicategories, 114
quasiparticles, 62
quasipoints, 240, 242, 253, 258, 267
quasistates, 302
quaternions, 374, 409, 435
qubits, 374
hidden variables and, 385
information and, 385
logic of interactions, 418
measurement and, 380, 385
Spekkens toy theory, 130, 162, 177
r-p framework, 411–413
Radiohead, 137
randomness, 386
determinism and, 450. See also determinism
free will and, 450
probability and. See probability theory
relativity theory and, 451
stochastic elements, 451
Raussendorf–Briegel model, 134
real numbers, 211
continuum and, 21, 138, 436
observables and, 239
probability and, 190–191
quantum gravity and, 190–191
spacetime and, 190
spectral theory and, 203
topos theory and, 199, 203, 209n3, 225
realism, 187, 191–194, 210
Bell’s inequality and, 386
classical physics and, 191–193, 210
measurement and, 385
neorealism and, 196–197
operationalism and, 132
physical properties and, 132
quantum theory and, 193, 194
Reeh–Schlieder theorem, 318, 327, 356
entanglement and, 322, 323
vacuum state and, 351
Reichenbach, H., 359
Reidemeister moves, 51, 57, 82. See also knot theory
relationalism, 7
causality and, 165
classical theory and, 165–169
composition and, 139–145
continuum and, 138–139
measurement and, 169–177
physical theory and, 154–162
processes and, 136–138, 145–146
symmetry and, 148–152
systems and, 140–141
vacuous relations, 152–154
von Neumann model and, 162–165
relativity theory, 136
determinism and, 451
Einstein and, 19. See Einstein, A.
general theory. See general relativity
geometry and, 5
locality and, 343. See locality
Maxwell and, 18
quantum field theory and, 343, 346
randomness and, 451
spacetime and. See spacetime
special theory, 8, 445
representations, theory of, 74, 76, 81, 129
Reshetikhin, N., 73, 84–85
reversibility, 20, 368, 386
ribbon structure, 63
Rickart C*-algebras, 273, 292–297, 305
Riesz space, 284, 302
Roberts, J., 46, 72
Robertson–Walker theory, 335, 336
Rovelli, C., 80
Russell’s paradox, 154
Sasaki hooks, 133n4, 300
scattering, 329, 335
Schlieder property, 325
Schmidt decomposition, 377
Schrödinger equation, 345, 359, 365
INDEX

Schur–Auerbach lemma, 371, 377
scientific method, 144
Segal spaces, 114
Seiberg-Witten theory, 103, 118
self-adjoint operators, 21, 239
algebras and, 202
antonymous functions and, 260
approximations and, 224
Borel functions and, 212
context and, 223
daseinisation and, 207, 208, 225–227, 235
eigenstate-eigenvalue link and, 232–235
evolving, 335
FUNC principle and, 215
Galois adjoints and, 133
Gelfand transform and, 262
global sections and, 264
Hilbert space and. See Hilbert spaces
linear order, 223
observables and, 348. See observables;
specific types, topics
order on, 223
projection and, 224. See projection operators
Riesz theorem. See Riesz theorem
spatial restriction and, 257
spectral families and, 223, 251, 258, 259
Stone’s theorem. See Stone’s theorem
von Neumann algebras and. See von Neumann algebras
semisimple algebras, 86, 88–89, 92, 102
separability, 6, 7, 344, 357–358
sequential composition, 142
sheaf theory
étale space and, 240
Gelfand spectra and, 214–217
Kochen–Specker theorem and, 202–203, 226
locales and, 277
pretopes and, 202–203, 214–217, 263, 266–267
stalks and, 240
Stone spectrum and, 268
von Neumann algebras and, 263
Shum’s theorem, 62–63
simplicity axiom, 367
Smolin, L., 1, 80
Sorkin measure theory, 368
spacetime
absolute geometry and, 333
algebraic conditions on, 334–335
AQFT and. See algebraic quantum field theory
background, 7, 187, 200
causal principle and, 446
CGMA and, 330, 336
spectral families (cont.)
Kochen–Specker theorem. See
Kochen–Specker theorem
measurable functions and, 253
noncommutative, 203
observables and, 245, 248, 250, 268
presheaves and, 263
projections and, 242. See projection operators
real numbers and, 203. See real numbers
self-adjoint operators and, 251, 258, 259. See
spectral families and, 267
von Neumann algebras and, 241, 243, 266
Störmer, H., 62
Street, R., 50
string theory, 15, 50, 75, 106
blackboard framing, 61
categorical structures and, 104–106. See
specific topics
closed strings, 50
cobordisms and, 86, 93
conformal structure and, 50
duals and, 38
Feynman diagrams and, 50. See also
Feynman diagrams
Frobenius algebras and, 90. See also
Frobenius algebras
higher-dimensional, 96
loop quantum gravity and, 14, 80, 187, 440
monoidal categories and, 28. See also
monoidal categories
n-categories and, 50. See n-category theory
open strings, 50
Pachner moves and, 87. See Pachner moves
Poincaré duality and, 87, 89
projections and, 90. See projection operators
quantization and, 111
string diagrams and, 29–32, 38, 58, 90–93
TQFTs and, 90. See topological quantum
field theory
zig-zag identities and, 39
superposition, 188, 266, 365
superselection, 6
supersymmetry, 41
syntepsis, 110–112
symmetry relations, 16, 141
compactness and, 156
examples of, 154
groups and, 16, 18, 150–151
monoids and, 15, 29, 32, 55, 59, 129, 136,
154–158, 160
natural isomorphisms, 155–156
processes and, 148–152
reversibility and, 20
reversible process and, 20
tangles, 58, 79
Baez–Dolan tangle hypothesis, 112
brading and, 58, 74, 112. See braiding
dimension of, 112
framing, 61, 112
INDEX

invariants of, 79, 116
isotopic, 59
knot theory and, 51. See also knot theory
monoids and, 74. See also monoidal
categories
oriented, 58, 59
particles and, 61
Shum’s category, 62
tangle hypothesis, 112
Yang–Baxter equation and, 83
Tannaka–Krein reconstruction theorem, 74, 100, 102
thermodynamic behavior, 329, 335
three-slit experiment, 368
time reversal, 22
Tomita–Takesaki theory, 318, 327–329
topological quantum field theory (TQFT), 97, 100, 102
bicategories, 103
braiding and, 85. See also braiding
C*-algebras and. See C*-algebras
coherisms and, 67, 86, 100, 114
diffeomorphism and, 103
dimensions in, 67, 71, 91–92, 96, 101–103
duals and, 68
extended, 100–102, 114
Frobenius algebra and, 71
homotopy theory, 25, 104–107, 115–118
homotopy and. See homotopy theory
Hopf algebras and, 102, 103, 104
Lagrangian formulation of, 104
modular tensor categories, 96, 99
monoidal categories and, 68
n-categories and, 101, 108, 114
Pachner moves and, 87, 89
pentagon identity, 94
piecewise-linearity, 100
quantum field theory and, 67
quantum groups and, 84–85
semisimple algebras and, 102
spherical categories, 102
string theory and. 90. See also string theory
SU(2) and, 96
topos theory and. See topos theory
Turaev–Viro model and, 85
Witten–Reshetikhin–Turaev theory and, 85
topos theory, 5, 132, 138, 194–200, 264, 273, 278
base category in, 236
basic structures in, 211
Butterfield–Isham idea and, 6
C*-algebras and, 271–272, 281
category theory and, 202
characteristic arrows in, 195
classical theory and, 211, 218
constructive theory and, 271
contextuality and, 204
contravariance in, 236
daseinisation and, 203, 207–238
definition of, 194, 199, 207, 222
Döring–Isham theory, 6
exponentiation and, 195
global elements and, 194–195, 199, 202, 204
Heunen–Landsman–Spitters approach, 6
Hilbert spaces and, 207, 208
internal logic of, 197, 279
Kochen–Specker theorem and, 290
local valuations in, 201
locales and, 276, 277
mathematical foundations and, 197
measurement and, 201
natural transformations in, 222
order-reversing, 225
physical quantities in, 236
propositions in, 217–221
pseudo-states and, 197–200, 203, 204, 226–227, 235
pure state and, 226–227
quantum gravity and, 187–207, 211, 216
real numbers and, 199, 203, 209n3, 225
representation in, 217–221
sheaves and, 202–203, 216, 222, 226, 235–236
spin and, 208, 220–221, 233
state spaces and, 290
truth values in, 196, 197, 198
ultraweak topology, 295
toy qubit theory, 162, 177
TQFT. See topological quantum field theory
trace, 145, 266, 403, 424, 434, 438
triangle identity, 31
triangular decomposition, 81
tricategories, 55, 107–108
Tsui, D., 62
Tumulka theory, 451
Turaev–Viro model, 73, 84–86, 91
Turaev–Viro–Barrett–Westbury model, 94, 96, 102
twinning experiment, 452
Unruh effect, 329
vacuum state, 7, 317
AQFT and, 327
Bell’s inequalities and, 7, 325, 326
CGMA and, 333
concept of, 317
correlations in, 323–327
vacuum state (cont.)
cyclicity of, 322
distillability and, 327
distillability and, 318, 324, 326, 327
distillability and, 327
GNS representation, 351
intrinsic characterization of, 328–332
measurement and, 322
Minkowski space and, 330
modular covariance, 329, 332–334
observables and, 7
perturbation theory and, 330
Poincaré group, 320, 330
quantum field theory and, 330
Reeh–Schlieder Theorem and, 351
as reference state, 330
relativistic, 317
spacetime and, 7. See spacetime
spectrum condition and, 320, 330, 332, 351
superluminal correlations, 324
von Neumann algebras and, 328
weak additivity and, 321, 323
wedge algebras and, 329
vector spaces, 28, 92
Veneziano model, 187
Viro, O. Y., 85
Voevodsky, V., 82
von Neumann algebras, 104, 201n14, 208, 210, 211, 299, 345
abelian, 256
Bell correlation of, 324
Bohrified state space, 309
C*-algebras and. See C*-algebras
continuity properties, 352
duality and. See duals
filters and, 227–230
Gelfand spectrum and, 247. See also Gelfand spectra
global sections and, 265
Hakeda–Tomiyama and, 147
hyperfinite, 350–351, 354
independence and, 352, 353, 354
lattices and, 241–243, 258
measurement and, 319, 349. See also measurement
normal states, 352
observables and, 246. See observables
operator algebras and, 319
pairing formula in, 309
probability theory and, 319
projectors in, 241–243, 258, 292. See projection operators
Rickart C*-algebras and, 273, 292
Schlieder property and, 325
self-adjoint operators and, 212, 246, 251. See also self-adjoint operators
sheaves and, 217, 257, 263, 265. See also sheaf theory
split property, 352–353
Stone spectra and, 241, 243, 266–267, 294
subalgebras of, 230, 352
Tomita–Takesaki theory, 327
trace problem, 267
vacuum and, 328
von Neumann, J., 1, 2, 5, 19–20
classical theory and, 171–172
Einstein and, 343–361
electron and, 394
entanglement and, 359
hidden variables and, 8, 393–407. See also hidden variables theory
on Hilbert spaces, 132
von Neumann algebras. See von Neumann algebras
W*-algebras. See von Neumann algebras
wave function, collapse of, 385, 451–452
wedge algebras, 328, 329
Wess–Zumino–Witten model, 80
Westbury, B. W., 91
Weyl, H., 79
Wheeler, J., 191n4
Whitehead, A. N., 133
Wightman field, 321, 328, 329
Wigner, E., 21–22
Wigner’s theorem, 133n3
Wilczek, F., 62
Wiles, A., 107
Witten, E., 80
Witten–Reshetikhin–Turaev theory, 85, 96, 102
Yang–Baxter equation, 64, 82
braiding and, 64
knot theory and, 65
monoidal categories and, 64
quantum groups and, 83
Reidemeister moves and, 82
solutions of, 65
angles and, 83
Yang–Mills theory, 27–28
Yorke, T., 137
Young tableaux, 288
Zamolodchikov equation, 82, 83, 84
Zeilinger principle, 368
zig-zag identities, 39, 42, 59