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Introduction

Hans Halvorson

No scientific theory has caused more puzzlement and confusion than quantum the-

ory. Beginning in 1900, the theory developed in fits and starts and found a consistent

mathematical framing only when John von Neumann published his Mathematische

Grundlagen der Quantenmechanik in 1932 [12]. But even today, we struggle to un-

derstand the world as pictured by quantum theory. Physics is supposed to help us to

understand the world, and yet quantum theory makes it seem a very strange place.

One might be tempted to push aside our puzzlement as the result of our clinging to

a primitive worldview. But our puzzlement is not merely a psychological obstacle; it

is also an obstacle to the development of physics itself. This obstacle is encountered

primarily in our attempts to unify quantum theory and the general theory of relativity.

As argued persuasively by Chris Isham (who is represented in this volume), Lee Smolin

[10], and others, the primary obstacle between us and future physics is our own failure

to understand the conceptual foundations of current physical theories.

How, then, are we to make conceptual progress? What is the process by which we

find a new perspective, a perspective in which previously puzzling phenomena find a

place in an intelligible—and perhaps beautiful—structure?

I do not wish to make prescriptions or to claim that conceptual progress can be

achieved in only one way. But this book begins with the Ansatz that conceptual progress

might be achieved through free creations of the human intellect. And where are we to

find this free creative activity? According to a distinguished tradition, beginning with

the philosopher Immanuel Kant and running through the philosopher-mathematicians

Gottlob Frege and L. E. J. Brouwer, the mathematical sciences are in the business of

constructing new and “fruitful” concepts. Thus, this book begins from the assumption

that creative developments in mathematics might catalyze the conceptual advances that

enable us to understand our current physical theories (in particular, quantum theory)

and thereby to promote future advances in physics.

Because the guiding theme of this book is methodological rather than thematic, its

chapters are naturally written from diverse perspectives, unified only by the attempt

to introduce new concepts that will aid our understanding of current physics, as well

as the growth of future physics. Some of the authors are mathematicians (Conway,
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de Groote, Kochen, Spitters); some mathematical physicists (Baez, Coecke, Döring,

Heunen, Isham, Landsman, Lauda, Summers); some theoretical physicists (Brukner,

Dakić, Hardy); and some philosophers (Bub, Redéi). But regardless of their professional

affiliations, each author takes an interdisciplinary approach that combines methods and

ideas from physics, mathematics, and philosophy. In the remainder of this Introduction,

we briefly overview the various chapters and their contribution to the ongoing task of

making sense of the physical world.

I.1 Beyond Hilbert Space

Quantum theory was born from a failure—namely, the failure of classical mechanics to

provide accurate statistical predictions (e.g., in the case of blackbody radiation). Indeed,

it was Einstein who saw clearly in the years between 1900 and 1905 that the framework

of classical physics required a major overhaul. But unlike the theory of relativity,

quantum theory did not result from a single stroke of genius. Rather, the following

three decades witnessed a prolonged struggle by some of the century’s greatest minds,

including Niels Bohr, Arnold Sommerfeld, Max Born, Werner Heisenberg, Erwin

Schrödinger, and Paul Dirac. Throughout this period, the developing “quantum” theory

was not much more than a cobbled-together set of statistical rules of thumb that provided

more accurate predictions than classical statistical mechanics.

In the second half of the 1920s, these struggles yielded two major mathematical

advances: first, Schrödinger’s introduction of the wave mechanical formalism; and

second, Heisenberg’s introduction of matrix mechanics. But it was only in 1932 that

these two advances were unified, and these new statistical recipes were provided

with a systematic theoretical underpinning. In a stroke of mathematical genius, John

von Neumann axiomatized the theory of mathematical spaces equipped with linear

structure and an inner product, a type of space that was finding extensive use by David

Hilbert’s school in Göttingen. Von Neumann labeled any such space that is topologically

complete (i.e., containing limit points for all Cauchy sequences) a “Hilbert space.”

He then went on to show how vectors in a Hilbert space can represent the states

of quantum systems and how linear operators on a Hilbert space can represent the

quantities, or “observables,” of the system. With von Neumann’s formalism in hand,

quantum theorists had a precise mathematical justification for their statistical recipes.

Quantum theory had entered the domain of mathematical physics.

However, von Neumann’s formalization of quantum theory has yielded a false sense

of conceptual clarity, for von Neumann’s formalization pushes back but does not solve

the basic interpretive problems of quantum theory. In particular, his formalism provides

accurate statistical predictions, but only if it is severely limited in its application.

Indeed, we still do not know how to apply quantum mechanics to individual systems,

to macroscopic systems, or, a fortiori, to “observers” like ourselves.

Furthermore, although the Hilbert space formalism of quantum theory served as the

framework for some of the twentieth century’s greatest scientific achievements (e.g.,

the standard model of particle physics), it is not clear that it will prove serviceable

in the attempt to unify quantum theory and the general theory of relativity. In fact,

according to some notable physicists—such as Penrose [4] and Isham (see Chapter 3
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in this volume)—the Hilbert space formalism might itself be implicated in our seeming

inability to find a conceptual unification of our best two physical theories.

With these facts in mind, the authors of this book engage critically with the very

mathematical foundations of quantum theory. In fact, not a single contributor to this

book accepts, uncritically, the “standard formalism”—the Hilbert space formalism—

as a background framework with which to pursue conceptual and empirical questions.

Rather, a consistent theme of this volume is that we need to think creatively, not just

within the current framework, but beyond it; that is, we need to think creatively about

how to transcend, or at least reenvision, the current framework.

As mentioned, the authors of this volume approach this task from a broad range

of perspectives. Several of them (e.g., Baez and Lauda; Coecke; Döring; Heunen,

Landsman, and Spitters; Isham) attack the problem using the tools of category theory,

the theory of mathematical structures attributable primarily to Samuel Eilenberg and

Saunders Mac Lane (see, for example, [5]). Others (e.g., Redéi, Summers) make

extensive use of the theory of operator algebras, a theory originally developed by von

Neumann himself that has found application in formalizing quantum field theory and

(deformation) quantization theory. Yet others (e.g., Dakić and Brukner, Hardy) prefer

to reduce mathematical assumptions to a bare minimum in the interest of displaying

more vividly the physical content of quantum theory and more general probabilistic

theories. Thus, although the underlying motivations are analogous, the tools employed

are quite diverse.

I.2 Categorical Approaches to Quantum Theory

In recent years, category theory has found many uses in physics and, indeed, in many

of the exact sciences. This volume contains a representative sample of cutting-edge

uses of category theory in the foundations of physics.

In this book, three sorts of category-theoretic approaches to the foundations of

physics are represented: an n-categorical approach (Baez and Lauda), a monoidal cate-

gorical approach (Coecke), and a topos theoretical approach (Isham; Döring; Heunen,

Landsman, and Spitters). Anyone who is acquainted with category theory will recog-

nize immediately that these approaches need not be seen as opposed or even as disjoint.

Indeed, they are in many ways mutually reinforcing and might even someday be unified

(e.g., by some notion of a weak monoidal n-topos).

I.2.1 n-Categorical Physics

In their magisterial “A Prehistory of n-Categorical Physics,” Chapter 1 in this volume,

John C. Baez and Aaron D. Lauda recount in this volume the ways in which n-category

theory has entered into physics and discuss many of the ways in which n-categories

might play a role in the physical theories of the future. But why, you might ask,

should we think that n-categories are a good place to look for some new insight into

the very basic structures of the physical world? As Baez and Lauda point out, the

theory of n-categories is itself based on a perspective-changing idea: the idea that what

might be seen as an object from one point of view might be seen as a process from
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another point of view. For the simplest example of this “Copernican revolution” of

mathematical framework, consider the example of a group, that is, a set G equipped

with a binary product and an identity element e ∈ G satisfying certain equations.

Because we frequently think of categories on the model of concrete categories (i.e.,

categories of sets equipped with structure), it comes as a bit of a surprise to realize that

a group is itself an example of a category. In particular, a group G is a category with

one object (call it whatever you wish, say ∗) and whose arrows are elements of G.

Such a change of perspective might seem rather minor, but we should not minimize

the amount of insight that can be gained by seeing a familiar object in a new guise. For

example, once we see a group as a category, we can also see a group representation

as a certain sort of functor, that is to say, a functor into the category HILB of Hilbert

spaces. But now these group representations themselves naturally form a category, and

we can consider the arrows in this category, what are usually called “intertwiners.”

With this new perspective on groups, Baez and Lauda point out that Feynman diagrams

and Penrose spin networks are both examples of categories of group representations

with intertwiners as arrows.

Baez and Lauda go on to discuss some of the most interesting recent developments

in which category theory, and n-category theory in particular, promises to open new

vistas. Among these developments, they discuss topological quantum field theories and

quantum groups. They also briefly discuss Baez’s own “periodic table” of n-categories,

which neatly characterizes the zoology of higher categories.

I.2.2 Quantum Theory in Monoidal Categories

As briefly mentioned, the category HILB of Hilbert spaces plays a central role in

quantum physics. We now expect, however, that quantum theory will play a central

role in the computation theory of the future. After all, physical computers are made of

objects that obey the laws of quantum mechanics.

It is well known that a quantum computer behaves differently than a classical

computer; it is the differences in behavior that account, for example, for the fact that

a quantum computer should be able to solve some problems more efficiently than any

classical computer. But theoretical computer science is wont to abstract away from the

nitty-gritty details of physical systems. In most cases, the computer scientist needs only

to know the structural properties of the systems at his disposal; it is these structural

properties that determine how such systems might be used to implement computations

or other information-theoretic protocols.

It is no surprise, then, that theoretical computer scientists have led the way in

describing the structural features of quantum systems. It is also no surprise that theo-

retical computer scientists have found it useful to use notions from category theory in

describing these structures.

In “A Universe of Processes and Some of Its Guises,” Chapter 2 in this volume,

Bob Coecke provides a blueprint of a universe governed by quantum mechanics.

Intriguingly, however, we see this universe through the eyes of a computer scientist: we

do not see waves, particles, or any other concrete manifestation of physical processes.

Rather, by means of a diagrammatic calculus, Coecke displays the very structures of

the processes that are permitted (and forbidden) by the laws of quantum theory.
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What is perhaps most striking about Coecke’s approach is the sheer ratio of results

to assumptions. From an extremely Spartan set of assumptions about how processes

can combine (both vertically and horizontally), Coecke is able to reproduce all of

the central results of quantum information science (in a broadly construed sense that

includes “von Neumann measurement”).

Another noteworthy aspect of Coecke’s chapter is his discussion of the relation of

categorical quantum mechanics (in its monoidal category guise) to other traditional ap-

proaches to the mathematical foundations of quantum mechanics (e.g., quantum logic,

convex sets, C
∗-algebras). Here, we get a “compare and contrast” from a researcher

who has worked on both sides of the fence, first as a member of the Brussels school

(directly descended from the Geneva school of Jauch and Piron) and more recently as a

cofounder (with Samson Abramsky) and leader of the categorical approach to quantum

computation. Thus, this chapter is absolutely mandatory reading for anyone interested

in the fate of our attempts to understand the formalism of quantum theory and its utility

in describing the processes that occur in our world.

I.2.3 Quantum Theory in Toposes

What is so radical about quantum theory? Perhaps the first thing to spring to mind is

indeterminism: quantum theory describes a world in which the future is not determined

by the past. With a bit more sophistication, one might claim that the most radical feature

of quantum theory is nonlocality: quantum theory describes a world in which subtle

dependency relations exist between events that occur in distant regions of space.

Another suggestion, originally put forward by Birkhoff and von Neumann [2], and

later taken up by the philosopher Hilary Putnam [8], is that quantum theory overturns

the laws of classical logic. According to this proposal, the rules of classical (formal)

logic—in particular, the distribution postulate (of conjunction over disjunction)—lead

to conclusions in conflict with the predictions of quantum theory. Thus, the new physics

requires a revolution in logic. Indeed, Putnam went on to claim that quantum theory’s

relation to logic is directly analogous to general relativity’s relation to geometry: just as

general relativity forces us to abandon Euclidean geometry, so quantum theory forces

us to abandon classical logic.

But this proposal has not found many advocates—even Birkhoff, von Neumann, and

Putnam eventually abandoned the idea. Neither has quantum logic catalyzed progress

within physics or suggested routes toward the unification of quantum theory and

general relativity. Even if quantum logic has not been shown to be wrong, it has proved

to be mathematically sterile: it fails to link up in interesting ways with mainstream

developments in mathematical physics.

The central motivating idea behind quantum logic is that the quantum revolution is

a thoroughgoing conceptual revolution; that is, that it requires us to revise some of the

constitutive concepts of our worldview. The idea itself is intriguing and perhaps even

plausible. Thus, we turn with great interest to a recent proposal by Jeremy Butterfield

and Chris Isham [3]. According to the Butterfield-Isham proposal, quantum mechanics

requires us to replace not only classical logic but also the entire classical mathematical

universe—as articulated in twentieth-century mathematical logic and set theory—

with a more general universe of sets, namely a topos. It is true that such a replacement
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would also necessitate a replacement of classical logic but not, á la von Neumann, with

a nondistributive logic. Rather, the internal logic of a topos is intuitionistic logic, where

the law of excluded middle fails.

Three of the chapters in this book (Chapters 3, 4, and 6)—by Isham; Döring; and

Heunen, Landsman, and Spitters—push the Butterfield-Isham idea even further. As we

will see, the underlying idea of these approaches is strikingly similar to Putnam’s, al-

though it is executed within an infinitely richer and more fruitful mathematical context.

The chapters in this book represent two distinct approaches to using topos theory

in the foundations of physics: the approach of Döring and Isham and the approach of

Heunen, Landsman, and Spitters. (Both approaches have been developed extensively in

the literature, and I refer the reader to the references within the chapters in this book.)

Although there are several divergences in implementation between the Döring-Isham

approach and the Heunen-Landsman-Spitters approach, the underlying idea is similar

and in both cases would amount to nothing less than a Copernican revolution.

The idea of adopting a new mathematical universe is so radical and profound that

one cannot appreciate it without immersing oneself in these works. (Of course, it

would also help to spend some time learning background rudiments of topos theory;

for this I recommend the book by Mac Lane and Moerdijk [6].) Rather than attempt to

summarize the content of these chapters, I recommend that the reader begin by reading

Isham’s chapter, which provides a lucid motivation and discussion of the framework.

The reader may then wish to proceed to the more technically demanding chapters

by Heunen et al. and by Döring. Finally, in reading Döring’s chapter, the reader can

gain further insight by referring to de Groote’s chapter,1 Chapter 5, which carefully

articulates some of the background mathematics needed to generalize familiar notions

from the classical universe of sets to the quantum topos.

I.3 Operator Algebras

Since the 1960s, it has been appreciated that the theory of operator algebras (especially

C
∗- and von Neumann algebras) provides a natural generalization of the Hilbert space

formalism and is especially suitable for formalizing quantum field theories, or quantum

theories with superselection rules. More recently, operator algebras have been applied

to the task of clarifying conceptual issues. In this vein, see especially the work on

nonlocality carried out by Summers [11] and the work on quantum logic carried

out by Rédei [9]. Summers and Redéi continue this sort of foundational work in

their chapters in this book (Chapters 7 and 8, respectively). Summers addresses the

vacuum state in relativistic quantum field theory (QFT) in his chapter, “Yet More Ado

about Nothing: The Remarkable Relativistic Vacuum State,” whereas Redéi examines

Einstein’s notion of “separability” of physical systems in his chapter, “Einstein Meets

von Neumann: Locality and Operational Independence in Algebraic Quantum Field

Theory.”

In his chapter, Summers aims to characterize properties of the vacuum in

relativistic QFT in a mathematically precise way. He begins with the standard

1 Published posthumously. See note in Chapter 5.
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characterization, which involves both symmetries (the vacuum as invariant state) and

energy conditions (the vacuum as lowest energy state). He then points out that these

characterizations do not straightforwardly generalize to QFT on curved spacetimes.

Thus, we stand in need of a more mathematically nuanced characterization of the

vacuum.

According to Summers, the primary tool needed for this characterization is the

Tomita-Takesaki modular theory, in particular, the geometrical interpretation of mod-

ular theory provided by Bisognano and Wichmann. However, Summers proceeds to

recount a more ambitious program that he and his collaborators have undertaken, a

program that would use modular symmetries as a basis from which the very structure

of spacetime could be recovered. As Summers points out, such a reconstruction would

have profound conceptual implications. Indeed, one is tempted to say that the success

of such a program would be a partial vindication of Leibniz-Machian relationalism

about spacetime. But whether or not the reconstruction supports certain philosophical

views about the nature of spacetime, a clearer understanding of the vacuum is crucial

for the development of future physics, especially because future physical theories will

most certainly not posit a fixed-background Minkowski spacetime structure.

Summers also discusses the fact—without mentioning explicitly that it was first

proved by himself and Reinhard Werner—that the vacuum state is nonlocal and indeed

violates Bell’s inequality maximally relative to measurements that can be performed

in tangent spacetime wedges. In doing so, Summers notes the importance of making

fine-grained distinctions between different types of nonlocality. This theme is treated

at length in the chapter by Rédei.

Rédei begins in a historical vein by discussing Einstein’s worries about quantum

theory, in particular his notion of “separability” of physical systems. Although

Einstein’s objections to indeterminism are better known (witness: “God does not roll

dice”), Einstein seems to have lost even more sleep over the issue of nonlocality. Indeed,

it seems he thought that quantum nonlocality would make physics impossible!

Rédei distills from Einstein’s writings a set of criteria that any theory must satisfy

to be consistent with the principle of locality. He then proceeds to argue that rela-

tivistic QFT does in fact satisfy these criteria! Moreover, Rédei’s arguments are far

from speculative—or, as some might dismissively say, “philosophical.” Rather, Rédei

proceeds in a highly mathematical spirit: he translates the criteria into precise math-

ematical claims, and then he employs the tools of operator algebras in an attempt to

demonstrate that the criteria are satisfied. The net result is a paradigm example of

mathematical innovation in the service of conceptual clarification.

I.4 Behind the Hilbert Space Formalism

We have seen that several of the chapters in this book take well-developed (or inde-

pendently developing) mathematical theories and apply them in innovative ways to the

foundations of physics. Such an approach is characteristic of mathematical physics.

This book, however, also represents a second approach, an approach more character-

istic of theoretical physics. In particular, theoretical physicists begin from explicitly

physical principles, rather than from mathematical assumptions, and then attempt to
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formulate these physical principles in as transparent a fashion as possible, using math-

ematical formalism when it might help achieve that goal. The three chapters by Dakić

and Brukner (Chapter 9), by Bub (Chapter 10), and by Hardy (Chapter 11) exemplify

this second methodology.

In their chapter, “Quantum Theory and Beyond: Is Entanglement Special?,” Boriroje

Dakić and Časlav Brukner aim to clarify the fundamental physical principles underlying

quantum theory; in doing so, they keep in firm view the relationship between quantum

theory and potential future theories in physics. The authors begin by recounting several

recent attempts to derive the formalism of quantum theory from physical principles

that were motivated by Einstein’s derivation of special relativity. As they note, such

derivations ought to be subjected to severe critical scrutiny because thinking that

quantum theory “must be true” could easily impede the development of successor

theories and could easily blind us to ways in which quantum theory could be modified

or superseded.

Nonetheless, Dakić and Brukner prove that quantum theory is the unique theory

that describes entangled states and that satisfies their other physical principles. This

striking result displays a sort of robustness of the central features of quantum theory:

to the extent that the basic physical principles are justified, we can expect any future

theory to incorporate, rather than supersede, quantum theory.

This same sensitivity to quantum mechanics as a potentially replaceable theory is

displayed throughout the chapter by Lucien Hardy. In “Foliable Operational Structures

for General Probabilistic Theories,” Hardy in essence provides a parameterization of

theories in terms of a crucial equation involving two variables, K and N . In this pa-

rameterization, classical mechanics is characterized by the equation K = N , whereas

quantum mechanics is characterized by the equation K = N
2. This leaves open the

possibility of alternative theories, or even possible successor theories, of greater con-

ceptual intricacy. Our past and current theories are only at the very low end of an

infinite hierarchy of increasingly complex theories.

Hardy’s chapter also pays special attention to the generalizability, or projectability

into the future, of our theories. In particular, Hardy constructs his generalized proba-

bilitistic framework without reliance on a notion of fixed background time. As a result,

the framework stands ready for application to relativistic contexts. But more is true:

Hardy develops his framework with an eye on synthesis of general relativity and quan-

tum mechanics, a context in which causal structure is flexible enough that it might be

adapted to contexts where even it is subject to quantum indeterminacy.

In his chapter, “Is von Neumann’s ‘No Hidden Variables’ Proof Silly?”, Jeffrey Bub,

takes up the question of whether the Hilbert space formalism of quantum mechanics is

complete. That is, do all states correspond to vectors (or density operators), or could

there be “hidden variables”? This question was supposedly answered in the negative in

1932 by von Neumann’s no hidden variables proof. If this argument were valid, there

would be a strong sense in which the interpretive problems of quantum mechanics

could not be solved by means of technical innovation—for example, by providing a

more complete formalism.

But von Neumann’s argument has not convinced everyone. In particular, John Bell

[1] and, subsequently, David Mermin [7], argued that von Neumann’s result is based

on an illicit assumption—in particular, that von Neumann imposes unrealistic con-

straints on the mathematical representation of hidden variables. These critiques of von
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Neumann’s result were motivated by and, in turn, provide support for hidden variable

programs, such as Bohmian mechanics.

Bub argues, however, that Bell and Mermin’s criticism is off the mark. Rather,

claims Bub, von Neumann states quite clearly that an operator A + B has no direct

physical significance in cases where A and B are incompatible (i.e., not simultaneously

measurable). Read from this perspective, von Neumann intends to show not that hidden

variables are impossible tout court but rather that hidden variables are inconsistent

with the way that quantum mechanics uses mathematical objects to represent physical

objects. But then the possibility opens that intuitive desiderata for a physical theory

of micro-objects (e.g., determinism) could be satisfied only by overhauling the Hilbert

space formalism.

Bub closes his chapter on this suggestive note, leaving it for the reader to judge

whether it would be preferable to maintain the Hilbert space formalism, along with

its puzzling interpretive consequences, or to attempt to replace it with some other

formalism.

The book concludes with Chapter 12, an already famous article, “The Strong Free

Will Theorem,” by John H. Conway and Simon Kochen (reprinted in this volume

with permission). But what has such an argument to do with the theme of the book—

that is, with the theme of conceptual insight developing in tandem with mathematical

insight? The careful reader will see that Conway and Kochen’s argument proceeds

independently of the standard formalism (i.e., Hilbert spaces) for quantum theory.

That is, the authors do not take the Hilbert space formalism for granted and then

draw out conceptual consequences regarding free will. Rather, they argue from sim-

ple, physically verifiable assumptions to the conclusion that if an experimenter has

the freedom to choose what to measure, then particles have the freedom to choose

what result to yield. The only input here from quantum mechanics is indirect: quan-

tum mechanics predicts that Conway and Kochen’s empirical assumptions are sat-

isfied. Thus, if quantum mechanics is true, then Conway and Kochen’s argument is

sound.

We see, then, that Conway and Kochen’s argument exemplifies the method of apply-

ing mathematical argument to the task of gaining new conceptual insight—insight, in

this case, about the logical connection between certain statistical predictions (which are

in fact made by quantum mechanics) and traditional metaphysical hypotheses (freedom

of the will). If their argument is successful, then Conway and Kochen have provided us

with insight that transcends the bounds of our current mathematical framework—hence,

insight that will endure through the vicissitudes of scientific progress or revolutions.

In conclusion, the authors of this book were given carte blanche to employ as little or as

much technical apparatus as they deemed necessary to advance conceptual understand-

ing of the foundations of physics. For some of the authors, this meant employing highly

sophisticated mathematical theories such as n-categories (Baez and Lauda), monoidal

categories (Coecke), topos theory (Döring, Isham, Heunen et al.), or operator algebras

(Rédei, Summers). For other authors, the emphasis lies more on examining the physical

and conceptual motivation for the Hilbert space formalism (Dakić and Brukner) or on

what might lie beyond the Hilbert space formalism (Bub, Hardy).

The liberty given to the authors means that for the reader, some of these chapters are

technically demanding; even for those with previous technical training, these chapters
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should be approached with equal doses of patience and persistence. However, the

technicalities seem to be demanded by the nature of the subject matter: quantum theory

shows that conceptual insights and understanding do not come cheap, and the physical

world does not come ready-made to be understood by the untrained human mind.

Already it required the combined mathematical genius of Dirac and von Neumann,

among others, to unify the various statistical recipes of the old quantum theory. The

Hilbert space formalism has proved fruitful for many years and is partially responsible

for some of the great advances of twentieth-century physics. But taking the Hilbert

space formalism as a fixed, non-negotiable framework may also be partially responsible

for our current predicament—both our troubles in interpreting quantum mechanics and

the challenges of unifying quantum theory with the general theory of relativity. If this

is the case, then it is imperative that we marshal the same sorts of resources that Dirac

and von Neumann did; we must, indeed, employ our utmost mathematical creativity in

our attempt to find an underlying intelligibility behind the physical phenomena.

It is with this aim in mind that the contributors present this collection to you, hoping

to play some small role in the next quantum leap in our understanding of nature.
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