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1 Introduction to compressed sensing

Mark A. Davenport, Marco F. Duarte, Yonina C. Eldar, and Gitta Kutyniok

Compressed sensing (CS) is an exciting, rapidly growing, field that has attracted consider-
able attention in signal processing, statistics, and computer science, as well as the broader
scientific community. Since its initial development only a few years ago, thousands of
papers have appeared in this area, and hundreds of conferences, workshops, and special
sessions have been dedicated to this growing research field. In this chapter, we provide
an up-to-date review of the basics of the theory underlying CS. This chapter should
serve as a review to practitioners wanting to join this emerging field, and as a reference
for researchers. We focus primarily on the theory and algorithms for sparse recovery in
finite dimensions. In subsequent chapters of the book, we will see how the fundamentals
presented in this chapter are expanded and extended in many exciting directions, includ-
ing new models for describing structure in both analog and discrete-time signals, new
sensing design techniques, more advanced recovery results and powerful new recovery
algorithms, and emerging applications of the basic theory and its extensions.

1.1 Introduction

We are in the midst of a digital revolution that is driving the development and deployment
of new kinds of sensing systems with ever-increasing fidelity and resolution. The theoreti-
cal foundation of this revolution is the pioneering work of Kotelnikov, Nyquist, Shannon,
and Whittaker on sampling continuous-time bandlimited signals [162, 195, 209, 247].
Their results demonstrate that signals, images, videos, and other data can be exactly
recovered from a set of uniformly spaced samples taken at the so-called Nyquist rate
of twice the highest frequency present in the signal of interest. Capitalizing on this dis-
covery, much of signal processing has moved from the analog to the digital domain
and ridden the wave of Moore’s law. Digitization has enabled the creation of sensing
and processing systems that are more robust, flexible, cheaper and, consequently, more
widely used than their analog counterparts.

As aresult of this success, the amount of data generated by sensing systems has grown
from a trickle to a torrent. Unfortunately, in many important and emerging applications,
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the resulting Nyquist rate is so high that we end up with far too many samples. Alter-
natively, it may simply be too costly, or even physically impossible, to build devices
capable of acquiring samples at the necessary rate [146,241]. Thus, despite extraordinary
advances in computational power, the acquisition and processing of signals in applica-
tion areas such as imaging, video, medical imaging, remote surveillance, spectroscopy,
and genomic data analysis continues to pose a tremendous challenge.

To address the logistical and computational challenges involved in dealing with such
high-dimensional data, we often depend on compression, which aims at finding the most
concise representation of a signal that is able to achieve a target level of acceptable
distortion. One of the most popular techniques for signal compression is known as
transform coding, and typically relies on finding a basis or frame that provides sparse or
compressible representations for signals in a class of interest [31,77, 106]. By a sparse
representation, we mean that for a signal of length n, we can represent it with k£ < n
nonzero coefficients; by a compressible representation, we mean that the signal is well-
approximated by a signal with only &k nonzero coefficients. Both sparse and compressible
signals can be represented with high fidelity by preserving only the values and locations
of the largest coefficients of the signal. This process is called sparse approximation,
and forms the foundation of transform coding schemes that exploit signal sparsity and
compressibility, including the JPEG, JPEG2000, MPEG, and MP3 standards.

Leveraging the concept of transform coding, compressed sensing has emerged as a
new framework for signal acquisition and sensor design that enables a potentially large
reduction in the sampling and computation costs for sensing signals that have a sparse
or compressible representation. While the Nyquist—-Shannon sampling theorem states
that a certain minimum number of samples is required in order to perfectly capture an
arbitrary bandlimited signal, when the signal is sparse in a known basis we can vastly
reduce the number of measurements that need to be stored. Consequently, when sensing
sparse signals we might be able to do better than suggested by classical results. This
is the fundamental idea behind CS: rather than first sampling at a high rate and then
compressing the sampled data, we would like to find ways to directly sense the data in a
compressed form —i.e., at a lower sampling rate. The field of CS grew out of the work
of Candes, Romberg, and Tao and of Donoho, who showed that a finite-dimensional
signal having a sparse or compressible representation can be recovered from a small
set of linear, non-adaptive measurements [3, 33, 40-42, 44, 82]. The design of these
measurement schemes and their extensions to practical data models and acquisition
systems are central challenges in the field of CS.

While this idea has only recently gained significant attention in the signal processing
community, there have been hints in this direction dating back as far as the eighteenth cen-
tury. In 1795, Prony proposed an algorithm for the estimation of the parameters associated
with a small number of complex exponentials sampled in the presence of noise [201]. The
next theoretical leap came in the early 1900s, when Carathéodory showed that a positive
linear combination of any k sinusoids is uniquely determined by its value at £ = 0 and at
any other 2k points in time [46,47]. This represents far fewer samples than the number of
Nyquist-rate samples when £ is small and the range of possible frequencies is large. In the
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1990s, this work was generalized by George, Gorodnitsky, and Rao, who studied spar-
sity in biomagnetic imaging and other contexts [134—136,202]. Simultaneously, Bresler,
Feng, and Venkataramani proposed a sampling scheme for acquiring certain classes of
signals consisting of £ components with nonzero bandwidth (as opposed to pure sinu-
soids) under restrictions on the possible spectral supports, although exact recovery was
not guaranteed in general [29, 117, 118,237]. In the early 2000s Blu, Marziliano, and
Vetterli developed sampling methods for certain classes of parametric signals that are
governed by only k parameters, showing that these signals can be sampled and recovered
from just 2k samples [239].

A related problem focuses on recovery of a signal from partial observation of its
Fourier transform. Beurling proposed a method for extrapolating these observations to
determine the entire Fourier transform [22]. One can show that if the signal consists
of a finite number of impulses, then Beurling’s approach will correctly recover the
entire Fourier transform (of this non-bandlimited signal) from any sufficiently large
piece of its Fourier transform. His approach — to find the signal with smallest /; norm
among all signals agreeing with the acquired Fourier measurements — bears a remarkable
resemblance to some of the algorithms used in CS.

More recently, Candes, Romberg, Tao [33,40—42,44], and Donoho [82] showed that
a signal having a sparse representation can be recovered exactly from a small set of
linear, non-adaptive measurements. This result suggests that it may be possible to sense
sparse signals by taking far fewer measurements, hence the name compressed sensing.
Note, however, that CS differs from classical sampling in three important respects. First,
sampling theory typically considers infinite-length, continuous-time signals. In contrast,
CS is a mathematical theory focused on measuring finite-dimensional vectors in R”.
Second, rather than sampling the signal at specific points in time, CS systems typi-
cally acquire measurements in the form of inner products between the signal and more
general test functions. This is in fact in the spirit of modern sampling methods which
similarly acquire signals by more general linear measurements [113,230]. We will see
throughout this book that randomness often plays a key role in the design of these test
functions. Third, the two frameworks differ in the manner in which they deal with signal
recovery, i.e., the problem of recovering the original signal from the compressive mea-
surements. In the Nyquist—-Shannon framework, signal recovery is achieved through
sinc interpolation — a linear process that requires little computation and has a simple
interpretation. In CS, however, signal recovery is typically achieved using highly non-
linear methods.! See Section 1.6 as well as the survey in [226] for an overview of these
techniques.

Compressed sensing has already had a notable impact on several applications. One
example is medical imaging [178-180, 227], where it has enabled speedups by a
factor of seven in pediatric MRI while preserving diagnostic quality [236]. More-
over, the broad applicability of this framework has inspired research that extends

1 Tt is also worth noting that it has recently been shown that nonlinear methods can be used in the context of
traditional sampling as well, when the sampling mechanism is nonlinear [105].
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the CS framework by proposing practical implementations for numerous applica-
tions, including sub-Nyquist sampling systems [125, 126, 186-188,219,224,225,228],
compressive imaging architectures [99, 184, 205], and compressive sensor networks
[7,72,141].

The aim of this book is to provide an up-to-date review of some of the important results
in CS. Many of the results and ideas in the various chapters rely on the fundamental
concepts of CS. Since the focus of the remaining chapters is on more recent advances,
we concentrate here on many of the basic results in CS that will serve as background
material to the rest of the book. Our goal in this chapter is to provide an overview of the
field and highlight some of the key technical results, which are then more fully explored
in subsequent chapters. We begin with a brief review of the relevant mathematical tools,
and then survey many of the low-dimensional models commonly used in CS, with an
emphasis on sparsity and the union of subspaces models. We next focus attention on
the theory and algorithms for sparse recovery in finite dimensions. To facilitate our goal
of providing both an elementary introduction as well as a comprehensive overview of
many of the results in CS, we provide proofs of some of the more technical lemmas and
theorems in the Appendix.

1.2 Review of vector spaces

For much of its history, signal processing has focused on signals produced by physical
systems. Many natural and man-made systems can be modeled as linear. Thus, it is natural
to consider signal models that complement this kind of linear structure. This notion has
been incorporated into modern signal processing by modeling signals as vectors living
in an appropriate vector space. This captures the linear structure that we often desire,
namely that if we add two signals together then we obtain a new, physically meaningful
signal. Moreover, vector spaces allow us to apply intuitions and tools from geometry in
R3, such as lengths, distances, and angles, to describe and compare signals of interest.
This is useful even when our signals live in high-dimensional or infinite-dimensional
spaces. This book assumes that the reader is relatively comfortable with vector spaces.
We now provide a brief review of some of the key concepts in vector spaces that will be
required in developing the CS theory.

1.2.1 Normed vector spaces

Throughout this book, we will treat signals as real-valued functions having domains that
are either continuous or discrete, and either infinite or finite. These assumptions will be
made clear as necessary in each chapter. We will typically be concerned with normed
vector spaces, i.e., vector spaces endowed with a norm.

In the case of a discrete, finite domain, we can view our signals as vectors in an n-
dimensional Euclidean space, denoted by R™. When dealing with vectors in R™, we will
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Figure 1.1 Unit spheres in R? for the £, norms with p = 1,2, 00, and for the ¢, quasinorm with p = %

make frequent use of the ¢, norms, which are defined for p € [1, 0] as

1
(X iey |zilP)? . pel,00);

mex ey, p=oco.

(1.1)

lll,, =

In Euclidean space we can also consider the standard inner product in R™, which we
denote

n
(x,2)=2T2= Z:I:Zzl
i=1

This inner product leads to the ¢ norm: ||z||, = \/(z,z).

In some contexts it is useful to extend the notion of £, norms to the case where p < 1.1In
this case, the “norm” defined in (1.1) fails to satisfy the triangle inequality, so it is actually
, Where
supp(z) = {i : &; # 0} denotes the support of x and |supp(z)| denotes the cardinality
of supp(z). Note that ||-||, is not even a quasinorm, but one can easily show that

a quasinorm. We will also make frequent use of the notation [|z||, := |[supp(x)

: p_
Lim [|][;, = lsupp()],

justifying this choice of notation. The ¢, (quasi-)norms have notably different properties
for different values of p. To illustrate this, in Figure 1.1 we show the unit sphere, i.e.,
{z :[|z||,, =1}, induced by each of these norms in R2.

We typically use norms as a measure of the strength of a signal, or the size of an error.
For example, suppose we are given a signal z € R? and wish to approximate it using a
point in a one-dimensional affine space A. If we measure the approximation error using
an {,, norm, then our task is to find the = € A that minimizes ||z — Z||,. The choice of
p will have a significant effect on the properties of the resulting approximation error.
An example is illustrated in Figure 1.2. To compute the closest point in A to x using
each ¢, norm, we can imagine growing an ¢, sphere centered on z until it intersects
with A. This will be the point Z € A that is closest to « in the corresponding ¢, norm.
We observe that larger p tends to spread out the error more evenly among the two
coefficients, while smaller p leads to an error that is more unevenly distributed and tends
to be sparse. This intuition generalizes to higher dimensions, and plays an important role
in the development of CS theory.
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Figure 1.2 Best approximation of a point in R? by a one-dimensional subspace using the £, norms for
p=1,2,00, and the ¢, quasinorm with p = %

1.2.2 Bases and frames

Aset {¢;}7; is called a basis for R™ if the vectors in the set span R” and are linearly
independent.? This implies that each vector in the space has a unique representation as
a linear combination of these basis vectors. Specifically, for any x € R"”, there exist
(unique) coefficients {c; }_; such that

n

=1

Note that if we let ® denote the n x n matrix with columns given by ¢; and let ¢ denote
the length-n vector with entries c;, then we can represent this relation more compactly
as

x = dc.
An important special case of a basis is an orthonormal basis, defined as a set of vectors
{p:}1, satisfying
1, i=y;
0, i#j.
An orthonormal basis has the advantage that the coefficients c can be easily calculated
as

(hi, 05) {

Ci = <x7¢i>7
or
c=dTyg

in matrix notation. This can easily be verified since the orthonormality of the columns
of ® means that ®T'® = I, where I denotes the n X n identity matrix.

Itis often useful to generalize the concept of a basis to allow for sets of possibly linearly
dependent vectors, resulting in what is known as a frame [48,55,65,163,164,182]. More

2 In any n-dimensional vector space, a basis will always consist of exactly n vectors. Fewer vectors are not
sufficient to span the space, while additional vectors are guaranteed to be linearly dependent.
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formally, a frame is a set of vectors {¢;}"_, in R%, d < n corresponding to a matrix
& € R¥*™_ such that for all vectors z € RY,

Allz]; < |07 x| < Bxll3

with 0 < A < B < 0o. Note that the condition A > 0 implies that the rows of ¢ must
be linearly independent. When A is chosen as the largest possible value and B as the
smallest for these inequalities to hold, then we call them the (optimal) frame bounds. If
A and B can be chosen as A = B, then the frame is called A-tight, and if A=B =1,
then @ is a Parseval frame. A frame is called equal-norm, if there exists some A > 0
such that ||¢;||, = Aforall i =1,...,n, and it is unit-norm if A = 1. Note also that while
the concept of a frame is very general and can be defined in infinite-dimensional spaces,
in the case where ® is a d X n matrix A and B simply correspond to the smallest and
largest eigenvalues of ®®7, respectively.

Frames can provide richer representations of data due to their redundancy [26]: for
a given signal z, there exist infinitely many coefficient vectors c such that z = ®c. In
order to obtain a set of feasible coefficients we exploit the dual frame 3. Specifically,
any frame satisfying

30T =T =1
is called an (alternate) dual frame. The particular choice ® = (®®T)~'® is referred to as
the canonical dual frame. 1t is also known as the Moore—Penrose pseudoinverse. Note
that since A > 0 requires ® to have linearly independent rows, this also ensures that
®P7T is invertible, so that ® is well-defined. Thus, one way to obtain a set of feasible
coefficients is via
cg=0Tr =0T (007) 1z

One can show that this sequence is the smallest coefficient sequence in ¢ norm, i.e.,
llcalls < |||, for all ¢ such that z = $e.

Finally, note that in the sparse approximation literature, it is also common for a basis
or frame to be referred to as a dictionary or overcomplete dictionary respectively, with
the dictionary elements being called atoms.

1.3 Low-dimensional signal models

At its core, signal processing is concerned with efficient algorithms for acquiring, pro-
cessing, and extracting information from different types of signals or data. In order
to design such algorithms for a particular problem, we must have accurate models for
the signals of interest. These can take the form of generative models, deterministic
classes, or probabilistic Bayesian models. In general, models are useful for incorporat-
ing a priori knowledge to help distinguish classes of interesting or probable signals from
uninteresting or improbable signals. This can help in efficiently and accurately acquiring,
processing, compressing, and communicating data and information.

As noted in the introduction, much of classical signal processing is based on the
notion that signals can be modeled as vectors living in an appropriate vector space (or
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subspace). To a large extent, the notion that any possible vector is a valid signal has driven
the explosion in the dimensionality of the data we must sample and process. However,
such simple linear models often fail to capture much of the structure present in many
common classes of signals — while it may be reasonable to model signals as vectors, in
many cases not all possible vectors in the space represent valid signals. In response to
these challenges, there has been a surge of interest in recent years, across many fields,
in a variety of low-dimensional signal models that quantify the notion that the number
of degrees of freedom in high-dimensional signals is often quite small compared to their
ambient dimensionality.

In this section we provide a brief overview of the most common low-dimensional
structures encountered in the field of CS. We will begin by considering the traditional
sparse models for finite-dimensional signals, and then discuss methods for generalizing
these classes to infinite-dimensional (continuous-time) signals. We will also briefly dis-
cuss low-rank matrix and manifold models and describe some interesting connections
between CS and some other emerging problem areas.

1.3.1 Sparse models

Signals can often be well-approximated as a linear combination of just a few elements
from a known basis or dictionary. When this representation is exact we say that the signal
is sparse. Sparse signal models provide a mathematical framework for capturing the fact
that in many cases these high-dimensional signals contain relatively little information
compared to their ambient dimension. Sparsity can be thought of as one incarnation of
Occam’s razor — when faced with many possible ways to represent a signal, the simplest
choice is the best one.

Sparsity and nonlinear approximation
Mathematically, we say that a signal x is k-sparse when it has at most k nonzeros, i.e.,
|lz|lo < k. We let

Ep=A{z:|zlly <k}

denote the set of all k-sparse signals. Typically, we will be dealing with signals that are
not themselves sparse, but which admit a sparse representation in some basis ®. In this
case we will still refer to x as being k-sparse, with the understanding that we can express
x as x = Pc where ||c||o < k.

Sparsity has long been exploited in signal processing and approximation theory for
tasks such as compression [77,199,215] and denoising [80], and in statistics and learning
theory as a method for avoiding overfitting [234]. Sparsity also figures prominently in
the theory of statistical estimation and model selection [139,218], in the study of the
human visual system [196], and has been exploited heavily in image processing tasks,
since the multiscale wavelet transform [182] provides nearly sparse representations for
natural images. An example is shown in Figure 1.3.

As a traditional application of sparse models, we consider the problems of image com-
pression and image denoising. Most natural images are characterized by large smooth or
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(a) (b)

Figure 1.3 Sparse representation of an image via a multiscale wavelet transform. (a) Original image.
(b) Wavelet representation. Large coefficients are represented by light pixels, while small
coefficients are represented by dark pixels. Observe that most of the wavelet coefficients are
close to zero.

textured regions and relatively few sharp edges. Signals with this structure are known to
be very nearly sparse when represented using a multiscale wavelet transform [182].
The wavelet transform consists of recursively dividing the image into its low- and
high-frequency components. The lowest frequency components provide a coarse scale
approximation of the image, while the higher frequency components fill in the detail and
resolve edges. What we see when we compute a wavelet transform of a typical natural
image, as shown in Figure 1.3, is that most coefficients are very small. Hence, we can
obtain a good approximation of the signal by setting the small coefficients to zero, or
thresholding the coefficients, to obtain a k-sparse representation. When measuring the
approximation error using an £,, norm, this procedure yields the best k-term approxima-
tion of the original signal, i.e., the best approximation of the signal using only £ basis
elements.’

Figure 1.4 shows an example of such an image and its best k-term approximation. This
is the heart of nonlinear approximation [77] — nonlinear because the choice of which
coefficients to keep in the approximation depends on the signal itself. Similarly, given
the knowledge that natural images have approximately sparse wavelet transforms, this
same thresholding operation serves as an effective method for rejecting certain common
types of noise, which typically do not have sparse wavelet transforms [80].

3 Thresholding yields the best k-term approximation of a signal with respect to an orthonormal basis. When
redundant frames are used, we must rely on sparse approximation algorithms like those described in
Section 1.6 [106, 182].
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(a) (b)

Figure 1.4 Sparse approximation of a natural image. (a) Original image. (b) Approximation of image
obtained by keeping only the largest 10% of the wavelet coefficients.

Geometry of sparse signals

Sparsity is a highly nonlinear model, since the choice of which dictionary elements are
used can change from signal to signal [77]. This can be seen by observing that given a
pair of k-sparse signals, a linear combination of the two signals will in general no longer
be k-sparse, since their supports may not coincide. That is, for any x,z € 3, we do
not necessarily have that  + z € ¥, (although we do have that x 4 z € ¥5;). This is
illustrated in Figure 1.5, which shows Y9 embedded in R3, i.e., the set of all 2-sparse
signals in R3.

The set of sparse signals ¥, does not form a linear space. Instead it consists of the
union of all possible () canonical subspaces. In Figure 1.5 we have only (3) = 3 possible
subspaces, but for larger values of n and £ we must consider a potentially huge number
of subspaces. This will have significant algorithmic consequences in the development of
the algorithms for sparse approximation and sparse recovery described in Sections 1.5
and 1.6.

Compressible signals

An important point in practice is that few real-world signals are truly sparse; rather they
are compressible, meaning that they can be well-approximated by sparse signals. Such
signals have been termed compressible, approximately sparse, or relatively sparse in
various contexts. Compressible signals are well approximated by sparse signals in the
same way that signals living close to a subspace are well approximated by the first few
principal components [139]. In fact, we can quantify the compressibility by calculating
the error incurred by approximating a signal = by some Z € Yg:

= min |z -7, . 1.2
o (T)p inellzliIIw zl,, (1.2)
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