Statistics Explained

An Introductory Guide for Life Scientists

Second Edition

An understanding of statistics and experimental design is essential for life science studies, but many students lack a mathematical background and some even dread taking an introductory statistics course. Using a refreshingly clear and encouraging reader-friendly approach, this book helps students understand how to choose, carry out, interpret and report the results of complex statistical analyses, critically evaluate the design of experiments and proceed to more advanced material.

Taking a straightforward conceptual approach, it is specifically designed to foster understanding, demystify difficult concepts and encourage the unsure. Even complex topics are explained clearly, using a pictorial approach with a minimum of formulae and terminology. Examples of tests included throughout are kept simple by using small data sets. In addition, end-of-chapter exercises, new to this edition, allow self-testing. Handy diagnostic tables help students choose the right test for their work and remain a useful refresher tool for postgraduates.

Steve McKillup is an Associate Professor of Biology in the School of Medical and Applied Sciences at Central Queensland University, Rockhampton. He has received several tertiary teaching awards, including the Vice-Chancellor's Award for Quality Teaching and a 2008 Australian Learning and Teaching Council citation 'For developing a highly successful method of teaching complex physiological and statistical concepts, and embodying that method in an innovative international textbook'. He is the author of *Geostatistics Explained: An Introductory Guide for Earth Scientists* (Cambridge, 2010).

Statistics Explained

An Introductory Guide for Life Scientists

SECONDEDITION

Steve McKillup Central Queensland University, Rockhampton

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107005518

© S. McKillup 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2012 Reprinted 2012

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data McKillup, Steve. Statistics explained : an Introductory guide for life scientists / [Steve McKillup]. p. cm. Includes bibliographical references. ISBN 978-1-107-00551-8 (hardcover) - ISBN 978-0-521-18328-4 (pbk.) 1. Life sciences - Statistical methods. 2. Statistics. I. Title. QH323.5.M395 2011 519.5-dc23

2011030681

ISBN 978-1-107-00551-8 Hardback Paperback ISBN 978-0-521-18328-4

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press & Assessment does not guarantee the accuracy of such information thereafter.

Contents

	Preface	page xiii
1	Introduction	1
1.1	Why do life scientists need to know about experimental	
	design and statistics?	1
1.2	What is this book designed to do?	5
2	Doing science: hypotheses, experiments and disproof	7
2.1	Introduction	7
2.2	Basic scientific method	7
2.3	Making a decision about an hypothesis	11
2.4	Why can't an hypothesis or theory ever be proven?	11
2.5	'Negative' outcomes	12
2.6	Null and alternate hypotheses	12
2.7	Conclusion	14
2.8	Questions	14
3	Collecting and displaying data	15
3.1	Introduction	15
3.2	Variables, experimental units and types of data	15
3.3	Displaying data	17
3.4	Displaying ordinal or nominal scale data	23
3.5	Bivariate data	25
3.6	Multivariate data	26
3.7	Summary and conclusion	28
4	Introductory concepts of experimental design	29
4.1	Introduction	29
4.2	Sampling – mensurative experiments	30
4.3	Manipulative experiments	34
4.4	Sometimes you can only do an unreplicated experiment	41

v

vi	Contents	
4.5	Realism	42
4.6	A bit of common sense	43
4.7	Designing a 'good' experiment	44
4.8	Reporting your results	45
4.9	Summary and conclusion	46
4.10	Questions	46
5	Doing science responsibly and ethically	48
5.1	Introduction	48
5.2	Dealing fairly with other people's work	48
5.3	Doing the experiment	50
5.4	Evaluating and reporting results	52
5.5	Quality control in science	53
5.6	Questions	54
6	Probability helps you make a decision	
	about your results	56
6.1	Introduction	56
6.2	Statistical tests and significance levels	57
6.3	What has this got to do with making a decision about	
	your results?	60
6.4	Making the wrong decision	60
6.5	Other probability levels	61
6.6	How are probability values reported?	62
6.7	All statistical tests do the same basic thing	63
6.8	A very simple example – the chi-square test	
	for goodness of fit	64
6.9	What if you get a statistic with a probability	
	of exactly 0.05?	66
6.10	Statistical significance and biological significance	67
6.11	Summary and conclusion	69
6.12	Questions	70
7	Probability explained	71
7.1	Introduction	71
7.2	Probability	71
7.3	The addition rule	71

	Contents	vii
7.4	The multiplication rule for independent events	72
7.5	Conditional probability	75
7.6	Applications of conditional probability	77
8	Using the normal distribution to make statistical	
	decisions	87
8.1	Introduction	87
8.2	The normal curve	87
8.3	Two statistics describe a normal distribution	89
8.4	Samples and populations	93
8.5	The distribution of sample means is also normal	95
8.6	What do you do when you only have data from one	
	sample?	99
8.7	Use of the 95% confidence interval in significance testing	102
8.8	Distributions that are not normal	102
8.9	Other distributions	103
8.10	Other statistics that describe a distribution	105
8.11	Summary and conclusion	106
8.12	Questions	106
9	Comparing the means of one and two samples	
9	of normally distributed data	108
9.1	Introduction	108
9.2	The 95% confidence interval and 95% confidence limits	108
		100
9.3	Using the Z statistic to compare a sample mean and	108
0.4	population mean when population statistics are known Comparing a sample mean to an expected value when	108
9.4		112
9.5	population statistics are not known	112
	Comparing the means of two related samples	
9.6 0.7	Comparing the means of two independent samples	118
9.7	One-tailed and two-tailed tests	121
9.8	Are your data appropriate for a t test?	124
9.9	Distinguishing between data that should be analysed by a	125
0.10	paired sample test and a test for two independent samples	125
9.10	Reporting the results of <i>t</i> tests	126
9.11	Conclusion	127
9.12	Questions	128

viii	Contents	
10	Type 1 error and Type 2 error, power and sample size	130
10.1	Introduction	130
10.2	Type 1 error	130
10.3	Type 2 error	131
10.4	The power of a test	135
10.5	What sample size do you need to ensure the risk of Type 2	
	error is not too high?	135
10.6	Type 1 error, Type 2 error and the concept	
	of biological risk	136
10.7	Conclusion	138
10.8	Questions	139
11	Single-factor analysis of variance	140
11.1	Introduction	140
11.2	The concept behind analysis of variance	141
11.3	More detail and an arithmetic example	147
11.4	Unequal sample sizes (unbalanced designs)	152
11.5	An ANOVA does not tell you which particular treatments	
	appear to be from different populations	153
11.6	Fixed or random effects	153
11.7	Reporting the results of a single-factor ANOVA	154
11.8	Summary	154
11.9	Questions	155
12	Multiple comparisons after ANOVA	157
12.1	Introduction	157
12.2	Multiple comparison tests after a Model I ANOVA	157
12.3	An a posteriori Tukey comparison following a significant	
	result for a single-factor Model I ANOVA	160
12.4	Other a posteriori multiple comparison tests	162
12.5	Planned comparisons	162
12.6	Reporting the results of <i>a posteriori</i> comparisons	164
12.7	Questions	166
13	Two-factor analysis of variance	168
13.1	Introduction	168
13.2	What does a two-factor ANOVA do?	170

	Contents	ix
13.3	A pictorial example	174
13.4	How does a two-factor ANOVA separate out the effects of	
	each factor and interaction?	176
13.5	An example of a two-factor analysis of variance	180
13.6	Some essential cautions and important complications	181
13.7	Unbalanced designs	192
13.8	More complex designs	192
13.9	Reporting the results of a two-factor ANOVA	193
13.10	Questions	194
14	Important assumptions of analysis of variance,	
	transformations, and a test for equality of variances	196
14.1	Introduction	196
14.2	Homogeneity of variances	196
14.3	Normally distributed data	197
14.4	Independence	201
14.5	Transformations	201
14.6	Are transformations legitimate?	203
14.7	Tests for heteroscedasticity	204
14.8	Reporting the results of transformations and the	
	Levene test	205
14.9	Questions	207
15	More complex ANOVA	209
15.1	Introduction	209
15.2	Two-factor ANOVA without replication	209
15.3	A posteriori comparison of means after a two-factor	
	ANOVA without replication	214
15.4	Randomised blocks	214
15.5	Repeated-measures ANOVA	216
15.6	Nested ANOVA as a special case of a single-factor ANOVA	222
15.7	A final comment on ANOVA – this book is only an	
	introduction	229
15.8	Reporting the results of two-factor ANOVA without	
	replication, randomised blocks design, repeated-measures	
	ANOVA and nested ANOVA	229
15.9	Questions	230

x	Contents	
16	Relationships between variables: correlation	
	and regression	233
16.1	Introduction	233
16.2	Correlation contrasted with regression	234
16.3	Linear correlation	234
16.4	Calculation of the Pearson r statistic	235
16.5	Is the value of <i>r</i> statistically significant?	241
16.6	Assumptions of linear correlation	241
16.7	Summary and conclusion	242
16.8	Questions	242
17	Regression	244
17.1	Introduction	244
17.2	Simple linear regression	244
17.3	Calculation of the slope of the regression line	246
17.4	Calculation of the intercept with the <i>Y</i> axis	249
17.5	Testing the significance of the slope and the intercept	250
17.6	An example – mites that live in the hair follicles	258
17.7	Predicting a value of <i>Y</i> from a value of <i>X</i>	260
17.8	Predicting a value of <i>X</i> from a value of <i>Y</i>	260
17.9	The danger of extrapolation	262
17.10	Assumptions of linear regression analysis	263
17.11	Curvilinear regression	266
17.12	Multiple linear regression	273
17.13	Questions	281
18	Analysis of covariance	284
18.1	Introduction	284
18.2	Adjusting data to remove the effect of a confounding	
	factor	285
18.3	An arithmetic example	288
18.4	Assumptions of ANCOVA and an extremely important	
	caution about parallelism	289
18.5	Reporting the results of ANCOVA	295
18.6	More complex models	296
18.7	Questions	296

	Contents	xi
19	Non-parametric statistics	298
19.1	Introduction	298
19.2	The danger of assuming normality when a population is	
	grossly non-normal	298
19.3	The advantage of making a preliminary inspection	
	of the data	300
20	Non-parametric tests for nominal scale data	301
20.1	Introduction	301
20.2	Comparing observed and expected frequencies: the	
	chi-square test for goodness of fit	302
20.3	Comparing proportions among two or more independent	
	samples	305
20.4	Bias when there is one degree of freedom	308
20.5	Three-dimensional contingency tables	312
20.6	Inappropriate use of tests for goodness of fit and	
	heterogeneity	312
20.7	Comparing proportions among two or more related	
	samples of nominal scale data	314
20.8	Recommended tests for categorical data	316
20.9	Reporting the results of tests for categorical data	316
20.10	Questions	318
21	Non-parametric tests for ratio, interval or	
	ordinal scale data	319
21.1	Introduction	319
21.2	A non-parametric comparison between one sample and	
	an expected distribution	320
21.3	Non-parametric comparisons between two independent samples	325
21.4	Non-parametric comparisons among three or more	
	independent samples	331
21.5	Non-parametric comparisons of two related samples	335
21.6	Non-parametric comparisons among three or more	
	related samples	338

xii	Contents	
21.7	Analysing ratio, interval or ordinal data that show gross differences in variance among treatments and cannot be	
	satisfactorily transformed	341
21.8	Non-parametric correlation analysis	342
21.9	Other non-parametric tests	344
21.10	Questions	344
22	Introductory concepts of multivariate analysis	346
22.1	Introduction	346
22.2	Simplifying and summarising multivariate data	347
22.3	An R-mode analysis: principal components analysis	348
22.4	Q-mode analyses: multidimensional scaling	361
22.5	Q-mode analyses: cluster analysis	368
22.6	Which multivariate analysis should you use?	372
22.7	Questions	374
23	Choosing a test	375
23.1	Introduction	375
	Appendix: Critical values of chi-square, t and F	388
	References	394
	Index	396

Preface

If you mention 'statistics' or 'biostatistics' to life scientists, they often look nervous. Many fear or dislike mathematics, but an understanding of statistics and experimental design is essential for graduates, postgraduates and researchers in the biological, biochemical, health and human movement sciences.

Since this understanding is so important, life science students are usually made to take some compulsory undergraduate statistics courses. Nevertheless, I found that a lot of graduates (and postgraduates) were unsure about designing experiments and had difficulty knowing which statistical test to use (and which ones not to!) when analysing their results. Some even told me they had found statistics courses 'boring, irrelevant and hard to understand'.

It seemed there was a problem with the way many introductory biostatistics courses were presented, which was making students disinterested and preventing them from understanding the concepts needed to progress to higher-level courses and more complex statistical applications. There seemed to be two major reasons for this problem and as a student I encountered both.

First, a lot of statistics textbooks take a mathematical approach and often launch into considerable detail and pages of daunting looking formulae without any straightforward explanation about what statistical testing really does.

Second, introductory biostatistics courses are often taught in a way that does not cater for life science students, who may lack a strong mathematical background.

When I started teaching at Central Queensland University, I thought there had to be a better way of introducing essential concepts of biostatistics and experimental design. It had to start from first principles and develop an understanding that could be applied to all statistical tests. It had to demystify what these tests actually did and explain them with a minimum of formulae and terminology. It had to relate statistical concepts to experimental design. And, finally, it had to build a strong understanding to help the student progress to more complex material. I tried this approach with

xiii

xiv Preface

my undergraduate classes and the response from a lot of students, including some postgraduates who sat in on the course, was 'Hey Steve, you should write an introductory stats book!'

Ward Cooper suggested I submit a proposal for this sort of book to Cambridge University Press. The reviewers of the initial proposal and the subsequent manuscript made most appropriate suggestions for improvement. Ruth McKillup read, commented on and reread several drafts, provided constant encouragement and tolerated my absent mindedness. My students, especially Steve Dunbar, Kevin Strychar and Glenn Druery encouraged me to start writing and my friends and colleagues, especially Dearne Mayer and Sandy Dalton, encouraged me to finish.

I sincerely thank the users and reviewers of the first edition for their comments and encouragement. Katrina Halliday from CUP suggested an expanded second edition. Ruth McKillup remained a tolerant, pragmatic, constructive and encouraging critic, despite having read many drafts many times. The students in my 2010 undergraduate statistics class, especially Deborah Fisher, Michael Rose and Tara Monks, gave feedback on many of the explanations developed for this edition; their company and cynical humour were a refreshing antidote.