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1 Introduction

1.1 Why do life scientists need to know about experimental

design and statistics?

If you work on living things, it is usually impossible to get data from every

individual of the group or species in question. Imagine trying to measure

the length of every anchovy in the Paciûc Ocean, the haemoglobin count

of every adult in the USA, the diameter of every pine tree in a plantation

of 200 000 or the individual protein content of 10 000 prawns in a large

aquaculture pond.

The total number of individuals of a particular species present in a

deûned area is often called the population. But because a researcher usually

cannot measure every individual in the population (unless they are studying

the few remaining members of an endangered species), they have to work

with a very carefully selected subset containing several individuals (often

called sampling units or experimental units) that they hope is a represen-

tative sample from which they can infer the characteristics of the popula-

tion. You can also think of a population as the total number of artiûcial

sampling units possible (e.g. the total number of 1m2 plots that would cover

a whole coral reef) and your sample being the subset (e.g. 20 plots) you have

to work upon.

The best way to get a representative sample is usually to choose a number

of individuals from the population at random – without bias, with every

possible individual (or sampling unit) within the population having an

equal chance of being selected.

The unavoidable problem with this approach is that there are often

great differences among sampling units from the same population.

Think of the people you have seen today – unless you have met some

identical twins (or triplets etc.), no two would have been the same. This
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can even apply to species made up of similar looking individuals (like

ûies or cockroaches or snails) and causes problems when you work with

samples.

First, even a random sample may not be a good representative of the

population from which it has been taken (Figure 1.1). For example, you

may choose students for an exercise experiment who are, by chance, far less

(or far more) physically ût than the student population of the college they

represent. A batch of seed chosen at random may not represent the varia-

bility present in all seed of that species, and a sample of mosquitoes from a

particular place may have very different insecticide resistance than the same

species occurring elsewhere.

Figure 1.1 Even a random sample may not necessarily be a good

representative of the population from which it has been taken. Two samples,

each of ûve individuals, have been taken at random from the same population.

By chance sample 1 contains a group of relatively large ûsh, while those in

sample 2 are relatively small.
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Therefore, if you take a random sample from each of two similar pop-

ulations, the samples may be different to each other simply by chance. On

the basis of your samples, you might mistakenly conclude that the two

populations are very different. You need some way of knowing if a differ-

ence between samples is one you would expect by chance or whether the

populations they have been taken from really do seem to be different.

Second, even if two populations are very different, randomly chosen

samples from each may be similar and give the misleading impression

the populations are also similar (Figure 1.2).

Figure 1.2 Samples selected at random from very different populations may

not necessarily be different. Simply by chance the samples from populations

1 and 2 are similar, so you might mistakenly conclude the two populations are

also similar.
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Finally, natural variation among individuals within a sample may

obscure any effect of an experimental treatment (Figure 1.3). There is

often so much variation within a sample (and a population) that an effect of

treatment may be difûcult or impossible to detect. For example, what would

you conclude if you found that a sample of 50 people given a newly

synthesised drug showed an average decrease in blood pressure, but when

you looked more closely at the group you found that blood pressure

remained unchanged for 25, decreased markedly for 15 and increased

slightly for the remaining ten? Has the drug really had an effect? What if

Figure 1.3 Two samples were taken from the same population and deliberately

matched so that six equal-sized individuals were initially present in each

group. Those in the treatment group were fed a vitamin supplement for

300 days and those in the untreated control group were not. This caused

each ûsh in the treatment group to grow about 10% longer than it would have

without the supplement, but this difference is small compared to the variation

in growth among individuals, which may obscure any effect of treatment.
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tomato plants treated with a new fertiliser yielded from 1.5 kg to 9 kg of fruit

per plant compared to 1.5 kg to 7.5 kg per plant in an untreated group?

Could you conûdently conclude there was a meaningful difference between

these two samples?

This uncertainty is usually unavoidable when you work with samples,

and means that a researcher has to take every possible precaution to ensure

their samples are likely to be representative of the population as a whole.

Researchers need to know how to sample. They also need a good under-

standing of experimental design, because a good design will take natural

variation into account and also minimise additional unwanted variability

introduced by the experimental procedure itself. They also need to take

accurate and precise measurements to minimise other sources of error.

Finally, considering the variability among samples described above, the

results of an experiment may not be clear cut. It is therefore often difûcult to

make a decision about a difference between samples from different popu-

lations or from different experimental treatments. Is it the sort of differ-

ence you would expect by chance or are the populations really different?

Is the experimental treatment having an effect?

You need something to help you decide, and that is what statistical tests

do by calculating the probability of a particular difference among samples.

Once you know that probability, the decision is up to you. So you need to

understand how statistical tests work!

1.2 What is this book designed to do?

A good understanding of experimental design and statistics is important for

all life scientists (e.g. entomologists, biochemists, environmental scientists,

parasitologists, physiologists, genetic engineers, medical scientists, micro-

biologists, nursing professionals, taxonomists and human movement scien-

tists), so most life science students are made to take a general introductory

statistics course. Many of these courses take a detailed mathematical

approach that a lot of life scientists ûnd difûcult, irrelevant and uninspiring.

This book is an introduction that does not assume a strong mathematical

background. Instead, it develops a conceptual understanding of how stat-

istical tests actually work by using pictorial explanations where possible and

a minimum of formulae.
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www.cambridge.org/9781107005518
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-00551-8 — Statistics Explained
Steve McKillup
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

If you have read other texts or already done an introductory course, you

may ûnd that the way this material is presented is unusual, but I have found

that non-statisticians ûnd this approach very easy to understand and some-

times even entertaining. If you have a background in statistics, you may ûnd

some sections a little too explanatory, but at the same time they are likely to

make sense. This book most certainly will not teach you everything about

the subject areas, but it will help you decide what sort of statistical test to use

and what the results mean. It will also help you understand and criticise the

experimental designs of others. Most importantly, it will help you design

and analyse your own experiments, understandmore complex experimental

designs and move on to more advanced statistical courses.
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2 Doing science: hypotheses, experiments
and disproof

2.1 Introduction

Before starting on experimental design and statistics, it is important to be

familiar with how science is done. This is a summary of a very conventional

view of scientiûc method.

2.2 Basic scientific method

These are the essential features of the ‘hypothetico-deductive’ view of

scientiûc method (see Popper, 1968).

First, a person observes or samples the natural world and uses all the

information available to make an intuitive, logical guess, called an hypoth-

esis, about how the system functions. The person has no way of knowing if

their hypothesis is correct – it may or may not apply.

Second, a prediction is made on the assumption the hypothesis is correct.

For example, if your hypothesis were that ‘Increased concentrations of carbon

dioxide in the atmosphere in the future will increase the growth rate of tomato

plants’, you could predict that tomato plants will grow faster in an exper-

imental treatment where the carbon dioxide concentration was higher than a

second treatment set at the current atmospheric concentration of this gas.

Third, the prediction is tested by taking more samples or doing an

experiment.

Fourth, if the results are consistent with the prediction, then the

hypothesis is retained. If they are not, it is rejected and a new hypothesis

will need to be formulated (Figure 2.1).

The initial hypothesis may come about as a result of observations,

sampling and/or reading the scientiûc literature. Here is an example from

ecological entomology.
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The Portuguese millipede Ommatioulus moreleti was accidentally intro-

duced into southern Australia from Portugal in the 1950s. This millipede

lives in leaf litter and grows to about four centimetres long. In the absence of

natural enemies from its country of origin (especially European hedgehogs

which eat a lot of millipedes), its numbers rapidly increased to plague

proportions in South Australia. Although it causes very little damage to

agricultural crops, O. moreleti is a serious ‘nuisance’ pest because it invades

houses. In heavily infested areas of South Australia during the late 1980s, it

used to be common to ûnd over 1000 millipedes invading a moderate-sized

house in just one night. When you disturb one of these millipedes, it ejects a

smelly yellow defensive secretion. Once inside the house, the millipedes

would crawl across the ûoor, up the walls and over the ceiling from where

they even fell into food and into the open mouths of sleeping people.

When accidentally crushed underfoot, they stained carpets and ûoors,

Figure 2.1 The process of hypothesis formulation and testing.
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and smelt. The problem was so great that almost half a million dollars

(which was a lot of money in the 1980s) was spent researching how to

control this pest.

While working on ways to reduce the nuisance caused by the Portuguese

millipede, I noticed that householders who reported severe problems had

well-lit houses with large and often uncurtained windows. In contrast,

nearby neighbours whose houses were not so well lit and who closed their

curtains at night reported far fewer millipedes inside. The numbers of

O. moreleti per square metre were similar in the leaf litter around both

types of houses. From these observations and very limited sampling of less

than ten houses, I formulated the hypothesis, ‘Portuguese millipedes are

attracted to visible light at night.’ I had no way of knowing whether this very

simple hypothesis was the reason for home invasions by millipedes, but it

could explain my observations and seemed logical because other arthropods

are also attracted to light at night.

From this hypothesis it was straightforward to predict ‘At night, in a

ûeld where Portuguese millipedes are abundant, more will be present

in areas illuminated by visible light than in unlit areas.’ This prediction

was tested by doing a simple and inexpensive manipulative ûeld experi-

ment with two treatments – lit areas and a control treatment of unlit

areas.

Because any difference in millipede numbers between only one lit and

one unlit area might occur just by chance or some other unknown factor(s),

the two treatments were each replicated ûve times. I set up ten identical

white ceramic ûoor tiles in a two row × ûve column rectangular grid in a

ûeld where millipedes were abundant (Figure 2.2). For each column of two

tiles, I tossed a coin to decide which of each pair was going to be lit. The

Figure 2.2 Arrangement of a 2 × 5 grid of lit and unlit tiles across a ûeld

where millipedes were abundant. Filled squares indicate unlit tiles and open

squares indicate lit tiles.
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other tile was left unlit. This ensured that replicates of both the treat-

ment and control were dispersed across the ûeld instead of having all

the treatment tiles clustered together and was also a precaution in case

the number of millipedes per square metre varied across the ûeld. The

coin tossing also eliminated any likelihood that I might subconsciously

place the lit tile of each pair in an area where millipedes were more

common.

I hammered a thin two-metre long wooden stake vertically into the

ground next to each tile. For every one of the lit tiles, I attached a pocket

torch to its stake and made sure the light shone on the tile. I started the

experiment at dusk by turning on the torches and went back three hours

later to count the numbers of millipedes on all tiles.

From this experiment, there were at least four possible outcomes:

(1) No millipedes were present on the unlit tiles, but lots were present on

each of the lit tiles. This result is consistent with the hypothesis, which

has survived this initial test and can be retained.

(2) High and similar numbers of millipedes were present on both the lit and

unlit tiles. This is not consistent with the hypothesis, which can prob-

ably be rejected since it seems light has no effect.

(3) No (or very few) millipedes were present on any tiles. It is difûcult to

know if this has any bearing on the hypothesis – there may be a fault

with the experiment (e.g. the tiles were themselves repellent or perhaps

too slippery, or millipedes may not have been active that night). The

hypothesis is neither rejected nor retained.

(4) More millipedes were present on the unlit tiles than on the lit ones. This

is a most unexpected outcome that is not consistent with the hypothesis,

which is extremely likely to be rejected.

These are the four simplest outcomes. A more complicated and much

more likely one is that you ûnd some millipedes on each of the tiles in

both treatments, and that is what happened – see McKillup (1988) for

more details. This sort of outcome is a problem because you need to

decide if light is having an effect on the millipedes or whether the differ-

ence in numbers between lit and unlit treatments is simply happening

by chance. Here statistical testing is extremely useful and necessary

because it helps you decide whether a difference between treatments is

meaningful.
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