Contents

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>page xiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notations</td>
<td>xv</td>
</tr>
<tr>
<td>Introduction</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

1 The game of chess

1.1 Schematic description of the game	1
1.2 Analysis and results	2
1.3 Remarks	7
1.4 Exercises	7

2 Utility theory

2.1 Preference relations and their representation	9
2.2 Preference relations over uncertain outcomes: the model	12
2.3 The axioms of utility theory	14
2.4 The characterization theorem for utility functions	19
2.5 Utility functions and affine transformations	22
2.6 Infinite outcome set	23
2.7 Attitude towards risk	23
2.8 Subjective probability	26
2.9 Discussion	27
2.10 Remarks	31
2.11 Exercises	31

3 Extensive-form games

3.1 An example	40
3.2 Graphs and trees	41
3.3 Game trees	42
3.4 Chomp: David Gale’s game	47
3.5 Games with chance moves	49
3.6 Games with imperfect information	52
3.7 Exercises	57
Contents

4 Strategic-form games

4.1 Examples and definition of strategic-form games
4.2 The relationship between the extensive form and the strategic form
4.3 Strategic-form games: solution concepts
4.4 Notation
4.5 Domination
4.6 Second-price auctions
4.7 The order of elimination of dominated strategies
4.8 Stability: Nash equilibrium
4.9 Properties of the Nash equilibrium
4.10 Security: the maxmin concept
4.11 The effect of elimination of dominated strategies
4.12 Two-player zero-sum games
4.13 Games with perfect information
4.14 Games on the unit square
4.15 Remarks
4.16 Exercises

5 Mixed strategies

5.1 The mixed extension of a strategic-form game
5.2 Computing equilibria in mixed strategies
5.3 The proof of Nash’s Theorem
5.4 Generalizing Nash’s Theorem
5.5 Utility theory and mixed strategies
5.6 The maxmin and the minmax in n-player games
5.7 Imperfect information: the value of information
5.8 Evolutionarily stable strategies
5.9 Remarks
5.10 Exercises

6 Behavior strategies and Kuhn’s Theorem

6.1 Behavior strategies
6.2 Kuhn’s Theorem
6.3 Equilibria in behavior strategies
6.4 Kuhn’s Theorem for infinite games
6.5 Remarks
6.6 Exercises
Contents

7 Equilibrium refinements

7.1 Subgame perfect equilibrium 252
7.2 Rationality, backward induction, and forward induction 260
7.3 Perfect equilibrium 262
7.4 Sequential equilibrium 271
7.5 Remarks 284
7.6 Exercises 284

8 Correlated equilibria

8.1 Examples 301
8.2 Definition and properties of correlated equilibrium 305
8.3 Remarks 313
8.4 Exercises 313

9 Games with incomplete information and common priors

9.1 The Aumann model of incomplete information and the concept of knowledge 322
9.2 The Aumann model of incomplete information with beliefs 334
9.3 An infinite set of states of the world 344
9.4 The Harsanyi model of games with incomplete information 345
9.5 Incomplete information as a possible interpretation of mixed strategies 361
9.6 The common prior assumption: inconsistent beliefs 365
9.7 Remarks 367
9.8 Exercises 368

10 Games with incomplete information: the general model

10.1 Belief spaces 386
10.2 Belief and knowledge 391
10.3 Examples of belief spaces 394
10.4 Belief subspaces 400
10.5 Games with incomplete information 407
10.6 The concept of consistency 415
10.7 Remarks 423
10.8 Exercises 423

11 The universal belief space

11.1 Belief hierarchies 442
11.2 Types 450
Contents

11.3 Definition of the universal belief space 453
11.4 Remarks 456
11.5 Exercises 456

12 Auctions 461
12.1 Notation 464
12.2 Common auction methods 464
12.3 Definition of a sealed-bid auction with private values 465
12.4 Equilibrium 468
12.5 The symmetric model with independent private values 471
12.6 The Envelope Theorem 484
12.7 Risk aversion 488
12.8 Mechanism design 492
12.9 Individually rational mechanisms 500
12.10 Finding the optimal mechanism 501
12.11 Remarks 508
12.12 Exercises 509

13 Repeated games 519
13.1 The model 520
13.2 Examples 521
13.3 The T-stage repeated game 524
13.4 Characterization of the set of equilibrium payoffs of the T-stage repeated game 530
13.5 Infinitely repeated games 537
13.6 The discounted game 542
13.7 Uniform equilibrium 546
13.8 Discussion 554
13.9 Remarks 555
13.10 Exercises 555

14 Repeated games with vector payoffs 569
14.1 Notation 570
14.2 The model 572
14.3 Examples 573
14.4 Connections between approachable and excludable sets 574
14.5 A geometric condition for the approachability of a set 576
14.6 Characterizations of convex approachable sets 585
14.7 Application 1: Repeated games with incomplete information 590
14.8 Application 2: Challenge the expert 600
14.9 Discussion 606
14.10 Remarks 607
14.11 Exercises 608
Table of Contents

15 Bargaining games

- 15.1 Notation
- 15.2 The model
- 15.3 Properties of the Nash solution
- 15.4 Existence and uniqueness of the Nash solution
- 15.5 Another characterization of the Nash solution
- 15.6 The minimality of the properties of the Nash solution
- 15.7 Critiques of the properties of the Nash solution
- 15.8 Monotonicity properties
- 15.9 Bargaining games with more than two players
- 15.10 Remarks
- 15.11 Exercises

16 Coalitional games with transferable utility

- 16.1 Examples
- 16.2 Strategic equivalence
- 16.3 A game as a vector in a Euclidean space
- 16.4 Special families of games
- 16.5 Solution concepts
- 16.6 Geometric representation of the set of imputations
- 16.7 Remarks
- 16.8 Exercises

17 The core

- 17.1 Definition of the core
- 17.2 Balanced collections of coalitions
- 17.3 The Bondareva–Shapley Theorem
- 17.4 Market games
- 17.5 Additive games
- 17.6 The consistency property of the core
- 17.7 Convex games
- 17.8 Spanning tree games
- 17.9 Flow games
- 17.10 The core for general coalitional structures
- 17.11 Remarks
- 17.12 Exercises

18 The Shapley value

- 18.1 The Shapley properties
- 18.2 Solutions satisfying some of the Shapley properties
- 18.3 The definition and characterization of the Shapley value
- 18.4 Examples
Contents

18.5 An alternative characterization of the Shapley value 760
18.6 Application: the Shapley–Shubik power index 763
18.7 Convex games 767
18.8 The consistency of the Shapley value 768
18.9 Remarks 774
18.10 Exercises 774

19 The bargaining set 782

19.1 Definition of the bargaining set 784
19.2 The bargaining set in two-player games 788
19.3 The bargaining set in three-player games 788
19.4 The bargaining set in convex games 794
19.5 Discussion 797
19.6 Remarks 798
19.7 Exercises 798

20 The nucleolus 801

20.1 Definition of the nucleolus 802
20.2 Nonemptiness and uniqueness of the nucleolus 805
20.3 Properties of the nucleolus 809
20.4 Computing the nucleolus 815
20.5 Characterizing the prenucleolus 816
20.6 The consistency of the nucleolus 823
20.7 Weighted majority games 825
20.8 The bankruptcy problem 831
20.9 Discussion 842
20.10 Remarks 843
20.11 Exercises 844

21 Social choice 853

21.1 Social welfare functions 856
21.2 Social choice functions 864
21.3 Non-manipulability 871
21.4 Discussion 873
21.5 Remarks 874
21.6 Exercises 874

22 Stable matching 884

22.1 The model 886
22.2 Existence of stable matching: the men’s courtship algorithm 888
22.3 The women’s courtship algorithm 890
Contents

22.4 Comparing matchings 892
22.5 Extensions 898
22.6 Remarks 905
22.7 Exercises 905

Appendices

23.1 Fixed point theorems 916
23.2 The Separating Hyperplane Theorem 943
23.3 Linear programming 945
23.4 Remarks 950
23.5 Exercises 950

References 958
Index 968