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 1 Introduction

The book to read is not the one that thinks for you, but the one which makes you think.

— James McCosh (1811–1894)

1.1 Why Study Biophysics?

Why should a young neuroscientist study cellular biophysics and modeling? One

answer is that the electrical properties of cell plasma membrane and signal trans-

duction are essential to cellular and systems neuroscience. Another answer is that

the biophysics of individual neurons is a well-understood subject. The experimental

electrophysiology and computational modeling performed over the last century has

led to scientific consensus on the “right way” of thinking about electrical and chemical

signaling of neurons and the collective activity of small neuronal networks. There is

no such consensus on central nervous system function.

Ask 10 of the world’s leading neuroscientists how the brain works – how it thinks, feels, per-

ceives, and acts as a unified whole – and you will get 10 different answers, unless they are

very narrowly framed around the biophysics and chemistry of nerve impulse conduction and

synaptic transmission (Swanson, 2012).

Admittedly, cellular biophysics may seem to be a narrowly framed subject, espe-

cially if you are an undergraduate who is primarily interested in behavioral or cogni-

tive neuroscience. On the other hand, the electrical and chemical signaling of neurons –

the elementary anatomical units of the central nervous system – is absolutely essential

to brain function. Cellular biophysics and modeling is foundational to cellular and

systems neuroscience and a solid point of departure to more comprehensive study of

brain, mind and behavior.
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2 INTRODUCTION

1.2 Neurons are Brain Cells

It goes without saying that neurons are brain cells – elementary anatomical units

of the central nervous system that are polarized to mediate input/output functions:

dendrites → soma → axon → synapses. Rinse, repeat. The scientific history of these

foundational convictions is the subject of a book by Gordon Shepherd entitled Foun-

dations of the Neuron Doctrine. The cellular structure of the central nervous system

was first observed in sections of neural tissue using staining methods developed by

Camillo Golgi and later perfected by Santiago Ramón y Cajal. Because a small propor-

tion of neurons were labelled, the structure of single neurons could be resolved (see

Fig. 1.1). Golgi’s observations reinforced his working hypothesis that neural tissue had

a reticular structure analogous to the circulatory system. Cajal concluded that each

neuron was a separate entity that interacted with other neurons at synaptic junctions.

The 1906 Nobel Prize in Physiology or Medicine was awarded jointly to Golgi and

Cajal in recognition of their work on the structure of the nervous system.

More than a century later, neurons (and glia) are still brain cells. However, some

aspects of the neuron doctrine are difficult to sustain. Today’s neuroscience students

. . . could well conclude that the nerve cell is not the unit of function that is of primary interest to

them. The units of contemporary studies are the packets of transmitter molecules, the channels

and receptors by means of which nerve cells communicate with each other. Although many

Figure 1.1 A sagittal section through the rat brain as drawn by Ramón y Cajal. The section

shows thalamocortical neurons that project to cortex (d and b), and cortical pyramidal

neurons that project to the thalamus (T, a, e), and much more. Reproduced from Cajal’s 1906

Nobel lecture The structure and connexions of neurons. © The Nobel Foundation 1906.

Question: Where is the hippocampus?
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1 INTRODUCTION 3

nerve cells are polarized in the classical sense, others are not: parts of the classical neuronal

output system, the axons, can serve as receptors, and the classical receptor portions of the

dendrites can serve as effectors. . . . There are many examples of nerve cells linked to each other

by specialized gap junctions that provide electrical coupling and allow the passage of small

molecules from one nerve cell to another. . . . There are nerve fibres that are produced by the

fusion of processes from several cells. . . . These facts are all contrary to the neuron doctrine, as

originally expressed (Guillery, 2005).

Discuss Neurons are discrete anatomical components of the central nervous sys-

tem, but does this imply that neurons are the elementary physiological units sub-

serving the computations performed by the brain?1

1.3 Cellular Biophysics

Biophysics is a thriving scientific discipline, but it can be difficult to define. In Biophys-

ical Journal, Olaf S. Andersen recounts that the centerpiece of biophysical research

. . . in the early part of the twentieth century was neuro- and muscle physiology, disciplines that

lend themselves to quantitative analysis and in which most of the investigators had trained in

biology or medicine. In the latter half of the century, an increasing number of biophysicists were

trained in chemistry, physics, or mathematics, which led to the development of the modern gen-

eration of optical and electron microscopes, fluorescent probes . . . as well as the computational

methods that, by now, have become indispensable tools in biophysical research (Andersen,

2016).

What is biophysics? Archibald Vivian Hill2 emphasized that physical instrumentation

in a biological laboratory does not a biophysicist make. Rather, it is the biophysical

mindset that is important. Biophysicists attempt to understand biological structure,

organization and function using the ideas and methods of physics and physical chem-

istry (Hill, 1956).

I use cellular biophysics as a flexible term for quantitative, physical and physico-

chemical approaches to the complex phenomena of cell biology and neuroscience.

These include, but are not limited to, the electrical properties of the plasma membrane

of neurons (e.g., voltage- and ligand-gated ion channels), cell signal transduction (e.g.,

ionotropic and metabotropic receptors, intracellular calcium responses), and aspects

of biochemistry and cell biology (e.g., metabolic oscillations, microtubule dynamics

and cell motility).

Cellular biophysics is somewhat, but not entirely, distinct from molecular bio-

physics, e.g., the use of nuclear magnetic resonance (NMR) to determine the structure

of macromolecules. Both subjects are inherently interdisciplinary and highly depen-

dent upon physical techniques. The experimental methods specifically relevant to

cellular biophysics include, but are not limited to, voltage-clamp electrical recordings,

confocal microfluorimetry, and fluorescence resonance energy transfer (FRET).

A wide variety of small molecules contribute to the electrical and chemical

signaling of excitable cells such as neurons and myocytes. Examples include: neu-

rotransmitters (glutamate, glycine, gamma-aminobutyric acid = GABA), hormones

(epinephrine = adrenaline, vasopressin, cortisol, estrogen), lipids (PIP2 = phos-

phatidylinositol 4,5-bisphosphate, ceramide, sphingosine) and second-messengers
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4 INTRODUCTION

(cyclic adenosine monophosphate = cAMP, inositol trisphosphate = IP3, diacylglyc-

erol = DAG, calcium = Ca2+).

The macromolecules that dominate cellular biophysics are the integral and

peripheral membrane proteins involved in cell signaling and membrane transport.

Integral membrane proteins are permanently attached to the cell plasma membrane

(e.g., cell surface receptors) or intracellular membranes. Integral membrane proteins

of the cell plasma membrane often span the lipid bilayer and have significant

extracellular and intracellular (as well as transmembrane) domains. Peripheral

membrane proteins attach (sometimes fleetingly) to integral membrane proteins or

the inner leaflet of the lipid bilayer (e.g., phospholipase C, which hydrolyzes PIP2 into

the second messengers IP3 and DAG).

Fig. 1.2 summarizes the classes of transmembrane proteins that are most rele-

vant to our study of cellular biophysics. These include neurotransmitter receptors,

ion channels, and transporters (e.g., pumps and exchangers). An ionic channel is a

membrane protein with an aqueous pore; when the channel is permissive, certain ions

may pass through the pore, crossing from one side of the cell plasma membrane to the

other. Examples include non-gated potassium “leak” channels, potassium channels

that are gated by the binding of cytosolic calcium, voltage-gated sodium channels, and

metabotropic
receptors

second messenger
gated channels

voltage-gated
channels ligand-gated

channels
/
ionotropic
receptors

exchangers

pumps
(ATPases)

intracellular
messengers
channels

compartments

ATP

ADP

Figure 1.2 Integral membrane proteins involved in membrane transport include

neurotransmitter receptors, ion channels and transporters (exchangers and pumps).
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1 INTRODUCTION 5

glutamate receptors (ligand-gated ion channels permeable to both sodium and potas-

sium). Pumps are transporters that couple the hydrolysis of ATP to the movement of

one or more ions against concentration or electrochemical gradients. Examples include

the sodium-potassium ATPase and the sarco-endoplasmic reticulum calcium ATPase

(SERCA).3 Exchangers are transporters that use the concentration gradient of one type

of ion to catalyze the movement of another (e.g., the sodium-calcium exchanger).

This primer does not cover the molecular and structural biology of ion channels,

transporters and pumps. Rather, our emphasis is the functional role of ionic channels

in the electrophysiology of neurons, myocytes and other excitable cells. Because the

physiological states of living cells measured using biophysical techniques are compli-

cated functions of time, our study necessarily involves the mathematics of dynamical

systems.

Discuss What are some examples of physiological signals (electrical or chemical)

that are routinely measured by physicians and experimental biologists? What is

the role of these physiological measurements in medical diagnosis?

1.4 Dynamical Systems Modeling

In mathematics, a dynamical system is a rule that describes how the location of a point

in geometrical space changes as a function of time. When this concept is used to model

dynamical phenomena of cellular biophysics, the “point” is some aspect of the state of

a living cell (e.g., the membrane potential or the concentration of a chemical species)

in the “space” of all realizable states (e.g., a concentration may not be negative). While

the rule for the time-evolution of a dynamical system can take many different forms,

a natural choice is to specify the rule using one or more differential equations.

Differential equations are used by engineers and physicists to describe and pre-

dict change in the physical world, that is, the time-dependent dynamics of inanimate

objects. In physics (classical mechanics) Newton’s second law of motion describes the

relationship between the net force acting on a body4 and its motion using the familiar

equation, F = ma, where F(t) is the force applied, m is the mass of the body (constant),

and a(t) is the body’s acceleration. Acceleration is rate of change of velocity, that is,

a = dv/dt; and momentum (p) is mass times velocity p = mv. Consequently, Newton’s

second law can be rewritten as a differential equation5 that describes how the body’s

momentum changes in response to a force, dp/dt = F(t). From the dynamical systems

perspective, this differential equation is a rule that determines how the momentum

p(t) (the state of the system) changes in response to the time-dependent force F(t).

In a similar manner, many contemporary biologists apply dynamical systems

to the study of life (e.g., ecologists model population dynamics of food webs, and

public health experts model epidemics of communicable disease). Just as chemical

engineers use differential equations to describe and predict the kinetics of chemical

reactions, biochemists use differential equations to analyze and simulate metabolic

pathways. Modeling with differential equations is paramount in systems physiology

and pharmacokinetics. The approach has long been employed to study the flow,

between different organs in the body, of dissolved gases, nutrients, drugs, hormones

and radio-isotopes.

www.cambridge.org/9781107005365
www.cambridge.org


Cambridge University Press
978-1-107-00536-5 — Cellular Biophysics and Modeling
Greg Conradi Smith 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 INTRODUCTION

When it comes to the physiology of excitable cells – those cell types that can

generate action potentials in response to depolarization, such as neurons and cardiac

myocytes – the dynamical systems perspective has been with us for over half a cen-

tury. Alan Hodgkin and Andrew Huxley’s Nobel Prize winning studies6 of the action

potential in the squid giant axon included dynamical systems modeling with differ-

ential equations. Today, Hodgkin-Huxley-style modeling is the dominant framework

for studying and analyzing ion channel kinetics and the physiological consequences

of differentially expressed ionic currents in neurons and other excitable cells (e.g.,

myocytes, pancreatic beta cells, saccular hair cells). The dynamical systems perspec-

tive is a key ingredient of a historically accurate and scientifically rigorous under-

standing of the physiology of excitable cells.

Discuss Putting dynamics and differential equations to one side, what other

types of mathematics are important to the life sciences?

1.5 Benefits and Limitations of Mathematical Models

Life scientists study experimental model systems such as nematodes (roundworms)

and drosophila (fruit flies) because this practice facilitates scientific discovery. Exper-

imental model systems are developed and utilized because they lend themselves to

investigation (e.g., due to a technical or ethical advantage). Similarly, mathematical

models in the life sciences are idealizations of biological phenomena that have

certain advantages. Like experimental model systems, mathematical models also

have limitations.

This book emphasizes how a conceptual model – e.g., a verbal description or

a cartoon summary of a hypothesis – can be converted into a dynamical systems

model composed of one or more differential equations (Fig. 1.3). When this process

of bringing cartoons to life7 is mastered, one learns that mathematical models are

natural manifestations of conceptual models, but with significant advantages. While

the implications of a conceptual model are often unclear, mathematical models may

be analyzed by hand calculations, graphical techniques and computer simulation to

clarify the implications of the parent conceptual model. As we will see, conclusions

often depend on model parameters (e.g., rate constants) or aspects of the conceptual

model that were indeterminate or obscure. In this way, mathematical modeling often

sharpens scientific hypotheses by highlighting the subtleties hidden within conceptual

models.

The limitations of mathematical models are obvious to experimental scientists

and are often emphasized. We are often reminded that a mathematical model is an

abstraction and not a biological reality. Of course, this point should always be kept in

mind, just as we should never forget that conceptual models are also abstractions!

The idealization that occurs in biological modeling is an advantage as well as a

limitation. Unlike biological reality, a mathematical object can in principle be com-

pletely understood. Theorists and experimentalists agree that differential equations

are usually easier to interrogate than the corresponding tangible systems that they

represent. The analysis of mathematical models often results in qualitative “take home

messages” that are heeded by experimental scientists.
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Figure 1.3 The cycle of experiment, hypothesis and prediction in the biological sciences.

Moving from hypothesis to prediction requires either conceptual or mathematical modeling.

Discuss Mendel’s laws are fundamental to our understanding of the genetics of

inheritance. What aspects of Mendel’s laws are idealizations of biological reality?

Is Mendelian genetics an example of conceptual modeling or mathematical mod-

eling? How about the Hardy-Weinberg model?

1.6 Minimal Models and Graphical Methods

Mathematical models come in many varieties and are constructed for different pur-

poses. Highly realistic mathematical models of living cells can be so extremely com-

plex that detailed analysis is time consuming and impractical even with the assis-

tance of sophisticated software packages and high-performance computers. Although

physiological realism is an important goal, computational models that are nearly as

difficult to understand as the corresponding experimental system are not particularly

useful.

To see this, imagine a pedestrian tourist who requires a map to help explore a city.

A good map has a clear correspondence to the city, but this agreement is reduced,

abstract and approximate, because the map must be easily carried and read. A per-

fectly realistic map with exact correspondence to the city would be the size of a city and

completely useless, because reading the map would be no less difficult than exploring

the city on foot.
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8 INTRODUCTION

In the same way, a helpful mathematical model is physiologically realistic to some

degree, but not so complex that it cannot be analyzed and well understood. A mathe-

matical model should be simple enough to be comprehended by the theoretician and

realistic enough that this understanding is relevant to the experimentalist. Mathemati-

cal models that display this balance between realism and complexity are often referred

to as minimal models. A mathematical model that is understood to be oversimple but

is nevertheless of interest is a toy model.

One of the benefits of minimal models is that they can be analyzed, sometimes

through pencil and paper calculations, using the qualitative theory of dynamical sys-

tems. This geometrical approach to analyzing differential equations is highly visual,

easy to learn, and produces intuition about dynamical systems that is of benefit to

the life scientist. Learning this graphical way of thinking about mathematical models

is well worth the effort, even if one does not intend to pursue mathematics further,

because these tools allow one to quickly glean the ambiguities and take home mes-

sages of conceptual models. With the help of special purpose software packages, these

graphical techniques can also be used to analyze complex mathematical models.

Discuss The phrase “Everything should be made as simple as possible, but not

simpler” is often attributed to the theoretical physicist Albert Einstein. What

exactly did he mean by this? How is this maxim relevant to mathematical

modeling in biology?

1.7 Biophysics and Dynamics Together

Cellular biophysics and differential equations are both challenging subjects. Teaching

both simultaneously might seem like an ill-fated pedagogical choice. Attempting to

learn both subjects at the same time might feel like a daunting task. However, there are

benefits to communicating mathematical and biological ideas in an integrated manner

(Fig. 1.4).

First, teaching dynamics and biophysics at the same time shows students how

mathematical modeling is actually used in cell physiology and neuroscience. Golgi

and Cajal did not use dynamics in their investigations of the microscopic structure

dynamics
&

differential
equations

electrophysiology
&

cell signaling

cellular
biophysics

&
modeling

Figure 1.4 Cellular Biophysics and Modeling is an exploration of the physiology of excitable

cells and the mathematical language of dynamics (differential equations).
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1 INTRODUCTION 9

of the brain. But differential equations were used by Alan Hodgkin and Andrew

Huxley to explain the initiation and propagation of action potentials in the squid giant

axon. Contemporary cellular and systems neuroscience is highly quantitative, and

the cognitive and behavioral neurosciences are becoming more quantitative with each

passing year.

Second, mathematical modeling is best learned through the experience of many

specific, concrete examples that are relevant to one’s scientific interests. For biology

and neuroscience students learning about membrane excitability and cell signaling,

this means that physiological examples and exercises are preferred. Although we men-

tioned Newtonian mechanics above, you will not find any oscillating pendula in this

book! This leads us to the third, and perhaps most important, benefit of learning

dynamics and electrophysiology at the same time: deeper understanding.

We choose to teach cellular biophysics and differential equations in an integrated

manner because, frankly, the mathematical perspective is required to achieve a deep

understanding of the dynamical phenomena that comprise electrophysiology and cell

signaling. The electrical properties of individual neurons and myocytes and, by exten-

sion, the function of the central nervous system cannot be understood without the

language of mathematics. The possibility that one may be teaching undergraduate

neuroscience majors does not change this. In the words of Bob Marley, we must “tell

the children the truth.”

1.8 Discussion

Students new to neuroscience will benefit from reading the classic Scientific American

article “The organization of the brain” (Nauta and Feirtag, 1979) and the introductory

chapters of Swanson (2012) and Schneider (2014).

For further reading on the neuron doctrine see the monograph Shepherd (2015) as

well as articles by Glickstein (2006), Bullock et al. (2005) and Guillery (2005). The Nobel

lectures of Cajal (1906) and Golgi (1906) are available at www.nobelprize.org.

The history of theory in several areas of biology is discussed by Shou et al. (2015).

The short Nature essay “Bringing cartoons to life” by Tyson (2007) argues that because

cells are dynamical systems, mathematical tools are required to understand the rela-

tionship between molecular interactions and physiological consequences.

My answer to “What is biophysics” draws heavily from Andersen (2016). The

Biophysical Society web page is www.biophysics.org.

Cells and Computers

In his lectures on mathematical modeling of the cell cycle, computational cell biolo-

gist John Tyson asks students to consider the similarities and differences between an

individual cell and a computer. Computers and cells are different in that computers

are manufactured while cells are self-reproducing, but similar in that both obey the

laws of thermodynamics. Computers process an input and produce an output. Do

cells function in this manner? If so, how are the processing steps occurring within

cells and computers similar or different?
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10 INTRODUCTION

How Many Neurons?

The number of neurons in the human central nervous system is estimated to be some-

where between ten billion (1010) and one trillion (1012) (Nauta and Feirtag, 1979). Truly,

these are astronomical numbers, as there are thought to be 200–400 billion stars in the

Milky Way galaxy. Imagine a neuron represented by a coarse grain of sand with linear

dimension of half a millimeter. The volume of a cubical grain of sand would be

(0.5 mm)3
= (0.5 × 10−3

m)3
= 1.25 × 10−10

m
3 .

A sand castle representing a human brain composed of 1010 grains of sand (lower

estimate) would have a volume of

(1010)(1.25 × 10−10
m

3) = 1.25 m
3 ,

that is, about a cubic meter. Although it is not difficult to visualize this amount of

sand, placing the grains side by side in linear array would yield a row fifty thousand

kilometers long, which is greater than the circumference of the earth.8

Problem 1.1 The upper estimate of 1012 neurons per brain is 100-fold greater

than the lower estimate. Repeat the above calculation using this value. What is the

fold increase in the height of the cubical sandcastle?

Problem 1.2 Estimate the number of neurons in a cubical human brain under

the assumption that a neuron may be represented by a cube that is 10 micrometers

on a side.

Know Your Neurons

Cajal’s drawing of a sagittal section of a rat brain includes thalamocortical and cortical

pyramidal neurons (Fig. 1.1). Are these neuron types also present in the human brain?

How many morphological types of neurons can you recall and/or visually identify

after a Google image search?

Is Neuroscience Hard or Soft?

In the so-called hard sciences (e.g., physics), there are a small number of causative

variables, the language of mathematics formalizes hypotheses, and predictions of

hypotheses can be rigorously derived. In the soft sciences (e.g., psychology), numerous

variables are in play, most of which are difficult to quantify. In the soft sciences,

hypotheses are often not formalized using mathematics, the predictions of hypotheses

are debatable, and empirical observations rarely lead to strong conclusions. On the

other hand, one could argue that the soft sciences are in some ways harder (more

difficult) than the hard sciences, because the phenomena addressed are more complex

and less easily understood. Is neuroscience a soft science or hard science? Why might

some scientists and historians of science find this soft/hard terminology problematic?
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