Physical Mathematics

Unique in its clarity, examples, and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations, and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics, and the functional derivatives and Feynman path integrals of quantum field theory. Solutions to exercises are available for instructors at www.cambridge.org/cahill.

KEVIN CAHILL is Professor of Physics and Astronomy at the University of New Mexico. He has done research at NIST, Saclay, Ecole Polytechnique, Orsay, Harvard, NIH, LBL, and SLAC, and has worked in quantum optics, quantum field theory, lattice gauge theory, and biophysics. Physical Mathematics is based on courses taught by the author at the University of New Mexico and at Fudan University in Shanghai.
Physical Mathematics

KEVIN CAHILL

University of New Mexico
For Ginette, Mike, Sean, Peter, Mia, and James,
and in honor of Muntadhar al-Zaidi.
Contents

Preface xvii

1 Linear algebra 1
 1.1 Numbers 1
 1.2 Arrays 2
 1.3 Matrices 4
 1.4 Vectors 7
 1.5 Linear operators 9
 1.6 Inner products 11
 1.7 The Cauchy–Schwarz inequality 14
 1.8 Linear independence and completeness 15
 1.9 Dimension of a vector space 16
 1.10 Orthonormal vectors 16
 1.11 Outer products 18
 1.12 Dirac notation 19
 1.13 The adjoint of an operator 22
 1.14 Self-adjoint or hermitian linear operators 23
 1.15 Real, symmetric linear operators 23
 1.16 Unitary operators 24
 1.17 Hilbert space 25
 1.18 Antiunitary, antilinear operators 26
 1.19 Symmetry in quantum mechanics 26
 1.20 Determinants 27
 1.21 Systems of linear equations 34
 1.22 Linear least squares 34
 1.23 Lagrange multipliers 35
 1.24 Eigenvectors 37
CONTENTS

1.25 Eigenvectors of a square matrix 38
1.26 A matrix obeys its characteristic equation 41
1.27 Functions of matrices 43
1.28 Hermitian matrices 45
1.29 Normal matrices 50
1.30 Compatible normal matrices 52
1.31 The singular-value decomposition 55
1.32 The Moore–Penrose pseudoinverse 63
1.33 The rank of a matrix 65
1.34 Software 66
1.35 The tensor/direct product 66
1.36 Density operators 69
1.37 Correlation functions 69
Exercises 71

2 Fourier series 75
2.1 Complex Fourier series 75
2.2 The interval 77
2.3 Where to put the 2πs 77
2.4 Real Fourier series for real functions 79
2.5 Stretched intervals 83
2.6 Fourier series in several variables 84
2.7 How Fourier series converge 84
2.8 Quantum-mechanical examples 89
2.9 Dirac notation 96
2.10 Dirac’s delta function 97
2.11 The harmonic oscillator 101
2.12 Nonrelativistic strings 103
2.13 Periodic boundary conditions 103
Exercises 105

3 Fourier and Laplace transforms 108
3.1 The Fourier transform 108
3.2 The Fourier transform of a real function 111
3.3 Dirac, Parseval, and Poisson 112
3.4 Fourier derivatives and integrals 115
3.5 Fourier transforms in several dimensions 119
3.6 Convolutions 121
3.7 The Fourier transform of a convolution 123
3.8 Fourier transforms and Green’s functions 124
3.9 Laplace transforms 125
3.10 Derivatives and integrals of Laplace transforms 127
CONTENTS

3.11 Laplace transforms and differential equations 128
3.12 Inversion of Laplace transforms 129
3.13 Application to differential equations 129
Exercises 134

4 Infinite series 136
4.1 Convergence 136
4.2 Tests of convergence 137
4.3 Convergent series of functions 138
4.4 Power series 139
4.5 Factorials and the gamma function 141
4.6 Taylor series 145
4.7 Fourier series as power series 146
4.8 The binomial series and theorem 147
4.9 Logarithmic series 148
4.10 Dirichlet series and the zeta function 149
4.11 Bernoulli numbers and polynomials 151
4.12 Asymptotic series 152
4.13 Some electrostatic problems 154
4.14 Infinite products 157
Exercises 158

5 Complex-variable theory 160
5.1 Analytic functions 160
5.2 Cauchy’s integral theorem 161
5.3 Cauchy’s integral formula 165
5.4 The Cauchy–Riemann conditions 169
5.5 Harmonic functions 170
5.6 Taylor series for analytic functions 171
5.7 Cauchy’s inequality 173
5.8 Liouville’s theorem 173
5.9 The fundamental theorem of algebra 174
5.10 Laurent series 174
5.11 Singularities 177
5.12 Analytic continuation 179
5.13 The calculus of residues 180
5.14 Ghost contours 182
5.15 Logarithms and cuts 193
5.16 Powers and roots 194
5.17 Conformal mapping 197
5.18 Cauchy’s principal value 198
5.19 Dispersion relations 205
CONTENTS

5.20 Kramers–Kronig relations 207
5.21 Phase and group velocities 208
5.22 The method of steepest descent 210
5.23 The Abel–Plana formula and the Casimir effect 212
5.24 Applications to string theory 217
Exercises 219

6 Differential equations 223

6.1 Ordinary linear differential equations 223
6.2 Linear partial differential equations 225
6.3 Notation for derivatives 226
6.4 Gradient, divergence, and curl 228
6.5 Separable partial differential equations 230
6.6 Wave equations 233
6.7 First-order differential equations 235
6.8 Separable first-order differential equations 235
6.9 Hidden separability 238
6.10 Exact first-order differential equations 238
6.11 The meaning of exactness 240
6.12 Integrating factors 242
6.13 Homogeneous functions 243
6.14 The virial theorem 243
6.15 Homogeneous first-order ordinary differential equations 245
6.16 Linear first-order ordinary differential equations 246
6.17 Systems of differential equations 248
6.18 Singular points of second-order ordinary differential equations 250
6.19 Frobenius’s series solutions 251
6.20 Fuch’s theorem 253
6.21 Even and odd differential operators 254
6.22 Wronski’s determinant 255
6.23 A second solution 255
6.24 Why not three solutions? 257
6.25 Boundary conditions 258
6.26 A variational problem 259
6.27 Self-adjoint differential operators 260
6.28 Self-adjoint differential systems 262
6.29 Making operators formally self adjoint 264
6.30 Wronskians of self-adjoint operators 265
6.31 First-order self-adjoint differential operators 266
6.32 A constrained variational problem 267
CONTENTS

6.33 Eigenfunctions and eigenvalues of self-adjoint systems 273
6.34 Unboundedness of eigenvalues 275
6.35 Completeness of eigenfunctions 277
6.36 The inequalities of Bessel and Schwarz 284
6.37 Green’s functions 284
6.38 Eigenfunctions and Green’s functions 287
6.39 Green’s functions in one dimension 288
6.40 Nonlinear differential equations 289
 Exercises 293

7 Integral equations 296
7.1 Fredholm integral equations 297
7.2 Volterra integral equations 297
7.3 Implications of linearity 298
7.4 Numerical solutions 299
7.5 Integral transformations 301
 Exercises 304

8 Legendre functions 305
8.1 The Legendre polynomials 305
8.2 The Rodrigues formula 306
8.3 The generating function 308
8.4 Legendre’s differential equation 309
8.5 Recurrence relations 311
8.6 Special values of Legendre’s polynomials 312
8.7 Schlafli’s integral 313
8.8 Orthogonal polynomials 313
8.9 The azimuthally symmetric Laplacian 315
8.10 Laplacian in two dimensions 316
8.11 The Laplacian in spherical coordinates 317
8.12 The associated Legendre functions/polynomials 317
8.13 Spherical harmonics 319
 Exercises 323

9 Bessel functions 325
9.1 Bessel functions of the first kind 325
9.2 Spherical Bessel functions of the first kind 335
9.3 Bessel functions of the second kind 341
9.4 Spherical Bessel functions of the second kind 343
 Further reading 345
 Exercises 345
CONTENTS

10 Group theory 348
10.1 What is a group? 348
10.2 Representations of groups 350
10.3 Representations acting in Hilbert space 351
10.4 Subgroups 353
10.5 Cosets 354
10.6 Morphisms 354
10.7 Schur’s lemma 355
10.8 Characters 356
10.9 Tensor products 357
10.10 Finite groups 358
10.11 The regular representation 359
10.12 Properties of finite groups 360
10.13 Permutations 360
10.14 Compact and noncompact Lie groups 361
10.15 Lie algebra 361
10.16 The rotation group 366
10.17 The Lie algebra and representations of $SU(2)$ 368
10.18 The defining representation of $SU(2)$ 371
10.19 The Jacobi identity 374
10.20 The adjoint representation 374
10.21 Casimir operators 375
10.22 Tensor operators for the rotation group 376
10.23 Simple and semisimple Lie algebras 376
10.24 $SU(3)$ 377
10.25 $SU(3)$ and quarks 378
10.26 Cartan subalgebra 379
10.27 Quaternions 379
10.28 The symplectic group $Sp(2n)$ 381
10.29 Compact simple Lie groups 383
10.30 Group integration 384
10.31 The Lorentz group 386
10.32 Two-dimensional representations of the Lorentz group 389
10.33 The Dirac representation of the Lorentz group 393
10.34 The Poincaré group 395
 Further reading 396
 Exercises 397

11 Tensors and local symmetries 400
11.1 Points and coordinates 400
11.2 Scalars 401
11.3 Contravariant vectors 401
CONTENTS

11.4 Covariant vectors 402
11.5 Euclidean space in euclidean coordinates 402
11.6 Summation conventions 404
11.7 Minkowski space 405
11.8 Lorentz transformations 407
11.9 Special relativity 408
11.10 Kinematics 410
11.11 Electrodynamics 411
11.12 Tensors 414
11.13 Differential forms 416
11.14 Tensor equations 419
11.15 The quotient theorem 420
11.16 The metric tensor 421
11.17 A basic axiom 422
11.18 The contravariant metric tensor 422
11.19 Raising and lowering indices 423
11.20 Orthogonal coordinates in euclidean n-space 423
11.21 Polar coordinates 424
11.22 Cylindrical coordinates 425
11.23 Spherical coordinates 425
11.24 The gradient of a scalar field 426
11.25 Levi-Civita’s tensor 427
11.26 The Hodge star 428
11.27 Derivatives and affine connections 431
11.28 Parallel transport 433
11.29 Notations for derivatives 433
11.30 Covariant derivatives 434
11.31 The covariant curl 435
11.32 Covariant derivatives and antisymmetry 436
11.33 Affine connection and metric tensor 436
11.34 Covariant derivative of the metric tensor 437
11.35 Divergence of a contravariant vector 438
11.36 The covariant Laplacian 441
11.37 The principle of stationary action 443
11.38 A particle in a gravitational field 446
11.39 The principle of equivalence 447
11.40 Weak, static gravitational fields 449
11.41 Gravitational time dilation 449
11.42 Curvature 451
11.43 Einstein’s equations 453
11.44 The action of general relativity 455
11.45 Standard form 455
CONTENTS

11.46 Schwarzschild’s solution 456
11.47 Black holes 456
11.48 Cosmology 457
11.49 Model cosmologies 463
11.50 Yang–Mills theory 469
11.51 Gauge theory and vectors 471
11.52 Geometry 474
Further reading 475
Exercises 475

12 Forms 479
12.1 Exterior forms 479
12.2 Differential forms 481
12.3 Exterior differentiation 486
12.4 Integration of forms 491
12.5 Are closed forms exact? 496
12.6 Complex differential forms 498
12.7 Frobenius’s theorem 499
Further reading 500
Exercises 500

13 Probability and statistics 502
13.1 Probability and Thomas Bayes 502
13.2 Mean and variance 505
13.3 The binomial distribution 508
13.4 The Poisson distribution 511
13.5 The Gaussian distribution 512
13.6 The error function erf 515
13.7 The Maxwell–Boltzmann distribution 518
13.8 Diffusion 519
13.9 Langevin’s theory of brownian motion 520
13.10 The Einstein–Nernst relation 523
13.11 Fluctuation and dissipation 524
13.12 Characteristic and moment-generating functions 528
13.13 Fat tails 530
13.14 The central limit theorem and Jarl Lindeberg 532
13.15 Random-number generators 537
13.16 Illustration of the central limit theorem 538
13.17 Measurements, estimators, and Friedrich Bessel 543
13.18 Information and Ronald Fisher 546
13.19 Maximum likelihood 550
13.20 Karl Pearson’s chi-squared statistic 551
CONTENTS

13.21 Kolmogorov’s test 554
 Further reading 560
 Exercises 560

14 Monte Carlo methods 563
 14.1 The Monte Carlo method 563
 14.2 Numerical integration 563
 14.3 Applications to experiments 566
 14.4 Statistical mechanics 572
 14.5 Solving arbitrary problems 575
 14.6 Evolution
 Further reading 577
 Exercises 577

15 Functional derivatives 578
 15.1 Functionals 578
 15.2 Functional derivatives 578
 15.3 Higher-order functional derivatives 581
 15.4 Functional Taylor series 582
 15.5 Functional differential equations
 Exercises 585

16 Path integrals 586
 16.1 Path integrals and classical physics 586
 16.2 Gaussian integrals 586
 16.3 Path integrals in imaginary time 588
 16.4 Path integrals in real time 590
 16.5 Path integral for a free particle 593
 16.6 Free particle in imaginary time 595
 16.7 Harmonic oscillator in real time 595
 16.8 Harmonic oscillator in imaginary time 597
 16.9 Euclidean correlation functions 599
 16.10 Finite-temperature field theory 600
 16.11 Real-time field theory 603
 16.12 Perturbation theory 605
 16.13 Application to quantum electrodynamics 609
 16.14 Fermionic path integrals 613
 16.15 Application to nonabelian gauge theories 619
 16.16 The Faddeev–Popov trick 620
 16.17 Ghosts 622
 Further reading 624
 Exercises 624
CONTENTS

17 The renormalization group 626
17.1 The renormalization group in quantum field theory 626
17.2 The renormalization group in lattice field theory 630
17.3 The renormalization group in condensed-matter physics 632
 Exercises 634

18 Chaos and fractals 635
18.1 Chaos 635
18.2 Attractors 639
18.3 Fractals 639
 Further reading 642
 Exercises 642

19 Strings 643
19.1 The infinities of quantum field theory 643
19.2 The Nambu–Goto string action 643
19.3 Regge trajectories 646
19.4 Quantized strings 647
19.5 D-branes 647
19.6 String–string scattering 648
19.7 Riemann surfaces and moduli 649
 Further reading 650
 Exercises 650

References 651
Index 656
Preface

To the students: you will find some physics crammed in amongst the mathematics. Don’t let the physics bother you. As you study the math, you’ll learn some physics without extra effort. The physics is a freebie. I have tried to explain the math you need for physics and have left out the rest.

To the professors: the book is for students who also are taking mechanics, electrodynamics, quantum mechanics, and statistical mechanics nearly simultaneously and who soon may use probability or path integrals in their research. Linear algebra and Fourier analysis are the keys to physics, so the book starts with them, but you may prefer to skip the algebra or postpone the Fourier analysis. The book is intended to support a one- or two-semester course for graduate students or advanced undergraduates. The first seven, eight, or nine chapters fit in one semester, the others in a second. A list of errata is maintained at panda.unm.edu/cahill, and solutions to all the exercises are available for instructors at www.cambridge.org/cahill.

Several friends – Susan Atlas, Bernard Becker, Steven Boyd, Robert Burckel, Sean Cahill, Colston Chandler, Vageli Coutsias, David Dunlap, Daniel Finley, Franco Giuliani, Roy Glauber, Pablo Gondolo, Igor Gorelov, Jiaxing Hong, Fang Huang, Dinesh Loomba, Yin Luo, Lei Ma, Michael Malik, Kent Morrison, Sudhakar Prasad, Randy Reeder, Dmitri Sergatskov, and David Waxman – have given me valuable advice. Students have helped with questions, ideas, and corrections, especially Thomas Beechem, Marie Cahill, Chris Cesare, Yihong Cheng, Charles Cherqui, Robert Cordwell, Amo-Kwao Godwin, Aram Gragossian, Aaron Hankin, Kangbo Hao, Tiffany Hayes, Yiran Hu, Shanshan Huang, Tyler Keating, Joshua Koch, Zilong Li, Miao Lin, ZuMou Lin, Sheng Liu, Yue Liu, Ben Oliker, Boleszek Osinski, Ravi Raghunathan, Akash Rakholia, Xingyue Tian, Toby Tolley, Jiqun Tu, Christopher Vergien, Weizhen Wang, George Wendelberger, Xukun Xu, Huimin Yang, Zhou Yang, Daniel Young, Mengzhen Zhang, Lu Zheng, Lingjun Zhou, and Daniel Zirzow.