
PART I

PRELIMINARIES

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-00504-4 - Introduction to Topological Quantum Computation
Jiannis K. Pachos
Excerpt
More information

http://www.cambridge.org/9781107005044
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-00504-4 - Introduction to Topological Quantum Computation
Jiannis K. Pachos
Excerpt
More information

http://www.cambridge.org/9781107005044
http://www.cambridge.org
http://www.cambridge.org


1 Introduction

Symmetries play a central role in physics. They dictate what one can change in a physical
system without affecting any of its properties. You might have encountered symmetries
like translational symmetry, where a system remains unchanged if it is spatially translated
by an arbitrary distance. A system with rotational symmetry, however, is invariant under
rotations. Some symmetries, like the ones mentioned above, give information about the
structure of the system. Others have to do with the more fundamental physical framework
that we adopt. An example for this is the invariance under Lorentz transformations in rela-
tivistic physics.

Other types of symmetries can be even more subtle. For example, it is rather self-evident
that physics should remain unchanged if we exchange two identical point-like particles.
Nevertheless, this fundamental property that we call statistical symmetry gives rise to rich
and beautiful physics. In three spatial dimensions it dictates the existence of bosons and
fermions. These are particles with very different quantum mechanical properties. Their
wave function acquires a +1 or a −1 phase, respectively, whenever two particles are
exchanged. A direct consequence of this is that bosons can actually occupy the same state.
In contrast, fermions can only be stacked together with each particle occupying a differ-
ent state.

When one considers two spatial dimensions, a wide variety of statistical behaviours is
possible. Apart from bosonic and fermionic behaviours, arbitrary phase factors, or even
non-trivial unitary evolutions, can be obtained when two particles are exchanged (Leinaas
and Myrheim, 1977). Particles with such exotic statistics have been named anyons by Frank
Wilczek (1982). The transformation of the anyonic wave function is consistent with the
exchange symmetry. Indeed, similarly to the fermionic case, the anyonic exchange trans-
formations are not detectable by local measurements on the particles. This ‘indirect’ nature
of the statistical transformations of anyons is at the core of their intellectual appeal. It also
provides the technological advantage of anyonic systems in performing quantum compu-
tation that is protected from a malicious environment.

1.1 Particle exchange and quantum physics

Statistics, as arising from indistinguishability of particles, is a quantum mechanical prop-
erty. Classical particles are always distinguishable as we can keep track of their position
at all times. Quantum mechanically, the position of a particle is determined via a spatially
extended wave function. The wave functions of two particles might overlap even if they
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4 Introduction
�

are not peaked at exactly the same position. Hence the position is, in general, not a good
property for identifying particles, thereby making it impossible to define distinguishability
in a fundamental way. This suggests adopting a common wave function to describe the
system of the two particles.

Indistinguishable particles in quantum mechanics should have all their intrinsic prop-
erties, such as mass, charge, spin and any other quantum number, exactly the same. This
seemingly innocent property has far-reaching consequences. It allows us to construct uni-
versal theories to describe elementary particles based on simple statistical rules. More dra-
matically, it forces us to adopt the new framework of statistical physics that abandons the
distinguishability of particles.

Exchange statistics describe the change in the wave function of two identical particles,
when they are exchanged. Its properties need to be compatible with the symmetry imposed
by indistinguishability. As an important consequence, these changes are independent of
many details of the system. Consider, for example, the case where the exchange is not a
mathematical procedure, but a physical process of moving two particles along an exchange
path. The effect of this transport on the wave function should not depend on the particular
shape of the path taken by the particles when they are exchanged or the speed the path is
traversed. Nevertheless, the evolution might still depend on some global, topological char-
acteristics of the path, such as the number of times the particles are exchanged. Statistical
evolutions are hence topological in their nature.

In three spatial dimensions the indistinguishability of particles allows for the possibility
of having bosons and fermions. Bosons satisfy the Bose–Einstein distribution (Bose, 1924;
Einstein, 1924) and fermions the Fermi–Dirac distribution (Fermi, 1926; Dirac, 1926).
These distributions emerge from the general requirement that an ensemble of indistinguish-
able particles is described either by completely symmetric or completely antisymmetric
wave functions with respect to particle exchanges. The first case corresponds to bosons
and the second to fermions. In particular, when two fermions are positioned on top of each
other their state should be simultaneously symmetric and antisymmetric, giving zero as
the only possible solution. This gives rise to the Pauli exclusion principle that assigns zero
probability to such configurations. However, there is no such restriction for the case of
bosons which can freely occupy the same position.

Another surprising consequence of indistinguishability is the relation between spin and
statistics. Pauli (1940) proved that bosons have integer spin and fermions half-integer spin.
This is a rather surprising relation as spin is an intrinsic property that can be determined by
considering an isolated particle. Contrarily, to determine the statistics we need to consider
an ensemble of at least two particles. We shall visit this relation again later on and we shall
generalise it to the case of anyons where exotic statistical behaviours give rise to equally
exotic values of spins.

1.2 Anyons and topological systems

Statistics is spectacularly manifested in two-dimensional systems. There, exotic wave func-
tions of particles can be realised that give rise to anyons. The study of anyons started as a

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-00504-4 - Introduction to Topological Quantum Computation
Jiannis K. Pachos
Excerpt
More information

http://www.cambridge.org/9781107005044
http://www.cambridge.org
http://www.cambridge.org


5 1.3 Quantum computation with anyons
�

theoretical curiosity in two-dimensional models (Wilczek, 1982). However, it was soon
realised that they can be encountered in physical systems with effective two-dimensional
behaviour. For example, gases of electrons confined on thin films in the presence of suf-
ficiently strong magnetic field and at a sufficiently low temperature give rise to the frac-
tional quantum Hall effect (Camino et al., 2005; Laughlin, 1983; Tsui et al., 1982). The
low-energy excitations of these systems are localised quasiparticle excitations that exhibit
anyonic statistics. Beyond the fractional quantum Hall effect, other two-dimensional sys-
tems have emerged which theoretically support anyons (Volovik, 2003). These range from
superconductors (Chamon et al., 2001) and topological insulators (Hasan and Kane, 2010)
to spin lattice models.

Systems that support anyons are called topological as they inherit the topological prop-
erties of the anyonic statistical evolutions. Topological systems are usually many-particle
systems that support localised excitations, so-called quasiparticles, that can exhibit any-
onic behaviour. In general, they have highly entangled degenerate ground states. As a
consequence local order parameters, such as the magnetisation, are not able to describe
topological phases. So we need to employ non-local order parameters. Various character-
istics exist that identify topological order, such as ground state degeneracy, edge states in
the presence of a gapped bulk, topological entanglement entropy or the explicit detection
of anyons. As topological order comes in various forms, the study and characterisation of
topological systems in their generality is complex and still an open problem. Over the last
years the richness in the behaviour of two-dimensional topological systems has inspired
many scientists. One of the most thought-provoking ideas is to use topological systems for
quantum computation.

1.3 Quantum computation with anyons

In the last decades progress in physics and the understanding of nature has advanced the
way we perceive information. Quantum physics has opened the possibility of yet another
way of storing, manipulating and transmitting information. Importantly, quantum com-
puters have been proposed with the ability to outperform their classical counterparts,
thereby promising far-reaching consequences. Quantum computation requires the encod-
ing of quantum information and its efficient manipulation with quantum gates (Nielsen
and Chuang, 2000). Qubits, the quantum version of classical bits, provide an elementary
encoding space. Quantum gates manipulate the qubits to eventually perform a computa-
tion. A universal quantum computer employs a sufficiently large set of gates in order to
perform arbitrary quantum algorithms. In recent years, there have been two main quests
for quantum computation. First, to find new algorithms, that go beyond the already dis-
covered algorithms of searching (Grover, 1996) and factorising (Shor, 1997). Second, to
perform quantum computation that is resilient to errors.

In the 1990s a surprising connection was made. It was argued by Castagnoli and Rasetti
(1993) that anyons could be employed to perform quantum computation. Kitaev (2003)
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6 Introduction
�

demonstrated that anyons could actually be used to perform fault-tolerant quantum com-
putation. This was a very welcome advance as errors infest any physical realisation of
quantum computation, coming from the environment or from control imperfections. Shor
(1995) and Steane (1996) independently demonstrated that for sufficiently isolated quan-
tum systems and for sufficiently precise quantum gates, quantum error correction can allow
fault-tolerant computation. However, the required thresholds are too stringent and demand
a large overhead in qubits and quantum gates for error correction to be realised. In contrast
to this, anyonic quantum computation promises to resolve the problem of errors from the
hardware level.

Topological systems can serve as quantum memories or as quantum computers. They
can encode information in a way that is protected from environmental perturbations. In
fact, topological systems have already proven to be a serious candidate for constructing
fault-tolerant quantum hard disks. The intertwining of anyons and quantum information in
topological systems is performed in an unusual way. Information is encoded in the possi-
ble outcomes when bringing two anyons together. This information is not accessible when
the anyons are kept apart, and hence it is protected. The exchange of anyons gives rise to
statistical logical gates. In this way anyons can manipulate information with very accurate
quantum gates, while keeping the information hidden at all times. If the statistical evolu-
tions are complex enough then they can realise arbitrary quantum algorithms. Fundamental
properties of anyonic quasiparticles can thus become the means to perform quantum com-
putation. Fault-tolerance simply stems from the ability to keep these quasiparticles intact.
The result is a surprisingly effective and aesthetically appealing method for performing
fault-tolerant quantum computation.

1.4 Abelian and non-Abelian anyonic statistics

It is commonly accepted that in three spatial dimensions indistinguishable particles, ele-
mentary or not, come in two species: bosons or fermions. The possibility for these statis-
tical behaviours can be obtained from a simple thought experiment. Consider two identi-
cal particles in three dimensions, where one of them circulates the other via the path C1,
as shown in Figure 1.1(a). As we are only interested in the statistical behaviour of these
particles, we focus on the topological characteristics of this process. These characteris-
tics should be independent of details such as the particular geometry of the path or direct
interactions between the particles. Hence, we can continuously deform the path C1 to the
path C2. This involves only local deformations of the evolution without cutting or other-
wise drastically changing the nature of the path. In its turn, path C2 can be continuously
deformed to a trivial path, C0, that keeps the particle at its initial position at all times.
As a consequence, the wave function, �(C1), of the system after the circulation has to be
exactly the same as the original one �(C0), i.e.,

�(C1) = �(C2) = �(C0). (1.1)
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7 1.4 Abelian and non-Abelian anyonic statistics
�

C1C2
C0

(a) (b)

�Fig. 1.1 (a) A particle spans a loop around another one. In three dimensions it is always possible to continuously deform the
path C1 to the path C2, which is equivalent to a trivial path, C0. (b) Two successive exchanges between two particles
are equivalent to a circulation of one particle around the other and a translation.

C1C2
C0

�Fig. 1.2 In two dimensions the two paths C1 and C2 are topologically distinct. This gives the possibility of having non-trivial
phase factors appearing when one particle circulates around the other. In other words, one can assign a non-trivial
unitary to the evolution corresponding to path C1.

Figure 1.1(b) depicts a single exchange of two particles. If we perform two of these
exchanges in succession then we obtain a full circulation of one particle around the other
accompanied by an irrelevant spatial translation. Thus, a single exchange can result in a
phase factor eiϕ that has to square to unity in order to be consistent with (1.1). This has two
solutions, ϕ = 0 and ϕ = π , corresponding to the bosonic and fermionic statistics, respec-
tively. These are the only statistical behaviours that can exist in three spatial dimensions.

When we restrict ourselves to two spatial dimensions, then we are faced with a wealth
of possible statistical evolutions. If the particle circulation C1 is performed on a plane, as
shown in Figure 1.2, then it is not possible to continuously deform it to the path C2, as
we do not have access to an extra dimension to lift the loop and undo the linking. To do
that would necessitate cutting the path, passing it over the circulated particle and glueing
it again, thus changing in-between its topological characteristics. Still, the evolution that
corresponds to C2 is equivalent to the trivial evolution. As we are not able to deform the
evolution of path C1 to the trivial one, the argument we employed in the three-dimensional
case does not apply any more. Actually, now, it is possible to assign an arbitrary phase fac-
tor, or even a whole unitary matrix, to the evolution corresponding to C1 that is equivalent
to two successive exchanges. Thus, particles in two dimensions can have rich statistical
behaviours.

We would like now to analyse the difference between phase factors and unitary matri-
ces as statistical evolutions. In the former case the anyons are known as Abelian, and the
statistical phase factor can take any value between the bosonic case of eiϕb = 1 and the
fermionic case of eiϕf = −1. In fact, it is the possibility of these particles having any statis-
tics that led to the name ‘anyon’ (Wilczek, 1982). Nevertheless, the statistics of a specific
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8 Introduction
�

anyon type is always well defined and a given pair will always yield the same statistical
phase. This phase therefore characterises the species of the exchanged anyons.

Beyond a phase factor it is possible to have a statistical evolution that is more complex.
Certain species of anyons called non-Abelian give rise to an exchange evolution that can
actually lead to a higher-dimensional unitary matrix. In contrast to phase factors, matrices
do not in general commute, which motivates the name ‘non-Abelian’. For a matrix statisti-
cal evolution to emerge, the wave function that describes the particles needs to be part of a
degenerate subspace of states. The particle exchange then transforms between states in this
subspace without changing the energy of the system. Nevertheless, there is an important
constraint we need to impose on the statistical evolution in order to be in agreement with the
exchange symmetry. To preserve the physics when two identical non-Abelian anyons are
exchanged, we require that the degenerate states should be non-distinguishable if one looks
at each anyon individually. As a result, interchanging these anyons causes a transformation
within this state subspace that is not detectable by local measurements, giving a valid statis-
tical transformation. One would need to perform non-local operations, like bringing these
anyons close together, in order to distinguish between these states and observe the effect of
statistics. It is rather surprising that consistent particle theories exist that have such exotic
behaviours as the non-Abelian statistics. Before characterising these theories we shall first
investigate the physical principles that allow this behaviour to emerge.

1.5 What are anyonic systems?

The study of anyons becomes even more exciting when the possibility arises to realise them
in the laboratory. To date it is believed that Abelian anyons have already been detected in
the laboratory (Camino et al., 2005), and there is strong evidence for the existence of
non-Abelian anyons (Willett et al., 2009). But how is it possible to construct a purely
two-dimensional world, where the exotic properties of anyons can emerge? In order to
determine how plausible this is, we need to identify the main characteristics of anyons.
Only then can we decide whether we can physically realise topological systems that can
support anyons.

1.5.1 Two-dimensional wave functions and quasiparticles

Admittedly, our physical world appears to be three- and not two-dimensional. This is also
well manifested in the statistical properties of the elementary particles accounted for in
nature, bosons and fermions. The natural question then arises: how is it possible to obtain
a two-dimensional world where anyons can emerge? Even if we make a system arbitrar-
ily thin, it is impossible to trick nature into believing that it is actually reduced to two
dimensions. To the rescue comes quantum mechanics. It is possible to construct a quantum
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9 1.5 What are anyonic systems?
�

system with a wave function that splits, via the separation of variables method, to a purely
two-dimensional and a one-dimensional part. Let us analyse this in more detail.

To determine the behaviour of a particle in three spatial dimensions with position r =
(x, y, z), subject to a potential of the form

V(r) = Vxy(x, y)+ Vz(z), (1.2)

we can employ the separation of variables method. In this case the wave function can be
written as

�(r) = �xy(x, y)�z(z), (1.3)

where �xy(x, y) satisfies the two-dimensional Schrödinger equation subject to the poten-
tial Vxy(x, y) and �z(z) satisfies a one-dimensional Schrödinger equation subject to Vz(z).
Hence, the wave function �xy(x, y) is purely two-dimensional with its dynamics decoupled
from the third direction z.

Consider now the system being homogeneously confined along the z direction. The low
energy levels corresponding to this trapping are discrete. For strongly confining potentials
the typical energy splitting,�E, between these levels is large. Let us take the particle to be
initially prepared in the ground state. If the particle is subject to additional dynamics like
a perturbation, beyond the trapping potential, with a scale much smaller than �E, then the
particle will remain in the same energy level. This is an important mechanism for reducing
the dimensionality of the system from three to two by suppressing the motion in the third
direction. We also demand the presence of an energy gap that separates �xy(x, y) from the
two-dimensional excited states. This gap protects the characteristics of �xy(x, y) against
external perturbations. Under these conditions the behaviour of the system is essentially
given by the two-dimensional wave function �xy(x, y).

It is important to notice that the finite energy scales that either isolate the anyonic
behaviour of the reduced state �xy(x, y) from spurious excitations or suppress the motion
in the third direction are the Achilles’ heel that makes anyonic systems fragile. Indeed,
when perturbations or temperature are strong enough compared to these energy scales then
either the anyonic characteristics are washed out or the state of the system stops being
two-dimensional. Hence, we need to keep track of such spurious effects in order to ensure
reliable anyonic behaviour. Needless to say, if we had a truly two-dimensional system then
anyons would be fundamental particles and they would be robust even at much higher
energies. This sensitivity of effective anyonic models is a main challenge for topological
quantum computation.

The particles that are subject to the above conditions do not actually see only two dimen-
sions, but their wave function becomes effectively two-dimensional. Hence, we cannot
expect the constituent particles to automatically acquire anyonic properties. Nevertheless,
we could expect that effective particles, so-called quasiparticles, emerge from the proper-
ties of many-particle wave functions that are truly two-dimensional. In Figure 1.3 a many-
particle system is shown and the possible emergence of quasiparticles is described.

Quasiparticles are entities defined through the wave function of a many-particle system.
They behave like particles, i.e., they have local properties and they respond to their local
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(a) (b) (c)

�Fig. 1.3 (a) A system with constituent particles confined on a plane that give rise to a two-dimensional wave function. (b)
Quasiparticles are identified as localised properties of the two-dimensional wave function of the constituent particles.
(c) Often we forget the constituent particles and we treat the quasiparticles as elementary ones living on the
two-dimensional space.

environment. Such a behaviour emerges, for example, when the constituent particles of the
system interact in such a way that they give rise to exotic, highly correlated wave func-
tions. Importantly, quasiparticles can have properties that are completely different from
the properties of the constituent particles. One could expect that anyonic properties could
emerge in this way. This is indeed the case for all known examples of topological systems,
ranging from the fractional quantum Hall effect to spin lattice models that exhibit topolog-
ical behaviour. Hence, the search for anyons becomes intrinsically related to the study of
strongly correlated quantum mechanical systems.

Another aspect of the quasiparticle nature of anyons is that all anyons emerge from the
same wave function of the whole system. They are aware of each other’s position, which
makes it possible to exhibit the desired exchange statistics. More concretely, the exchange
statistics emerges as an evolution of this wave function that depends on the history of the
constituent particles. Indeed, we shall see in the next chapter how the statistical evolutions
of anyons can manifest themselves as geometric phases of the global wave function of the
system.

1.5.2 Symmetry, degeneracy and quantum correlations

From the previous subsection it becomes apparent that anyons, emerging as quasiparticle
states of a many-particle system, are purely quantum mechanical objects. Now we would
like to discuss how strongly correlated these topological systems need to be in order to give
rise to anyonic properties. To be concrete we consider two anyonic properties which are
tightly connected to quantum correlations of the constituent particles. First, we intuitively
approach the invariance of statistical evolutions in terms of continuous deformations of the
paths used to exchange the quasiparticles. Second, we analyse the non-Abelian character
which is manifested as an evolution acting on degenerate ground states.

The statistical transformation occurring under exchange of quasiparticles should be the
same for arbitrary shapes of the path chosen for the exchange, as long as they can be con-
tinuously deformed into each other. This is an important property that gives rise to the
topological character of statistical evolutions. It is equivalent to requiring invariance of the
evolution when the coordinates of the system are continuously deformed, or in other words
when the spanned paths are continuously deformed. The transport of quasiparticles can be
described by products of local operators that act on the states of the constituent particles of
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