This book is designed to help the engineer understand the principles of metal forming and to analyze forming problems—both the mechanics of forming processes and how the properties of metals interact with the processes. In this book, an entire chapter is devoted to forming limit diagrams and various aspects of stamping and another to other sheet forming operations. Sheet testing is covered in a separate chapter. Coverage of sheet metal properties has been expanded. Interesting end-of-chapter notes have been added throughout, as well as references. More than 200 end-of-chapter problems are also included.

William F. Hosford is a Professor Emeritus of Materials Science and Engineering at the University of Michigan. Professor Hosford is the author of more than 80 technical articles and numerous books, including Mechanics of Crystals and Textured Polycrystals; Physical Metallurgy, Second Edition; Mechanical Behavior of Materials, Second Edition; Materials Science: An Intermediate Text; Materials for Engineers; Reporting Results (with David Van Aken); and Wilderness Canoe Tripping.

Robert M. Caddell was a Professor of Mechanical Engineering at the University of Michigan, Ann Arbor.
Contents

Preface to the Fourth Edition page xii

1 Stress and Strain .. 1
 1.1 Stress 1
 1.2 Stress transformation 2
 1.3 Principal stresses 4
 1.4 Mohr’s circle equations 5
 1.5 Strain 7
 1.6 Small strains 9
 1.7 The strain tensor 10
 1.8 Isotropic elasticity 10
 1.9 Strain energy 11
 1.10 Force and moment balances .. 12
 1.11 Boundary conditions 13

NOTES OF INTEREST .. 14

REFERENCES .. 15

APPENDIX – EQUILIBRIUM EQUATIONS 15

PROBLEMS ... 15

2 Plasticity .. 17
 2.1 Yield criteria 17
 2.2 Tresca criterion 18
 2.3 Von Mises criterion 20
 2.4 Effective stress 21
 2.5 Effective strain 22
 2.6 Flow rules 23
 2.7 Normality principle 24
 2.8 Derivation of the von Mises effective strain 26

NOTES OF INTEREST .. 27
3 Strain Hardening 30
 3.1 The tension test 30
 3.2 Elastic-plastic transition 32
 3.3 Engineering vs. true stress and strain 32
 3.4 Power-law expression 34
 3.5 Other strain-hardening approximations 36
 3.6 Behavior during necking 36
 3.7 Compression testing 38
 3.8 Bulge testing 38
 3.9 Plane-strain compression 39
 3.10 Torsion testing 40
NOTE OF INTEREST .. 40
REFERENCES .. 41
PROBLEMS ... 41

4 Plastic Instability 43
 4.1 Uniaxial tension 43
 4.2 Effect of inhomogeneities 44
 4.3 Balanced biaxial tension 45
 4.4 Pressurized thin-wall sphere 47
 4.5 Significance of instability 48
NOTE OF INTEREST .. 49
REFERENCES .. 49
PROBLEMS ... 49

5 Temperature and Strain-Rate Dependence 52
 5.1 Strain rate 52
 5.2 Superplasticity 55
 5.3 Effect of inhomogeneities 58
 5.4 Combined strain and strain-rate effects 62
 5.5 Alternative description of strain-rate dependence 63
 5.6 Temperature dependence of flow stress 65
 5.7 Deformation mechanism maps 69
 5.8 Hot working 69
 5.9 Temperature rise during deformation 71
NOTES OF INTEREST .. 72
REFERENCES .. 73
PROBLEMS ... 73

6 Work Balance ... 76
 6.1 Ideal work 76
CONTENTS

6.2 Extrusion and drawing 77
6.3 Deformation efficiency 78
6.4 Maximum drawing reduction 79
6.5 Effects of die angle and reduction 80
6.6 Swaging 81

REFERENCES .. 82
PROBLEMS ... 82

7 Slab Analysis .. 85

7.1 Sheet drawing 85
7.2 Wire and rod drawing 87
7.3 Friction in plane-strain compression 88
7.4 Sticking friction 90
7.5 Mixed sticking-sliding conditions 90
7.6 Constant shear stress interface 91
7.7 Axially symmetric compression 92
7.8 Sand-pile analogy 93
7.9 Flat rolling 93
7.10 Roll flattening 95
7.11 Roll bending 99
7.12 Coining 101
7.13 Reducing the area of contact 101

NOTES OF INTEREST .. 102
REFERENCES .. 102
PROBLEMS ... 102

8 Friction and Lubrication 106

8.1 General 106
8.2 Experimental findings 109
8.3 Ring friction test 110
8.4 Galling 111
8.5 Ultrasونics 111

NOTE OF INTEREST .. 111
REFERENCES .. 112
PROBLEMS ... 112

9 Upper-Bound Analysis 113

9.1 Upper bounds 113
9.2 Energy dissipation on plane of shear 114
9.3 Plane-strain frictionless extrusion 115
9.4 Plane-strain frictionless indentation 119
9.5 Plane-strain compression 119
9.6 Another approach to upper bounds 122
9.7 A combined upper-bound analysis 123
9.8 Plane-strain drawing 124
CONTENTS

9.9 Axisymmetric drawing 124
REFERENCES .. 126
PROBLEMS ... 126

10 Slip-Line Field Analysis 132
10.1 Introduction 132
10.2 Governing stress equations 132
10.3 Boundary conditions 136
10.4 Plane-strain indentation 137
10.5 Hodographs for slip-line fields 138
10.6 Plane-strain extrusion 139
10.7 Energy dissipation in a slip-line field 141
10.8 Metal distortion 141
10.9 Indentation of thick slabs 142
10.10 Plane-strain drawing 146
10.11 Constant shear stress interfaces 150
10.12 Pipe formation 151
NOTES OF INTEREST .. 152
REFERENCES .. 154
APPENDIX .. 154
PROBLEMS ... 157

11 Deformation-Zone Geometry 167
11.1 The σ parameter 167
11.2 Friction 168
11.3 Redundant deformation 168
11.4 Inhomogeneity 170
11.5 Internal damage 175
11.6 Residual stresses 179
11.7 Comparison of plane-strain and axisymmetric deformation 182
NOTE OF INTEREST .. 184
REFERENCES .. 184
PROBLEMS ... 184

12 Formability ... 186
12.1 Ductility 186
12.2 Metallurgy 186
12.3 Ductile fracture 190
12.4 Hydrostatic stress 191
12.5 Bulk formability tests 195
12.6 Formability in hot working 196
NOTE OF INTEREST .. 197
REFERENCES .. 197
PROBLEMS ... 197
16.3 Experimental determination of FLDs 250
16.4 Calculation of forming limit diagrams 252
16.5 Factors affecting forming limits 255
16.6 Changing strain paths 258
16.7 Stress-based forming limits 260

NOTE OF INTEREST .. 260
REFERENCES .. 261
PROBLEMS ... 261

17 Stamping .. 263
17.1 Stamping 263
17.2 Draw beads 263
17.3 Strain distribution 265
17.4 Loose metal and wrinkling 266
17.5 Springback 268
17.6 Strain signatures 269
17.7 Die design 270
17.8 Toughness and sheet tearing 272
17.9 General observations 274

NOTES OF INTEREST .. 275
REFERENCES .. 275
PROBLEMS ... 275

18 Hydroforming ... 277
18.1 General 277
18.2 Free expansion of tubes 277
18.3 Hydroforming into square cross sections 279
18.4 Bent sections 281

NOTE OF INTEREST .. 283
REFERENCES .. 283
PROBLEMS ... 283

19 Other Sheet Forming Operations 285
19.1 Roll forming 285
19.2 Spinning 286
19.3 Foldable shapes 288
19.4 Incremental sheet forming 288
19.5 Shearing 290
19.6 Flanging, hole expansion, and beading 291
19.7 Hemming 292

NOTE OF INTEREST .. 293
REFERENCES .. 293
PROBLEMS ... 293
CONTENTS

20 Formability Tests

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1 Cupping tests</td>
<td>294</td>
</tr>
<tr>
<td>20.2 LDH test</td>
<td>294</td>
</tr>
<tr>
<td>20.3 Post-uniform elongation</td>
<td>297</td>
</tr>
<tr>
<td>20.4 OSU formability test</td>
<td>297</td>
</tr>
<tr>
<td>20.5 Hole expansion</td>
<td>298</td>
</tr>
<tr>
<td>20.6 Hydraulic bulge test</td>
<td>299</td>
</tr>
<tr>
<td>20.7 Duncan friction test</td>
<td>300</td>
</tr>
</tbody>
</table>

REFERENCES

301

PROBLEMS

301

21 Sheet Metal Properties

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1 Introduction</td>
<td>304</td>
</tr>
<tr>
<td>21.2 Surface appearance</td>
<td>305</td>
</tr>
<tr>
<td>21.3 Strain aging</td>
<td>305</td>
</tr>
<tr>
<td>21.4 Roller leveling and temper rolling</td>
<td>308</td>
</tr>
<tr>
<td>21.5 Properties of steels</td>
<td>309</td>
</tr>
<tr>
<td>21.6 Grades of low-carbon steel</td>
<td>309</td>
</tr>
<tr>
<td>21.7 Tailor-welded blanks</td>
<td>314</td>
</tr>
<tr>
<td>21.8 Special sheet steels</td>
<td>315</td>
</tr>
<tr>
<td>21.9 Surface treatment</td>
<td>315</td>
</tr>
<tr>
<td>21.10 Stainless steels</td>
<td>316</td>
</tr>
<tr>
<td>21.11 Aluminum alloys</td>
<td>317</td>
</tr>
<tr>
<td>21.12 Copper and brass</td>
<td>321</td>
</tr>
<tr>
<td>21.13 Hexagonal close-packed metals</td>
<td>322</td>
</tr>
<tr>
<td>21.14 Tooling</td>
<td>323</td>
</tr>
<tr>
<td>21.15 Product uniformity</td>
<td>323</td>
</tr>
<tr>
<td>21.16 Scrap</td>
<td>324</td>
</tr>
</tbody>
</table>

NOTES OF INTEREST

324

REFERENCES

325

PROBLEMS

325

Index

327
Preface to the Fourth Edition

My coauthor, Robert Caddell, died in 1990, and I have greatly missed working with him.

The most significant changes from the third edition are a new chapter on friction and lubrication and a major rearrangement of the last third of the book dealing with sheet forming. Most of the chapters in the last part of the book have been modified, with one whole chapter devoted to hydroforming. A new section is devoted to incremental forming. No attempt has been made to introduce numerical methods. Other books treat numerical methods. We feel that a thorough understanding of a process and the constitutive relations that are embedded in a computer program to analyze it are necessary. For example, the use of Hill’s 1948 anisotropic yield criterion leads to significant errors.

I wish to acknowledge my membership in the North American Deep Drawing Research Group from whom I have learned so much about sheet forming. Particular thanks are due to Alejandro Graf of ALCAN, Robert Wagoner of the Ohio State University, John Duncan formerly with the University of Auckland, and Thomas Stoughton of General Motors.

William F. Hosford