Contents

List of Contributors xiii
Acknowledgements xvii
List of Abbreviations xviii
Nomenclature and Notation xxiv

Part I Motivation and Basics
1 Introduction 3
1.1 Motivation 3
1.2 Aim of this Book 5
1.3 Classes of CoMP Considered 5
1.4 Outline of this Book 6

2 An Operator’s Point of View 7
2.1 The Mobile Internet - A Success Story so far
2.2 Requirements on Future Networks and Upcoming Challenges
2.3 The Role of CoMP 9
2.4 The Role of Field Trials 10

3 Information-Theoretic Basics 11
3.1 Observed Cellular Scenarios 11
3.2 Usage of OFDMA for Broadband Wireless Communications
3.3 Multi-Point Frequency-Flat Baseband Model Considered
3.4 Uplink Transmission 14
3.4.1 Basic Uplink Capacity Bounds 15
3.4.2 Full Cooperation in the Uplink 17
3.4.3 No Cooperation in the Uplink 17
3.4.4 Numerical Example 19
3.5 Downlink Transmission 19
3.5.1 Basic Downlink Capacity Bounds 20
3.5.2 Full Cooperation in the Downlink 22
3.5.3 No Cooperation in the Downlink 22
3.5.4 Numerical Example 23
4 Gains and Trade-Offs of Multi-Cell Joint Signal Processing

4.1 Modeling Imperfect Channel State Information (CSI)

4.1.1 Imperfect CSI in the Uplink

4.1.2 Imperfect CSI in the Downlink

4.2 Gain of Joint Signal Processing under Imperfect CSI

4.3 Trade-Offs in Uplink Multi-Cell Joint Signal Processing

4.3.1 Different Information Exchange and Cooperation Schemes

4.3.2 Numerical Results

4.3.3 Parallels between Theory and Practical Cooperation Schemes

4.4 Degrees of Freedom in Downlink Joint Signal Processing

4.5 Summary

Part II Practical CoMP Schemes

5 CoMP Schemes Based on Interf.-Aware Transceivers or Interf. Coord.

5.1 DL Multi-User Beamforming with IRC

5.1.1 Introduction

5.1.2 Downlink System Model

5.1.3 Linear Receivers

5.1.4 Imperfect Channel Estimation

5.1.5 Resource Allocation and Fair User Selection

5.1.6 Single-Cell Performance

5.1.7 Multi-Cell Performance under Perfect CSI

5.1.8 Multi-Cell Performance under Imperfect CSI

5.1.9 Summary

5.2 Uplink Joint Scheduling and Cooperative Interference Prediction

5.2.1 Interference-Aware Joint Scheduling

5.2.2 Cooperative Interference Prediction

5.2.3 Practical Considerations

5.2.4 Applicability of Both Schemes to the Downlink

5.2.5 Summary

5.3 Downlink Coordinated Beamforming

5.3.1 Introduction

5.3.2 Single Receive Antenna at the Terminal

5.3.3 Multiple Receive Antennas at the Terminal

5.3.4 Summary

6 CoMP Schemes Based on Multi-Cell Joint Signal Processing

6.1 Uplink Centralized Joint Detection

6.1.1 Introduction

6.1.2 Joint Detection Algorithms
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.3</td>
<td>System Level SINR Analysis</td>
<td>178</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Summary</td>
<td>181</td>
</tr>
<tr>
<td>8.3</td>
<td>Imperfect Sync in Frequency: Perf. Degradation and Compensation</td>
<td>181</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Downlink Analysis</td>
<td>182</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Uplink Analysis</td>
<td>189</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Summary</td>
<td>192</td>
</tr>
<tr>
<td>9</td>
<td>Channel Knowledge</td>
<td>193</td>
</tr>
<tr>
<td>9.1</td>
<td>Channel Estimation for CoMP</td>
<td>193</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Channel Estimation - Single Link</td>
<td>194</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Channel Estimation for CoMP</td>
<td>202</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Multi-Cell Channel Estimation</td>
<td>204</td>
</tr>
<tr>
<td>9.1.4</td>
<td>Uplink Channel Estimation</td>
<td>206</td>
</tr>
<tr>
<td>9.1.5</td>
<td>Summary</td>
<td>208</td>
</tr>
<tr>
<td>9.2</td>
<td>Channel State Information Feedback to the Transmitter</td>
<td>208</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Transmission Model</td>
<td>210</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Sum-Rate Performance Measure</td>
<td>211</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Channel Vector Quantization (CVQ)</td>
<td>211</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Minimum Euclidean Distance Based CVQ</td>
<td>213</td>
</tr>
<tr>
<td>9.2.5</td>
<td>Maximum SINR Based CVQ</td>
<td>214</td>
</tr>
<tr>
<td>9.2.6</td>
<td>Pseudo-Maximum SINR based CVQ</td>
<td>215</td>
</tr>
<tr>
<td>9.2.7</td>
<td>Application to Zero-Forcing (ZF) Precoding</td>
<td>216</td>
</tr>
<tr>
<td>9.2.8</td>
<td>Resource Allocation</td>
<td>216</td>
</tr>
<tr>
<td>9.2.9</td>
<td>Simulation Results</td>
<td>216</td>
</tr>
<tr>
<td>9.2.10</td>
<td>Summary</td>
<td>218</td>
</tr>
<tr>
<td>10</td>
<td>Efficient and Robust Algorithm Implementation</td>
<td>219</td>
</tr>
<tr>
<td>10.1</td>
<td>Robust and Flexible Base Station Precoding Implementation</td>
<td>219</td>
</tr>
<tr>
<td>10.1.1</td>
<td>System Model</td>
<td>220</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Transmit Filter Eigendecomposition</td>
<td>221</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Transmit Filter Computations</td>
<td>222</td>
</tr>
<tr>
<td>10.1.4</td>
<td>The Order-Recursive Filter in Details</td>
<td>224</td>
</tr>
<tr>
<td>10.1.5</td>
<td>Example: SINR as Function of the Condition Number</td>
<td>226</td>
</tr>
<tr>
<td>10.1.6</td>
<td>Summary</td>
<td>227</td>
</tr>
<tr>
<td>10.2</td>
<td>Low-Complexity Terminal-Side Receiver Implementation</td>
<td>227</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Introduction to Interference Rejection Combining (IRC)</td>
<td>228</td>
</tr>
<tr>
<td>10.2.2</td>
<td>IRC with Known Channel and Interference Covariance</td>
<td>231</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Implementation Losses from Imperfect Channel Estimation</td>
<td>233</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Losses from Spatial Interf.-and-Noise Covariance Estimation</td>
<td>237</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Losses from Channel and Interference Estimation Errors</td>
<td>241</td>
</tr>
<tr>
<td>10.2.6</td>
<td>Summary</td>
<td>241</td>
</tr>
</tbody>
</table>
11 Scheduling, Signaling and Adaptive Usage of CoMP

11.1 Centralized Scheduling for CoMP
 11.1.1 Introduction
 11.1.2 System Model
 11.1.3 Centralized Scheduling Problems
 11.1.4 Analyses and Results
 11.1.5 Summary

11.2 Decentralized Radio Link Control and Inter-BS Signaling
 11.2.1 Resource Allocation
 11.2.2 Link Adaptation
 11.2.3 Radio Link Measurements
 11.2.4 Uplink Power Control
 11.2.5 Uplink Timing Advance
 11.2.6 HARQ-related Timing Constraints for UL CoMP
 11.2.7 Handover
 11.2.8 Inter-BS Signaling
 11.2.9 Summary

11.3 Ad-hoc CoMP
 11.3.1 Introduction
 11.3.2 Ad-Hoc CoMP With More Accurate CSI
 11.3.3 Ad-Hoc CoMP with CSI Impairments
 11.3.4 Ad-Hoc CoMP and HARQ
 11.3.5 Summary

12 Backhaul

12.1 Fund. Limits of Interf. Mitigation with Limited Backhaul Coop.
 12.1.1 Introduction
 12.1.2 Uplink Scenario: Receiver Cooperation
 12.1.3 Downlink Scenario: Transmitter Cooperation
 12.1.4 UL-DL Reciprocity and Generalized Degrees of Freedom
 12.1.5 Summary

12.2 Backhaul Requirements of Practical CoMP Schemes
 12.2.1 Types of Backhaul Data and Scaling Laws
 12.2.2 Specific Backhaul Requirements of Exemplary CoMP Schemes
 12.2.3 Backhaul Latency Requirements
 12.2.4 Backhaul Topology Considerations
 12.2.5 Summary

12.3 CoMP Backhaul Infrastructure Concepts
 12.3.1 Ethernet
 12.3.2 Passive Optical Network
 12.3.3 Digital Subscriber Line
 12.3.4 Microwave
 12.3.5 The X2 Interface
 12.3.6 Backhaul Topology Concepts
12.3.7 Summary 310

Part IV Performance Assessment 311

13 Field Trial Results 313

13.1 Real-time Impl. and Trials of Adv. Receivers and ULCoMP 313
 13.1.1 Real-time Implementation and Lab Tests 314
 13.1.2 Uplink Successive Interference Cancelation (SIC) Receiver 314
 13.1.3 Uplink Macro Diversity Trials with Distributed RRHs 317
 13.1.4 Summary 319

13.2 Assessing the Gain of Uplink CoMP in a Large-Scale Field Trial 319
 13.2.1 Measurement Setup 320
 13.2.2 Signal Processing Architecture and Evaluation Concept 321
 13.2.3 Noise Estimation 322
 13.2.4 Channel Equalization 322
 13.2.5 Field Trial Results 325
 13.2.6 Summary 330

13.3 Real-time Implementation and Field Trials for Downlink CoMP 331
 13.3.1 Introduction 332
 13.3.2 Enabling Features 334
 13.3.3 Real-time Implementation 346
 13.3.4 Field Trials 347
 13.3.5 Summary 352

13.4 Predicting Pract. Achievable DL CoMP Gains over Larger Areas 353
 13.4.1 Setup and Closed-Loop System Design 353
 13.4.2 Measurement and Evaluation Methodology 356
 13.4.3 Measurement Campaign 358
 13.4.4 Summary 363

13.5 Lessons Learnt Through Field Trials 364

14 Performance Prediction of CoMP in Large Cellular Systems 367

14.1 Simulation and Link-2-System Mapping Methodology 367
 14.1.1 General Simulation Assumptions and Modeling 368
 14.1.2 Channel Models and Antenna Models 370
 14.1.3 Transceiver Techniques 373
 14.1.4 Link-to-System Interface 373
 14.1.5 Key Performance Indicators 375
 14.1.6 Summary 376

14.2 Obtaining Chn. Model Params. via Chn. Sounding or Ray-Tracing 376
 14.2.1 Large-Scale-Parameters 377
 14.2.2 Measurement-based Parameter Estimation 380
 14.2.3 Ray-Tracing based Parameter Simulation 380
 14.2.4 Comparison between Measurements and Ray-Tracing 382
14.3 Uplink Simulation Results
14.3.1 Compared Schemes 387
14.3.2 Simulation Assumptions and Parameters 389
14.3.3 Backhaul Traffic 391
14.3.4 Simulation Results 392
14.3.5 Summary 395
14.4 Downlink Simulation Results
14.4.1 Compared Schemes 396
14.4.2 Simulation Assumptions and Parameters 397
14.4.3 Detailed Analysis of Coordinated Scheduling/Beamforming 398
14.4.4 Backhaul Traffic 406
14.4.5 Simulation Results 406
14.4.6 Summary 408

15 Outlook
15.1 Using CoMP for Terminal Localization
15.1.1 Localization based on the Signal Propagation Delay 412
15.1.2 Further Localization Methods 416
15.1.3 Localization in B3G Standards 418
15.1.4 Summary 422
15.2 Relay-Assisted Mobile Communication using CoMP
15.2.1 Introduction 423
15.2.2 Reference Scenario 424
15.2.3 System and Protocol Description 425
15.2.4 Trade-Offs in Relay Networks 427
15.2.5 Numerical Evaluation of CoMP and Relaying 428
15.2.6 Cost/Benefit Trade-Off 428
15.2.7 Energy/Benefit Trade-Off 429
15.2.8 Computation/Transmission Power Trade-Off 430
15.2.9 Summary 432
15.3 Next Generation Cellular Network Planning and Optimization
15.3.1 Introduction 432
15.3.2 Classical Cellular Network Planning and Optimization 433
15.3.3 Physical Characterization of Capacity Gains through CoMP 435
15.3.4 Summary 443
15.4 Energy-Efficiency Aspects of CoMP
15.4.1 System Model 445
15.4.2 Effective Transmission Rates 447
15.4.3 Backhauling 448
15.4.4 Energy Consumption of Cellular Base Stations 449
15.4.5 System Evaluation 451
15.4.6 Summary 453

16 Summary and Conclusions 455
16.1 Summary of this Book 455
 16.1.1 Most Promising CoMP Schemes and Potential Gains 455
 16.1.2 Key Challenges Identified 457
16.2 Conclusions 458
 16.2.1 About this Book 459
 16.2.2 CoMP’s Place in the LTE-Advanced Roadmap and Beyond 460

References 461
Index 479