
Chapter 1

Introduction

We live in an analog world, but we would like our digital computers to interact with it.
Indeed, digital signal processing (DSP) has become pervasive. It is the basis for most
modern consumer electronics, medical imaging devices, cell phones, internet protocol
telephony, multimedia standards, speech processing, and a myriad of other products.
Digital algorithms, implemented with microprocessors, are less pricey, easier to control,
more robust, and more flexible than their analog counterparts, so that nowadays analog
circuits are often replaced by digital chips. Digital data is also far easier to store, trans-
mit, and manipulate than analog data. Therefore, in modern applications, an increasing
number of functions are being pushed forward to sophisticated software algorithms,
leaving only delicate finely tuned tasks for the circuit level. Nowadays, it feels natural
that a media player shows our favorite movie, or that our surround system synthesizes
pure acoustics, as if sitting in the orchestra, and not in the living room. The digital world
plays a fundamental role in our everyday routine, to such a point that we almost forget
that we cannot “hear” or “watch” these streams of bits, running behind the scenes. The
world around us is analog, yet most modern man-made means for exchanging informa-
tion are digital. “I am an analog girl in a digital world,” sings Judy Gorman [One Sky,
1998], capturing the essence of the digital revolution.

Whether recording sounds, capturing images, or processing an electromagnetic wave,
many sources of information are of analog or continuous-time nature. Therefore, DSP
inherently relies on a sampling mechanism which converts continuous signals to dis-
crete sequences of numbers, while preserving the information present in those signals.
This conversion is performed using a device known as an analog-to-digital converter
(ADC). ADC devices translate physical information into a stream of numbers, enabling
digital processing by sophisticated software algorithms. After processing, the samples
are converted back to the analog domain via a digital-to-analog converter (DAC). Con-
sequently, sampling theories lie at the heart of DSP and play a major role in enabling the
digital revolution.

The ADC task is inherently intricate: its hardware must hold a snapshot of a fast-
varying input signal steady, while acquiring measurements. Since these measurements
are spaced in time, the values between consecutive snapshots are lost. In general, there-
fore, there is no way to recover the analog input unless some prior information on its
structure is incorporated.
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2 Introduction

1.1 Standard sampling

The simplest way to record an analog signal x(t) is to sample its values x(nT ) at inter-
vals of length T , as depicted in Fig. 1.1(a). This type of sampling is referred to as point-
wise sampling. We use the block diagram in Fig. 1.1(b) to illustrate this operation.

Given the samples, an approximation of x(t) can be obtained by using an appropri-
ate interpolating function, which we denote by w(t). Figure 1.2 demonstrates several
possible interpolations of the samples in Fig. 1.1 using different functions w(t): zero-
order-hold, linear interpolation, cubic spline interpolation (third-order polynomial), and
sinc interpolation. In each case recovery is obtained by modulating the chosen w(t) by
the sample values:

x̂(t) =
∑
n∈Z

d[n]w(t− nT ), (1.1)

where in our setting d[n] = x(nT ) are the given samples and T is the sampling
period. More generally, we can choose d[n] to be a function of the samples x(nT ),
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Figure 1.1 Pointwise sampling. (a) A continuous-time signal x(t) = sin(4πt/9) and its pointwise
samples with period T = 1. (b) Block diagram of a pointwise sampler.
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Figure 1.2 Signal reconstruction by various interpolation functions. Top: Interpolating function
w(t). Bottom: Recovery x̂(t).
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1.1 Standard sampling 3

designed to optimize the recovery process. In this case we refer to d[n] as the corrected
samples.

Clearly, the approximation quality depends on the interpolator chosen and on how
well it matches the properties of the original input, and on the samples. Thus, a key
component in any sampling theory is the information we have about our signal. Without
incorporating prior knowledge, the problem of recovery from samples is ill-posed; there
are always many curves that can pass through a set of points, as illustrated in Fig. 1.2.
A challenge in practice is to find the “best” curve in some sense consistent with our
prior information. Consequently, a large part of sampling theory deals with methods
for optimizing d[n] and for selecting w(t) based on the input properties. An additional
important design consideration is how small T has to be in order to ensure perfect recov-
ery for certain classes of signals.

While here we have treated pointwise sampling, other more elaborate methods of
sampling exist which we will discuss throughout the text. A straightforward generaliza-
tion of pointwise sampling is depicted in Fig. 1.3, in which x(t) is first filtered with a
sampling filter s(−t) that allows us to incorporate imperfections in the ideal sampler.
The output is then pointwise sampled on a uniform grid leading to generalized samples,
denoted by c[n]. We consider such sampling mechanisms in detail throughout the book.
In particular, we will discuss methods for optimizing the sampling filter s(t) based on
the input properties.

Undoubtedly, the most-studied sampling theorem that has had a major influence on
signal processing is the well-known Shannon–Nyquist theorem. This theorem was intro-
duced formally into the information theory community by Shannon in [1], but Nyquist
had already brought it to the attention of communication engineers in [2]. Kotelnikov
is credited with introducing the theorem in the Russian literature [3]. In mathematics,
the theorem was developed as part of the study of cardinal series in the works of E. T.
Whittaker and his son J. M. Whittaker [4, 5]. The basic idea behind the bandlimited
sampling theorem has also been attributed to Cauchy [6], who stated the essential result
although without proof. A very illuminating review of the history and mathematics sur-
rounding this theorem can be found in [7].

The Shannon–Nyquist theorem has become a landmark in both the mathematical and
engineering literature and has had one of the most profound impacts on industrial devel-
opment of DSP systems. It provides a method to compute x(t) exactly from its pointwise
samples, as long as the signal is sufficiently smooth. More precisely, to allow perfect
recovery in (1.1), the sampling frequency, 1/T , must be at least twice the highest fre-
quency in the signal x(t). This minimal rate is referred to as the Nyquist rate. The signal
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Figure 1.3 Generalized sampling. The signal x(t) is first filtered with a sampling filter s(−t) and
then sampled by a pointwise sampler.
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4 Introduction

is then interpolated from its samples using shifts of the sinc function w(t) = sinc(t/T ),
with sinc(t) = sin(πt)/(πt). This theorem assumes that the class of input functions is
bandlimited to an appropriate frequency. The interpolating function w(t) in (1.1) is then
also a bandlimited function. Capitalizing on this result, much of signal processing has
moved from the analog to the digital domain as it allows a continuous-time bandlimited
function to be replaced by a discrete set of its samples without any loss of information.

To accommodate high operating rates while retaining low computational cost,
efficient ADCs must be developed. While the Shannon–Nyquist theorem is extremely
elegant and has had a major impact on DSP, it has several drawbacks. Unfortunately,
real-world signals are rarely truly bandlimited. Even signals which are approximately
bandlimited may have to be sampled at a fairly high Nyquist rate, requiring expensive
sampling hardware and high-throughput digital machinery. Many natural signals, even
if they are bandlimited, are often better represented (using fewer coefficients) in bases
other than the Fourier basis. Bandlimiting also tends to introduce Gibbs oscillations
which can be visually disturbing, for example in images. Finally, many classes of sig-
nals possess further structure that can be exploited in order to reduce sampling rates.
Classical sampling theory, however, necessitates a high sampling rate whenever a signal
has large bandwidth, even if the actual information content in the signal is small. For
example, a piecewise linear signal is nondifferentiable; it is therefore not bandlimited,
and moreover, its Fourier transform decays at a fairly slow rate. Nonetheless, such a
signal is completely described by the location of its knots (transitions between linear
segments) and the signal values at those positions, which can be far fewer parame-
ters than the number of samples required by the Shannon–Nyquist theorem. It would
therefore be more efficient to have a variety of sampling techniques, tailored to different
signal models, such as bandlimited or piecewise linear signals. Such an approach echoes
the fundamental quest of the recent field of compressive sampling, which is to capture
only the essential information embedded in a signal.

Two other difficulties with the Shannon–Nyquist theorem are the assumptions of ideal
pointwise sampling, and of sinc interpolation. Practical ADCs are usually not ideal, that
is, they do not produce the exact signal values at the sampling locations. A common sit-
uation is that the ADC integrates the signal, usually over small neighborhoods surround-
ing the sampling points. Moreover, nonlinear distortions are often introduced during the
sampling process. These various distortions need to be accounted for in the reconstruc-
tion. In addition, implementing the infinite sinc interpolating kernel as part of the DAC
required by the Shannon–Nyquist theorem is difficult, since it has slow decay. In prac-
tice, much simpler kernels are used, such as linear interpolation. Another major obstacle
in the context of modern imaging and communication systems is that signals today can
be modulated up to several gigahertz (GHz), while standard ADCs have difficulty in
accommodating such large analog bandwidths.

Therefore, to design sampling and interpolation methods that are adapted to practical
scenarios, there are several issues that need to be properly addressed:

1. The sampling mechanism should be adequately modeled;
2. Relevant prior knowledge about the class of input signals should be taken into

account;
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1.2 Beyond bandlimited signals 5

3. Limitations should be imposed on the reconstruction algorithm in order to ensure
robust and efficient recovery.

Throughout the book we treat each of these three essential components of the sampling
scheme. For each of the elements we focus on several models, which commonly arise in
signal processing and communication systems.

1.2 Beyond bandlimited signals

Following the introduction of the bandlimited sampling theorem by Shannon [1], sam-
pling theory became an active area of research, reaching quite a mature state by the
1980s. Several thorough and beautiful tutorials were written on the topic around that
time [8, 9]. At that point, research in the area of sampling became quite mathematical
with less immediate impact on signal processing and communication applications, or
on the actual design of ADCs. In the 1990s, sampling theory benefited from a surge of
research due to the intense interest in wavelet theory and the connections made between
the two fields. A lot of the theory developed for wavelet analysis is immediately applica-
ble to sampling theorems. This led to many interesting interpretations of existing results
along with new methods for sampling and processing signals that move away from the
bandlimited paradigm, and instead consider more general signal models and sampling
devices. An excellent summary of this perspective can be found in [10] (see also [11]).

In the past few years sampling has again been revived, this time by the vast interest in
the area of compressed sensing (CS) [12, 13, 14] which suggests methods for reducing
the number of measurements needed to represent sparse signals, or signals with certain
types of structure. This framework has focused primarily on sampling of discrete-time
signals and reconstruction techniques from a finite number of samples. Works in this
area have shown that a high-dimensional vector with only a few nonzero elements is
recoverable from a properly chosen underdetermined set of equations. Recovery can
be obtained using a variety of different polynomial-time algorithms under appropriate
conditions. These results suggest that sparse signals may be sampled at sub-Nyquist
rates, which is crucial in modern communications settings.

The CS framework is mostly focused on discrete and finite settings, while sampling
inherently deals with continuous-time signals. There are of course examples of analog
signals that naturally possess finite representations, such as trigonometric polynomi-
als. However, extending the ideas of CS to acquisition of more general continuous-
time signals using practical hardware devices remains a difficult challenge despite the
widespread literature in this area. Nonetheless, we will see that by combining analog
sampling results with ideas from CS, a variety of efficient sub-Nyquist systems can be
developed, leading to low-rate sampling of a broad set of analog signals. In addition,
we show that often the acquired samples can be directly processed without having to
interpolate them back to the high Nyquist grid, resulting in low-rate processing as well.
Beyond developing the fundamental theory, we also discuss practical aspects of reduced-
rate sampling and demonstrate prototype sub-Nyquist hardware realizations for a variety
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6 Introduction

of applications. These devices allow practical sampling and processing of many classes
of signals at sub-Nyquist rates.

The key to developing low-rate analog sensing methods is relying on structure in
the input. Signal processing algorithms have a long history of leveraging structure for
various tasks. As an example, MUSIC [15] and ESPRIT [16] are popular techniques
for spectrum estimation that exploit signal structure. Model-order selection methods in
estimation [17], parametric estimation and parametric feature detection [18] are further
examples where structure is heavily used. In our context, we are interested in utilizing
signal models in order to reduce sampling rate. Classic approaches to sub-Nyquist
sampling include carrier demodulation [19] and bandpass undersampling [20], which
assume a linear model corresponding to a bandlimited input with predefined frequency
support and fixed carrier frequencies. In the spirit of CS, where unknown nonzero loca-
tions result in a nonlinear model, we extend these classical results to analog inputs with
unknown frequency support, as well as more broadly to scenarios that involve nonlinear
input structures. The approach we take in this book follows the recently proposed Xam-
pling framework [21, 22], which treats a nonlinear model of union of subspaces. In this
structure, the input signal belongs to a single subspace out of multiple, possibly even
infinitely many, candidate subspaces. The exact subspace to which the signal belongs is
unknown a priori. This model encompasses a large variety of structured analog signals
and paves the way to the development of practical sub-Nyquist sampling systems.

The importance of sampling theory is likely to continue to grow with the ongoing
demand for more sophisticated and efficient DSP systems. The connection with CS
offers yet another new perspective on sampling, and ways to better exploit the signal
degrees of freedom. This relationship has also brought to the surface the need not only
to develop sound mathematical frameworks but also to tie them to concrete hardware
implementations so that the benefits predicted by the theory, such as reduced sampling
rates, can be met in practice and have an impact on the ADC market.

1.3 Outline and outlook

In this book we consider many extensions of the Shannon–Nyquist theorem, which treat
a wide class of input signals as well as nonideal sampling and nonlinear distortions.
Our exposition is based on a Hilbert-space interpretation of sampling techniques, where
the aim is to develop more traditional sampling theories, along with modern techniques
emerging from the field of CS, in a unified framework. The roots of this framework
can be found in the fundamentals of linear algebra, and rely on familiar engineering
building blocks such as filters and Fourier analysis. This unification has provided new
understandings of classical interpolation methods, and has set the stage for new and
exciting frontiers.

The framework we consider is based on viewing sampling in a broader sense of
projection onto appropriate subspaces, and then choosing the subspaces to yield inter-
esting new possibilities. For example, the results we present can be used to uniformly
sample nonbandlimited signals, and to compensate perfectly for nonlinear effects.
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1.3 Outline and outlook 7

Chapter 2 is therefore dedicated to a detailed exposition of the linear algebra basics
needed to derive our extended sampling framework, followed by a brief summary of
relevant Fourier analysis tools in Chapter 3. The more recent concepts of sub-Nyquist
sampling, or extensions of CS to the analog setting, require more background on CS
which we will provide in Chapter 11. Here again we retain the subspace approach by
viewing these problems within the broader framework of a union of subspaces.

In order to develop ADCs for a particular problem, we must have accurate models for
the signals of interest. We devote Chapters 4 and 5 to a detailed exposition of the signal
models we will be focusing on throughout the book, along with some of the fundamen-
tal mathematical properties associated with such signal sets. Much of classical signal
processing is based on the notion that signals can be modeled as vectors living in an
appropriate subspace. Chapter 6 is focused on sampling theorems for signals confined
to an arbitrary subspace in the presence of possibly nonideal sampling. The methods we
develop can also be used to reconstruct a signal using a given interpolation kernel that
is easy to implement, with often only a minor loss in signal quality with respect to the
optimal kernel matched to the input subspace properties. In Chapter 8 we extend this
basic framework to include nonlinear distortions in the sampling process. Surprisingly,
many types of nonlinearities that are encountered in practice do not pose any techni-
cal difficulty and can be completely compensated for despite their effect of bandwidth
increase, without requiring higher sampling rates.

A more general and less restrictive formulation of the sampling problem is considered
in Chapter 7 in which our prior knowledge on the signal is that it is smooth in some sense.
Unlike subspace priors, a one-to-one correspondence between smooth signals and their
sampled version does not exist since smoothness is a far less restrictive constraint than
confining the signal to a subspace. Perfect recovery is therefore generally impossible.
Instead, we focus on approximating the input as well as possible under several different
design objectives. These concepts can also be used to develop effective rate conversion
techniques between digital formats, as we discuss in Chapter 9.

Although linear models are very popular in sampling theory, and more generally in
DSP, such simple models often fail to capture much of the structure present in many
common classes of signals. For example, while it may be reasonable to model signals
as vectors, in many cases not all possible vectors in the space represent valid signals. In
response to these challenges, there has been a surge of interest in recent years, across
many fields, in a variety of low-dimensional signal models that quantify the notion that
the number of degrees of freedom in high-dimensional signals is often quite small com-
pared with their ambient dimension. One path to developing a framework for sampling
and processing of such signals is by using the union of subspaces model which is intro-
duced more formally in Chapter 10. Probably the most well-studied example of a union
of subspaces is that of a vector x that is sparse in an appropriate basis. This model under-
lies the rapidly growing field of CS, which has attracted considerable attention in signal
processing, statistics, and computer science, as well as the broader scientific commu-
nity. A review of the essential CS concepts is provided in Chapter 11. In Chapters 12–15
we study how the fundamentals of CS can be expanded and extended to include richer
structures in both analog and discrete-time signals, ultimately leading to sub-Nyquist
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8 Introduction

sampling techniques for a broad class of continuous-time signals. A more detailed out-
line of the book chapters can be found in the Preface.

The need and importance of sub-Nyquist techniques stems from the phenomenal suc-
cess of DSP, thanks in large part to the Shannon–Nyquist theorem. This has spurred the
digital revolution that is driving the development and deployment of new kinds of sens-
ing systems with ever-increasing fidelity and resolution. As a result of this success, the
amount of data generated by sensing systems has grown substantially. Unfortunately, in
many important and emerging applications, the resulting sampling rate is so high that
we end up with far too many samples that need to be transmitted, stored, and processed.
In addition, in applications involving very wideband inputs it is often very costly, and
sometimes even physically impossible, to build devices capable of acquiring samples at
the necessary rate. Thus, despite extraordinary advances in sampling theory as well as
computational power, the acquisition and processing of signals in application areas such
as radar, wideband communications, imaging, video, medical imaging, remote surveil-
lance, spectroscopy, and genomic data analysis continue to pose a tremendous challenge.
Today, we are witnessing the outset of an interesting trend. Advances in related fields,
such as wideband communication and radio-frequency technology, open a considerable
gap with ADC devices. Conversion speeds which are twice the signal’s maximal fre-
quency component have become more and more difficult to obtain. Consequently, alter-
natives to high-rate sampling are drawing considerable attention in both academia and
industry.

Over the years, theory and practice in the field of sampling have developed in parallel
routes. Contributions by many research groups have suggested a multitude of methods,
other than uniform sampling, to acquire analog signals. The math has deepened, leading
to abstract signal spaces and innovative sampling techniques, with the ability to treat a
large class of input signals far beyond the standard bandlimited model associated with
the Shannon–Nyquist theorem. At the same time, the market has adhered to the Nyquist
paradigm; the footprints of Shannon–Nyquist are evident whenever conversion to digital
takes place in commercial applications.

Throughout the book, wherever possible, we try to put an emphasis on practical
aspects of sampling beyond the fundamental theory. Our goal is to bridge theory and
practice, and to try to highlight where advances in sampling theory can have and already
have had an impact on ADC design and on applications. This is particularly relevant
in the second half of the book, which is targeted at solving a practical problem: reduc-
ing sampling and processing rates which are too costly in many modern applications.
The exposition is aimed at trying to pinpoint the potential of sub-Nyquist strategies to
emerge from the math to the hardware. In this spirit, we integrate contemporary theo-
retical viewpoints, which study signal modeling in a union of subspaces, together with
a taste of practical aspects, including basic circuit design features. Our hope is that this
combination of theory and practice will serve to further promote both academic and
industrial advances in sampling theory.

As a final note before beginning our theoretical journey into linear algebra: We have
very much enjoyed gathering and presenting the ideas in a unified way. We hope that the
reader will share some of our enthusiasm for the material!
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Chapter 2

Introduction to linear algebra

The process of sampling and reconstruction can be viewed as an expansion of a signal
onto a set of vectors that span the space. Suppose we have a signal x that is defined on
some domain, and has a series representation there of the form

x =
∑
n

a[n]xn, (2.1)

where {a[n]} is a countable set of coefficients, which depend on the input signal x,
and {xn} is a fixed set of signals (or vectors). The expression in (2.1) implies that x
is completely specified in terms of the coefficients {a[n]}, which we may think of as
samples of x. We can therefore interpret (2.1) as the statement that x can be reconstructed
from the samples {a[n]} using the known vectors {xn}. Series of the form (2.1), their
generalizations and extensions, are the subject of this book.

When we consider sampling, or signal expansions, we need to clearly identify the
class of possible inputs x, the expansion vectors {xn}, and the relationship between the
samples {a[n]} and the original signal x. In this chapter we describe the mathematical
machinery needed to explain series of the form (2.1). In particular we introduce vector
spaces and Hilbert spaces which provide the setting for describing the class of input
signals x and the domain in which the expansions take place. Some important concepts
we will consider in detail are the linear transformation, its adjoint and the subspaces
associated with it, projection operators, and the pseudoinverse, which are all essential
for computing the representation coefficients. We also define bases in Hilbert spaces and
focus on stable expansions which leads to the notion of a Riesz basis. At the end of the
chapter we briefly discuss overcomplete representations and frames.

2.1 Signal expansions: some examples

Before delving into the mathematical notions underlying sampling theory, we begin by
studying several simple examples that highlight some of the issues that arise when con-
sidering signal expansions.

One of the main concepts central to sampling theory is that prior knowledge regarding
the signal structure is essential in order to enable recovery from a given set of samples.
As we explained in more detail in the Introduction, the process of sampling reduces
the continuous-time signal to a countable set of coefficients, so that without any prior

9
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10 Introduction to linear algebra

knowledge it is impossible to recover the full degrees of freedom describing the signal.
To compensate for this dimensionality reduction, we must exploit knowledge regarding
the signal structure. The following examples show how such information is incorpo-
rated into the recovery process. In all of the examples below we assume that the prior
knowledge takes on the form of a subspace prior. The mathematics associated with such
settings will be studied in much greater detail in Chapter 6.

Example 2.1 Suppose we are given two values x(0) and x(1) of a linear function
x(t)= at+ b, where a and b are unknown. Our goal is to evaluate x(t) for any time
t. Since the structure of x(t) is known, to accomplish this goal all that is needed is to
determine a and b. Therefore, our problem becomes that of computing a and b from
the given samples.

It is easy to see that b = x(0), and a = x(1)− x(0). Therefore, for all t,

x(t) = x(0)(1− t) + x(1)t =

1∑
n=0

a[n]xn(t) (2.2)

where a[n] = x(n), and the expansion vectors are x0(t) = 1 − t and x1(t) = t.
Thus x(t) can be represented by its samples x(0) and x(1). This example can be
easily extended to allow recovery of a piecewise linear signal over the real line.

Although the previous example is very simple and almost trivial, it highlights some
important features shared by many sampling theorems. First, we note that any function
x(t) from the given class of signals, in our case polynomials of degree 1, can be repre-
sented in the form (2.2) regardless of the values of a and b. For more general expansions,
this corresponds to the statement that the expansion vectors {xn} are independent of the
input x. Second, the ability to reconstruct the signal depends on our prior knowledge.
In the example, we were able to recover x(t) from its samples x(0) and x(1) since we
knew that x(t) is a polynomial of degree 1. On the other hand, note that the right-hand
side of (2.2) always specifies a polynomial of degree 1; therefore, if x(t) does not have
this form, then it cannot be reconstructed using (2.2).

In Example 2.1 there were a finite number of expansion coefficients over each interval.
Similar expansions are possible when there are infinitely many coefficients, as we show
in the next example. The function we consider in the example below belongs to the well-
known class of bandlimited signals, which leads to the Shannon–Nyquist theorem. We
will revisit this example with more mathematical rigor in Chapter 4.

Example 2.2 Consider a signal x(t) bandlimited to the frequency π/T . The famous
Shannon–Nyquist theorem states that such a signal can be reconstructed from its
samples x(nT ) using the expansion

x(t) =
∑
n∈Z

x(nT )
sin(π(t− nT )/T )

π(t− nT )/T
. (2.3)
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