THE WORLD IN THE MODEL

During the last two centuries, the way economic science is done has changed radically: it has become a social science based on mathematical models in place of words. This book describes and analyses that change – both historically and philosophically – using a series of case studies to illuminate the nature and the implications of this change. In format, it offers a tourist guide to economics by focussing on specific models, explaining how economists created them and how they reason with them. This book will be of interest to economists and science studies scholars (historians, sociologists, and philosophers of science). But it is not a technical book; it is written for the intelligent person who wants to understand how economics works from the inside out and particularly the ways in which economic models have shaped our beliefs and the world we live in.

Mary S. Morgan, Fellow of the British Academy and Overseas Fellow of the Royal Dutch Academy of Arts and Sciences, is Professor of History and Philosophy of Economics at the London School of Economics and the University of Amsterdam. She has published on a range of topics in the history and philosophy of economics: from statistics to experiments to narrative, and from nineteenth-century Social Darwinism to game theory in the Cold War. Her previous books include The History of Econometric Ideas (Cambridge University Press, 1990) and Models as Mediators (Cambridge University Press, 1999, coedited with Margaret Morrison). She has also edited collections on measurement, policy making with models, and the development of probability thinking. In the broader sphere, the collection of essays How Well Do Facts Travel? (Cambridge University Press, 2011, coedited with Peter Howlett) marks the conclusion of a major interdisciplinary team project on evidence in the sciences and humanities. Professor Morgan is currently engaged in the project "Re-thinking Case Studies Across the Social Sciences" as a British Academy–Wolfson Research Professor, and (during 2010–11) as a Davis Center Fellow at Princeton University.
The World in the Model

How Economists Work and Think

Mary S. Morgan
London School of Economics
and
University of Amsterdam
For Charles, and for Dori
Contents

List of Figures, Tables, and Boxes
Preface

1 Modelling as a Method of Enquiry

PART I: CHANGING THE PRACTICE OF ECONOMIC SCIENCE
1. From Laws to Models, From Words to Objects
2. The Naturalization of Modelling in Economics
3. Practical Reasoning Styles
 3.i Modelling as a Style of Reasoning
 3.ii Modelling as a Reasoning Style in Economics

PART II: MAKING MODELS, USING MODELS
4. Making Models to Reason With: Forms, Rules, and Resources
 4.i Giving Form
 4.ii Becoming Formal
 4.iii Reasoning Resources
6. Conclusion

2 Model-Making: New Recipes, Ingredients, and Integration

1. Ricardo, The “Modern” Economist?
2. Ricardo, His Economy, and the Economy of His Day
 2.i David Ricardo, Esq.
 2.ii Economics Matters, Experimental Farming Matters
3. Constructing Ricardo’s Numerical Model Farm and Questions of Distribution
 3.i The Numbers in Ricardo’s *Principles* and Experimental Accounts
 3.ii The Spade-Husbandry Debate
4. Ricardo’s Model Farm and Model Farming
Contents

4.i Three Model Farms in One 74
4.ii A Model Farm that Worked According to Ricardo's Economic Ideas 75
4.iii A Model of an Individual Farm in the Period 76
4.iv A Model Farm for the Whole Agricultural Sector 78
5.i Ingredients 79
5.ii Fitting Things Together: Integration and Reasoning Possibilities 81
Appendix 1: Numerical Argument in Ricardo's 1815 Essay 83

3 Imagining and Imaging: Creating a New Model World 91
1. Introduction 91
2. Acts of Translation or a New Way of World-Making? 93
3. Making the Mathematical Economic World in Models 96
4. The Artist's Space versus the Economist's Space 98
5. The History of the Edgeworth Box Diagram – as Told by Itself 106
5.i Edgeworth's Imagination and Image 107
5.ii Pareto's Imagination and Images 115
6.i Visualization 118
6.ii Newness 126
7. Seeing the World in the Model 129
8. Conclusion 131

4 Character Making: Ideal Types, Idealization, and the Art of Caricature 136
1. Introduction 136
2. Characterizing Economic Man: Classical Economists' *Homo Economicus* 138
3. Concept Forming: Weber's Ideal Types and Menger's Human Economy 141
4. Symbolic Abstraction: Jevons' Calculating Man 145
5. Exaggerating Qualities: Knight's Slot-Machine Man 150
6. Making a Cartoon into a Role Model: Rational Economic Man 153
7. The Art of Caricature and Processes of Idealization 157
8. Model Man's CV: De-Idealization and the Changing Roles of Economic Man 164

5 Metaphors and Analogies: Choosing the World of the Model 172
1. From Metaphors to Analogical Models 172
2. The Newlyn-Phillips Machine 176
3. The Machine's Inventors: Walter Newlyn and Bill Phillips 184
Contents

4. Inventing the Newlyn-Phillips Machine
 Step 1: Phillips chooses the analogy for his supply/demand model (early 1949)
 Step 2: Newlyn designs the blueprint for a monetary circulation machine (Easter 1949)
 Step 3: Phillips and Newlyn build the prototype Machine (Summer 1949)
5. Analogical Models and New Things

6 Questions and Stories: Capturing the Heart of Matters
 1. Introduction
 2. Stories to Shape Model Resources: Frisch's Macro-Dynamic Scheme
 3. Questions and Stories Capturing Keynes' General Theory
 3.i Modelling Keynes' General Theory: Meade
 3.ii Reasoning with Models: The External and Internal Dynamics
 3.iii Modelling Keynes' General Theory: Samuelson
 4. Finding New Dimensions and Telling New Stories
 4.i Modelling Keynes' General Theory: Hicks
 4.ii Demonstrations, Variety, and Fruitfulness
 5. Capturing the Heart of the Matter with Narratives
 5.i Narratives and Identity in the World of the Model
 5.ii Model Narratives and Making Sense of the Economic World
 5.iii Narrative as a Testing Bed for Models
 6. Where Next?

7 Model Experiments?
 1. Introduction
 2. Experiments in the World of the Model
 2.i Mangoldt and Jenkin
 2.ii Marshall
 2.iii Conceptual Work: Defining Generic Categories
 3. Models in 'Laboratory' Experiments
 4. Comparison: Model Experiments and Laboratory Experiments
 4.i Controls and Demonstration
 4.ii Experimental Validity and The Inference Gap
 5. Hybrids
 5.i Virtually Experiments
 5.ii The Status of Hybrids
 6. Materials Matter: Surprise versus Confoundment
x Contents

8 Simulation: Bringing a Microscope into Economics 301
1. The Birth of a New Technology 301
2. Simulation: Content and Context 304
3. Shubik and Simulation 307
 3.i Martin Shubik’s History 307
 3.ii Models, Simulated Environments, and Simulated Behaviour 311
4. Guy Orcutt’s History and “Microsimulation” 315
5. Bringing a Microscope into Economics 320
 5.i Introducing the Analogy 322
 5.ii Matters of Scale and Kind 323
 5.iii Specimens = Models 325
6. How Do Simulations Work as Microscopes? 327
7. The Observation–Inference Problem 331
8. Conclusion 336

9 Model Situations, Typical Cases, and Exemplary Narratives 344
1. Introduction 344
2. War Games 345
3. The Exemplary Narrative 348
 3.i The Prisoner’s Dilemma: Collaborate or Defect? 348
 3.ii The Economists’ Dilemma: Individual Rationality or Invisible Hand? 351
4. The Commentator’s Dilemma: Fitting Together Situations, Narratives, and Cases 357
 4.i Reasoning about Situations 357
 4.ii Explanatory Depth: The Roles of Narratives 361
 4.iii Explanatory Breadth: Taxonomies, Kinds, and Cases 368
5. Conclusion 372

10 From the World in the Model to the Model in the World 378
1. Introduction 378
 2.i Model Worlds and Working Objects 380
 2.ii Small Worlds, Miniature Worlds, Compressed Worlds? 384
3. The Work of Working Objects 387
 3.i Materials for Describing and Theorizing 387
 3.ii “Abstract Typical Representations” and Model Inductions 389
4. Modelling: The New Way of Practising Economics 393
 4.i Assumptions in Practices 394
 4.ii Network of Models 396
 4.iii Community Matters 399
Contents

5. Models in the World 400
 5.i Models: New Instruments for Acting in the World 400
 5.ii Seeing Small Worlds in the Big World 405

Index 413

Colour plate section appears between pages 126 and 127
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Quesnay's Tableau Économique (1767)</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>The Prehistory of Models</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>First-Generation Models</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Second-Generation Models</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Models: The Variety of Forms</td>
<td>22</td>
</tr>
<tr>
<td>1.6</td>
<td>The Reasoning Resources in Models</td>
<td>29</td>
</tr>
<tr>
<td>1.7</td>
<td>The Phillips-Newlyn Hydraulic Machine</td>
<td>35</td>
</tr>
<tr>
<td>2.1</td>
<td>Gatcomb Park, Country Home of David Ricardo</td>
<td>49</td>
</tr>
<tr>
<td>2.2</td>
<td>Ricardo's Model Farm Showing His Laws of Distribution</td>
<td>67</td>
</tr>
<tr>
<td>2.3</td>
<td>Newspaper Report of a Farming Experiment with Spade Husbandry</td>
<td>71</td>
</tr>
<tr>
<td>2.4</td>
<td>Ricardo's Table from His 1815 Essay</td>
<td>85</td>
</tr>
<tr>
<td>3.1</td>
<td>Humphrey's Modern Version of the Edgeworth Box</td>
<td>92</td>
</tr>
<tr>
<td>3.2</td>
<td>The Artist's Edgeworth Box by Koen Engelen</td>
<td>99</td>
</tr>
<tr>
<td>3.3</td>
<td>The Artist's vs the Modern Economist's Version of the Box</td>
<td>104</td>
</tr>
<tr>
<td>3.4</td>
<td>Historical Sequence of Original Box Diagrams Part I</td>
<td>110</td>
</tr>
<tr>
<td>3.5</td>
<td>Historical Sequence of Original Box Diagrams Part II</td>
<td>119</td>
</tr>
<tr>
<td>3.6</td>
<td>Matching the Modern Economist's Diagrams to the Original Box Diagrams</td>
<td>124</td>
</tr>
<tr>
<td>4.1</td>
<td>Menger's Consumption Schedule</td>
<td>143</td>
</tr>
<tr>
<td>4.2</td>
<td>Jevons' Utility Curve (1871)</td>
<td>147</td>
</tr>
<tr>
<td>4.3</td>
<td>Philipon's Art of Caricature (1834)</td>
<td>161</td>
</tr>
<tr>
<td>5.1</td>
<td>Walter Newlyn Demonstrating the Prototype Machine 1950</td>
<td>177</td>
</tr>
<tr>
<td>5.2</td>
<td>Drawing of the Mark II Machine</td>
<td>179</td>
</tr>
<tr>
<td>5.3</td>
<td>Cartoon of the Machine from Punch, 1953, by Rowland Emett</td>
<td>182</td>
</tr>
<tr>
<td>5.4</td>
<td>Bill Phillips’ Undergraduate Essay Diagrams and the Inspiration from Boulding, 1948/9</td>
<td>190</td>
</tr>
</tbody>
</table>
Figures, Tables, and Boxes xiii

5.5 Bill Phillips' Undergraduate Monetary-Circulation Diagram, 1948/9 193
5.6 Walter Newlyn's Blueprint Design for the Machine, May 1949 197
5.7 Bill Phillips (left) and Walter Newlyn (right) Complete the First Tank of the Machine, Summer 1949 202
5.8 Irving Fisher's Arithmetical, Mechanical, and Accounting Versions of His Monetary Balance 205
6.1 Samuelson's Arithmetic Simulation 229
6.2 Samuelson's Model Solution Graph 231
6.3 Hicks' IS-LL "Little Apparatus" 235
7.1 Mangoldt's Supply and Demand Model Experiments 260
7.2 Mangoldt's Model Experiment for Complementary Goods 263
7.3 & 7.4 Fleeming Jenkins' Supply and Demand Curve Experiments 265
7.5 Marshall's Diagrammatic Model Experiments 269
7.6 Chamberlin's "Real-Model" Experimental Results 274
7.7 Smith's First Classroom Experimental Results with the Market Model 276
8.1 Shubik's 1960 Bibliography: Subject Map for "Simulation" and "Gaming" 305
8.2 Shubik's 1960 Bibliography: Subject Map for "Monte Carlo" and "Systems" 306
8.3 Martin Shubik's Experiences of Simulation 311
8.4 Guy Orcutt's New Micro-Simulation Recipe 319
8.5 Slutsky's Random Shock Simulation 332
9.1 Game Theory in Tosca 346

Tables

Table 7.1 Model Experiments and Laboratory Experiments 279
Table 7.2 Model Experiments, Laboratory Experiments, and Inferential Scope 283

Box

Box 9.1 Koertge's Schema 358
Science is messy. Historians write seamless accounts to make it comprehensible, and in doing so, sometimes paper over the knots and holes in scientific life. Philosophers provide sparely argued analyses of scientific method, and in doing so may avoid the many awkward rubs of detail. This book is not such a monograph: It offers neither a continuous historical narrative nor a fortified philosophy of modelling. Yet, its ambition is to offer both a history of the naturalization of modelling in economics and a naturalized philosophy of science for economics. And it does so in the spirit of those many others who eschew smoothness.

So – this book is not a conventional monograph. It is a series of historical case studies through which the philosophical commentary runs. I have long described it as a kind of travel guide: I present, as three-star tourist sites, some of the best known, and historically significant, models in economics, and use each as the basis upon which to fashion a philosophical commentary about the nature of modern economics. But readers might also find this book something like a detective’s case-book: my series of investigations, as I follow the clues and fit them together, to make sense of what economic modelling is all about. Case studies are the best way that I know to figure out how science goes on. Cases not only form individual stories that capture the practices of economic science in considerable depth, but taken together they provide the materials for a broader account of how economics became, and works, as a modelling science. The messy details are important – not just because, as we know, bald narratives lack credibility, but rather because the devil is often in the detail, and thus larger, and important, matters cannot be understood and explained without them. After all, what would detective novels be if the clues were omitted as mere detail to the argument?

What else does this book not do – and what does it do? It does not try to give a definition of models – but it does discuss the qualities that make them useful in a science. It does not suggest that there are different kinds of models, but it does illuminate the heterogeneity of objects that count as models. It does not suggest that models are easy to characterize, but it does argue that in order to understand them, we should pay attention to what models are used for, and how they are used. It is not
Preface

even-handed, but does argue that models are both very useful knowledge-makers in economics as well as being of limited use in that same domain. It is not a critique of modelling, but it does make clear how and why they may be criticised as well as how and why they may be valued.

Fifteen years of researching, thinking, and writing about models have convinced me that there are no easy answers to questions about what models are, and how modelling works. Some questions are more helpful than others. Asking: What qualities do models need to make them useful in a science? and What functions do models play in a science? are more fruitful than asking What are models? Asking: How does reasoning with models go on? and What kind of knowledge does a science gain from its investigations with models? prompt an account of modelling (in economics) as an autonomous epistemic genre: that is, as a way of doing science that has its own rationale just as do other modes of science. Answering these questions is the agenda for this book.

But those fifteen years have also persuaded me that there are lots of different kinds of things that legitimately count as models in other sciences, and that they often look and function very differently in those other sciences. Comparisons between model-based sciences are extremely useful; they operate here, only gently, as a foil. Fifteen years have also taught me that looking for how a science becomes a model-based discipline requires attention not just to the scientific modes of reasoning, but also to questions of perception and cognition as well as to qualities of imagination and creativity. The arts cannot be entirely taken out of the sciences.

I am delighted to thank all those many scholars who have helped me, argued with me, discussed issues, commented upon chapters, and generally become involved in my attempt to understand modelling. I hope that I have captured most of these by name in acknowledgement notes attached to each chapter – of course none of them are responsible for my not always taking their advice. Special thanks go to Margaret Morrison and Nancy Cartwright who were significant research partners at the beginning of my research; to Marcel Boumans, Harro Maas, and Roy Weintraub who engaged with my work throughout; and to a cohort of graduate students at LSE and in The Netherlands who responded to my enthusiasm for models in a variety of fruitful ways. Such special thanks also go to the anonymous readers for the Press, and to others who read the manuscript as a whole, for their many generous and positive pieces of advice (which, unfortunately, sometimes conflicted with each other); to Aashish Velkar who sorted out the permissions and acknowledgements; to Simona Valeriani who looked after the many figures; to Tracy Keefe and Rajashri Ravindranathan who saw the manuscript through publication; and finally to Jon Adams for his brilliant red cover design and to Scott Parris at Cambridge University Press, whose patience has been unfailing. I am grateful to the Wissenschaftskolleg in Berlin for hosting my first research work on the topic (for several months in 1995–6), to the British Academy for a Research Readership (for a second block of time in 1999–2001), and to my Department of Economic
History at the London School of Economics and my History and Philosophy of Economics group in the Faculty of Economics and Econometrics at the University of Amsterdam who have supported my work throughout. It has been a long fifteen years, but in my defence – several other things happened on the way!

Mary S. Morgan
December 2010