FILTER BANK TRANSCEIVERS FOR OFDM AND DMT SYSTEMS

Providing key background material together with advanced topics, this self-contained book is written in an easy-to-read style and is ideal for newcomers to multicarrier systems.

Early chapters provide a review of basic digital communication, starting from the equivalent discrete-time channel and including a detailed review of the MMSE receiver. Later chapters then provide extensive performance analysis of OFDM and DMT systems, with discussions of many practical issues such as implementation and power spectrum considerations. Throughout, theoretical analysis is presented alongside practical design considerations, whilst the filter bank transceiver representation of OFDM and DMT systems opens up possibilities for further optimization such as minimum bit error rate, minimum transmission power, and higher spectral efficiency.

With plenty of insightful real-world examples and carefully designed end-of-chapter problems, this is an ideal single-semester textbook for senior undergraduate and graduate students, as well as a self-study guide for researchers and professional engineers.

**Yuan-Pei Lin** is a Professor in Electrical Engineering at the National Chiao Tung University, Hsinchu, Taiwan. She is a recipient of the Ta-You Wu Memorial Award, the Chinese Institute of Electrical Engineering’s Outstanding Youth Electrical Engineer Award, and of the Chinese Automatic Control Society’s Young Engineer in Automatic Control Award.

**See-May Phoong** is a Professor in the Graduate Institute of Communication Engineering and the Department of Electrical Engineering at the National Taiwan University (NTU). He is a recipient of the Charles H. Wilts Prize for outstanding independent doctoral research in electrical engineering at the California Institute of Technology, and the Chinese Institute of Electrical Engineering’s Outstanding Youth Electrical Engineer Award.

**P. P. Vaidyanathan** is a Professor in Electrical Engineering at the California Institute of Technology, where he has been a faculty member since 1983. He is an IEEE Fellow and has authored over 400 technical papers, four books, and many invited chapters in leading journals, conferences, and handbooks. He was a recipient of the Award for Excellence in Teaching at the California Institute of Technology three times, and he has received numerous other awards including the F. E. Terman Award of the American Society for Engineering Education and the Technical Achievement Award of the IEEE Signal Processing Society.
FILTER BANK TRANSCEIVERS FOR OFDM AND DMT SYSTEMS

YUAN-PEI LIN
National Chiao Tung University, Taiwan

SEE-MAY PHOONG
National Taiwan University

P. P. VAIDYANATHAN
California Institute of Technology
To our families
— Yuan-Pei Lin and See-May Phoong

To Usha, Vikram, Sugar, and my parents
— P. P. Vaidyanathan
Contents

Preface xi

1 Introduction 1
  1.1 Notations 7

2 Preliminaries of digital communications 9
  2.1 Discrete-time channel models 9
  2.2 Equalization 16
  2.3 Digital modulation 17
    2.3.1 Pulse amplitude modulation (PAM) 18
    2.3.2 Quadrature amplitude modulation (QAM) 22
  2.4 Parallel subchannels 28
  2.5 Further reading 31
  2.6 Problems 31

3 FIR equalizers 33
  3.1 Zero-forcing equalizers 34
  3.2 Orthogonality principle and linear estimation 39
    3.2.1 Biased and unbiased linear estimates 41
    3.2.2 Estimation of multiple random variables 44
  3.3 MMSE equalizers 45
    3.3.1 FIR channels 45
    3.3.2 MIMO frequency-nonselective channels 48
    3.3.3 Examples 50
  3.4 Symbol detection for MMSE receivers 56
  3.5 Channel-shortening equalizers 59
  3.6 Concluding Remarks 65
  3.7 Problems 65

4 Fundamentals of multirate signal processing 71
  4.1 Multirate building blocks 71
    4.1.1 Transform domain formulas 73
    4.1.2 Multirate identities 75
    4.1.3 Blocking and unblocking 76
  4.2 Decimation filters 79
  4.3 Interpolation filters 80
    4.3.1 Time domain view of interpolation filter 82
    4.3.2 The Nyquist(\(M\)) property 82
<table>
<thead>
<tr>
<th>4.4</th>
<th>Polyphase decomposition</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1</td>
<td>Decimation and interpolation filters</td>
<td>87</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Synthesis filter banks</td>
<td>89</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Analysis filter banks</td>
<td>90</td>
</tr>
<tr>
<td>4.5</td>
<td>Concluding remarks</td>
<td>91</td>
</tr>
<tr>
<td>4.6</td>
<td>Problems</td>
<td>91</td>
</tr>
</tbody>
</table>

5 Multirate formulation of communication systems | 95 |
| 5.1 | Filter bank transceivers | 95 |
| 5.1.1 | The multiplexing operation | 97 |
| 5.1.2 | Redundancy in filter bank transceivers | 97 |
| 5.1.3 | Types of distortion in transceivers | 100 |
| 5.2 | Analysis of filter bank transceivers | 101 |
| 5.2.1 | ISI-free filter bank transceivers | 101 |
| 5.2.2 | Polyphase approach | 103 |
| 5.2.3 | Channel-independent ISI-free filter bank transceivers | 105 |
| 5.3 | Pseudocirculant and circulant matrices | 106 |
| 5.3.1 | Pseudocirculants and blocked versions of scalar systems | 106 |
| 5.3.2 | Circulants and circular convolutions | 108 |
| 5.4 | Redundancy for IBI elimination | 111 |
| 5.4.1 | Zero-padded systems | 112 |
| 5.4.2 | Cyclic-prefixed systems | 115 |
| 5.4.3 | Summary and comparison | 119 |
| 5.4.4 | IBI-free systems with reduced redundancy | 121 |
| 5.5 | Fractionally spaced equalizer systems | 122 |
| 5.5.1 | Zero-forcing FSE systems | 124 |
| 5.5.2 | Polyphase approach | 125 |
| 5.6 | Concluding remarks | 129 |
| 5.7 | Problems | 129 |

6 DFT-based transceivers | 135 |
| 6.1 | OFDM systems | 136 |
| 6.1.1 | Noise analysis | 140 |
| 6.1.2 | Bit error rate | 142 |
| 6.2 | Zero-padded OFDM systems | 147 |
| 6.2.1 | Zero-forcing receivers | 147 |
| 6.2.2 | The MMSE receiver | 150 |
| 6.3 | Single-carrier systems with cyclic prefix (SC-CP) | 152 |
| 6.3.1 | Noise analysis: zero-forcing case | 155 |
| 6.3.2 | The MMSE receiver | 156 |
| 6.3.3 | Error analysis: MMSE case | 157 |
| 6.4 | Single-carrier system with zero-padding (SC-ZP) | 160 |
| 6.5 | Filter bank representation of OFDM systems | 163 |
| 6.5.1 | Transmitted power spectrum | 166 |
| 6.5.2 | ZP-OFDM systems | 168 |
| 6.6 | DMT systems | 168 |
| 6.7 | Channel estimation and carrier frequenciesynchronization | 178 |
| 6.7.1 | Pilot symbol aided modulation | 178 |
| 6.7.2 | Synchronization of carrier frequency | 179 |
### CONTENTS

6.8 A historical note and further reading 180
6.9 Problems 181

7 Precoded OFDM systems 193

7.1 Zero-forcing precoded OFDM systems 194
7.2 Optimal precoders for QPSK modulation 198
7.3 Optimal precoders: other modulations 202
7.4 MMSE precoded OFDM systems 203

7.4.1 MMSE receivers 204
7.4.2 Optimal precoders for QPSK modulation 207
7.4.3 Other modulation schemes 209

7.5 Simulation examples 211
7.6 Further reading 219
7.7 Problems 220

8 Transceiver design with channel information at the transmitter 223

8.1 Zero-forcing block transceivers 223

8.1.1 Zero-forcing ZP systems 225
8.1.2 Zero-forcing ZJ systems 226

8.2 Problem formulation 228
8.3 Optimal bit allocation 229

8.4 Optimal ZP transceivers 240

8.4.1 Optimal $G_{zp}$ 240
8.4.2 Optimal $A_{zp}$ 241
8.4.3 Summary and discussions 243

8.5 Optimal zero-jamming (ZJ) transceivers 247

8.5.1 Optimal $S_{zj}$ 247
8.5.2 Optimal $A_{zj}$ 249
8.5.3 Summary and discussions 249

8.6 Further reading 253
8.7 Problems 254

9 DMT systems with improved frequency characteristics 259

9.1 Sidelobes matter! 260
9.2 Overall transfer matrix 263
9.3 Transmitters with subfilters 265

9.3.1 Choosing the subfilters as a DFT bank 266
9.3.2 DFT bank implementation 266

9.4 Design of transmit subfilters 272
9.5 Receivers with subfilters 276

9.5.1 Choosing subfilters as a DFT bank 277
9.5.2 DFT bank implementation 277

9.6 Design of receiver subfilters 280
9.7 Zero-padded transceivers 285
9.8 Further reading 285
9.9 Problems 286
x

CONTENTS

10 Minimum redundancy FIR transceivers 291
  10.1 Polyphase representation 292
  10.2 Properties of pseudocirculants 293
    10.2.1 Smith form decomposition 294
    10.2.2 DFT decomposition 295
    10.2.3 Properties derived from the two decompositions 296
    10.2.4 Congruous zeros 297
  10.3 Transceivers with no redundancy 301
    10.3.1 FIR minimal transceivers 301
    10.3.2 IIR minimal transceivers 301
  10.4 Minimum redundancy 303
  10.5 Smith form of FIR pseudocirculants 308
  10.6 Proof of Theorem 10.2 311
    10.6.1 Identical Smith forms 312
    10.6.2 Zeros from different $\mathcal{B}_i$ decouple 313
    10.6.3 An example of deriving the Smith form of $\Sigma(z)$ 313
    10.6.4 Smith form of $\Sigma(z)$ 316
  10.7 Further reading 319
  10.8 Problems 319

A Mathematical tools 323

B Review of random processes 327
  B.1 Random variables 327
  B.2 Random processes 329
  B.3 Processing of random variables and random processes 332
  B.4 Continuous-time random processes 336

References 341

Index 355
Preface

Recent years have seen the great success of OFDM (orthogonal frequency division multiplexing) and DMT (discrete multitone) transceivers in many applications. The OFDM system has found many applications in wireless communications. It has been adopted in IEEE 802.11 for wireless local area networks, DAB for digital audio broadcasting, and DVB for digital video broadcasting. The DMT system is the enabling technology for high-speed transmission over digital subscriber lines. It is used in ADSL (asymmetric digital subscriber lines) and VDSL (very-high-speed digital subscriber lines). The OFDM and DMT systems are both examples of DFT transceivers that employ redundant guard intervals for equalization. Having a guard interval can greatly simplify the task of equalization at the receiver and it is now one of the most effective approaches for channel equalization. In this book we will study the OFDM and DMT under the framework of filter bank transceivers. Under such a framework, there are numerous possible extensions. The freedom in the filter bank transceivers can be exploited to better the systems for various design criteria. For example, transceivers can be optimized for minimum bit error rate, for minimum transmission power, or for higher spectral efficiency. We will explore all these possible optimization problems in this book.

The first three chapters describe the major building blocks relevant for the discussion of signal processing for communication and give the tools useful for solving problems in this area. Chapters 4–5 introduce the multirate building blocks and filter bank transceivers, and the basic idea of guard intervals for channel equalization. Chapter 6 gives a detailed discussion of OFDM and DMT systems. Chapters 7–10 consider the design of filter bank transceivers for different criteria and channel environments. A detailed outline is given at the end of Chapter 1. This book has been used as a textbook for a first-year graduate course at National Chiao Tung University, Taiwan, and at National Taiwan University. Most of the chapters can be covered in 16–18 weeks. Homework problems are given for Chapters 2–10.

It is our pleasure to thank our families for the patience and support during all phases of this time-consuming project. We would like to thank our universities, National Chiao Tung University and National Taiwan University, and the National Science Council of Taiwan for their generous support during the writing of this book. We would also like to thank our students Chien-Chang Li, Chun-Liu Yang, Chen-Chi Lo, and Kuo-Tai Chiu for generating some of the plots. PPV wishes to acknowledge the California Institute of Technology, the National Science Foundation (USA), and the Office of Naval Research (USA), for all the support and encouragement.