Discrete Models of Financial Markets

This book explains in simple settings the fundamental ideas of financial market modelling and derivative pricing, using the No Arbitrage Principle. Relatively elementary mathematics leads to powerful notions and techniques – such as viability, completeness, self-financing and replicating strategies, arbitrage and equivalent martingale measures – which are directly applicable in practice. The general methods are applied in detail to pricing and hedging European and American options within the Cox–Ross–Rubinstein (CRR) binomial tree model. A simple approach to discrete interest rate models is included, which, though elementary, has some novel features. All proofs are written in a user-friendly manner, with each step carefully explained, and following a natural flow of thought. In this way the student learns how to tackle new problems.

MAREK CAPIŃSKI has published over 50 research papers and nine books. His diverse interests include mathematical finance, corporate finance and stochastic hydrodynamics. For over 35 years he has been teaching these topics, mainly in Poland and in the UK, where he has held visiting fellowships. He is currently Professor of Applied Mathematics at AGH University of Science and Technology in Kraków, Poland.

EKKEHARD KOPP is Emeritus Professor of Mathematics at the University of Hull, UK, where he taught courses at all levels in analysis, measure and probability, stochastic processes and mathematical finance between 1970 and 2007. His editorial experience includes service as founding member of the Springer Finance series (1998–2008) and the CUP AIMS Library Series. He has authored more than 50 research publications and five books.
Mastering Mathematical Finance

Mastering Mathematical Finance is a series of short books that cover all core topics and the most common electives offered in Master’s programmes in mathematical or quantitative finance. The books are closely coordinated and largely self-contained, and can be used efficiently in combination but also individually.

The MMF books start financially from scratch and mathematically assume only undergraduate calculus, linear algebra and elementary probability theory. The necessary mathematics is developed rigorously, with emphasis on a natural development of mathematical ideas and financial intuition, and the readers quickly see real-life financial applications, both for motivation and as the ultimate end for the theory. All books are written for both teaching and self-study, with worked examples, exercises and solutions.

[PF] Probability for Finance, Ekkehard Kopp, Jan Malczak, Tomasz Zastawniak

[SCF] Stochastic Calculus for Finance, Marek Capiński, Ekkehard Kopp, Janusz Traple

[BSM] The Black–Scholes Model, Marek Capiński, Ekkehard Kopp

[PTRM] Portfolio Theory and Risk Management, Maciej Capiński, Ekkehard Kopp

[NMFC] Numerical Methods in Finance with C++, Maciej Capiński, Tomasz Zastawniak

[SIR] Stochastic Interest Rates, Daragh McInerney, Tomasz Zastawniak

[CR] Credit Risk, Marek Capiński, Tomasz Zastawniak

[FE] Financial Econometrics, Marek Capiński, Jian Zhang

[SCAF] Stochastic Control in Finance, Szymon Peszat, Tomasz Zastawniak

Series editors Marek Capiński, AGH University of Science and Technology, Kraków; Ekkehard Kopp, University of Hull; Tomasz Zastawniak, University of York
Discrete Models of Financial Markets

MAREK CAPIŃSKI
AGH University of Science and Technology, Kraków, Poland

EKKEHARD KOPP
University of Hull, Hull, UK
To Ewa and Margaret
Contents

Preface ix

1 Introduction 1

2 Single-step asset pricing models 3
 2.1 Single-step binomial tree 4
 2.2 Option pricing 8
 2.3 General derivative securities 11
 2.4 Two underlying securities 18
 2.5 The trinomial model 21
 2.6 A general single-step model 34
 2.7 General properties of derivative prices 42
 2.8 Proofs 45

3 Multi-step binomial model 48
 3.1 Two-step example 48
 3.2 Partitions and information 55
 3.3 Martingale properties 60
 3.4 The Cox–Ross–Rubinstein model 64
 3.5 Delta hedging 70

4 Multi-step general models 72
 4.1 Partitions and conditioning 72
 4.2 Properties of conditional expectation 74
 4.3 Filtrations and martingales 78
 4.4 Trading strategies and arbitrage 81
 4.5 A general multi-step model 86
 4.6 The Fundamental Theorems of Asset Pricing 92
 4.7 Selecting and calibrating a pricing model 98
 4.8 More examples of derivatives 100
 4.9 Proofs 108

5 American options 110
 5.1 Pricing 111
 5.2 Stopping times and optimal exercise 116
 5.3 Hedging 122
Contents

5.4 General properties of option prices 127
5.5 Proofs 133

6 Modelling bonds and interest rates 137
 6.1 Zero-coupon bonds 138
 6.2 Forward rates 141
 6.3 Coupon bonds 146
 6.4 Binary tree term structure models 152
 6.5 Short rates 166
 6.6 The Ho–Lee model of term structure 173

Index 180
Preface

In this first volume of the series ‘Mastering Mathematical Finance’ we present discrete-time mathematical models for the pricing and hedging of derivative securities, as well as an initial analysis of fixed income securities. Throughout, the sample space of possible scenarios is assumed to be finite, and there are finitely many trading dates. This greatly reduces the need for sophisticated mathematical tools, while providing sufficient complexity to highlight the key aspects of arbitrage pricing techniques.

Keeping the mathematical requirements to a minimum makes the text accessible to students from a wide variety of backgrounds, while the large number of exercises, which should be regarded as integral to the text, include routine numerical examples and test understanding of basic techniques as well as providing more challenging problems. Solutions and additional exercises are available on the linked website www.cambridge.org/9781107002630, where, if necessary, a list of errata will be updated regularly.

While most of the material is well known, we have sought to develop ideas gradually through simple examples, leading to careful proofs of the key results for option pricing in finite discrete models. While the setting of the final chapter is standard, the discussion of binomial term structure models, though close to the Ho–Lee model, contains features we believe to be novel.