The author describes the recently developed theory of Hadamard expansions applied to the high-precision (hyperasymptotic) evaluation of Laplace and Laplace-type integrals. This new method builds on the well-known asymptotic method of steepest descents, of which the opening chapter gives a detailed account illustrated by a series of examples of increasing complexity. A discussion of uniformity problems associated with various coalescence phenomena, the Stokes phenomenon and hyperasymptotics of Laplace-type integrals follows. The remaining chapters deal with the Hadamard expansion of Laplace integrals, with and without saddle points. Problems of different types of saddle coalescence are also discussed. The text is illustrated with many numerical examples, which help the reader to understand the level of accuracy achievable. The author also considers applications to some important special functions.

This book is ideal for graduate students and researchers working in asymptotics.

R. B. PARIS is a Reader in Mathematics at the University of Abertay, Dundee.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their subjects comprehensively. Less important results may be summarized as exercises at the ends of chapters. For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects.
All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit http://www.cambridge.org/uk/series/sSeries.asp?code=EOM

85 R. B. Paris and D. Kaminski
Asymptotics and Mellin–Barnes Integrals

86 R. J. McEliece
The Theory of Information and Coding, 2nd edn

87 B. A. Magurn
An Algebraic Introduction to K-Theory

88 T. Mora
Solving Polynomial Equation Systems I

89 K. Bichteler
Stochastic Integration with Jumps

90 M. Lothaire
Algebraic Combinatorics on Words

91 A. A. Ivanov and S. V. Shpectorov
Geometry of Sporadic Groups II

92 P. McMullen and E. Schulte
Abstract Regular Polytopes

93 G. Gierz et al.
Continuous Lattices and Domains

94 S. R. Finch
Mathematical Constants

95 Y. Jabri
The Mountain Pass Theorem

96 G. Gasper and M. Rahman
Basic Hypergeometric Series, 2nd edn

97 M. C. Pedicchio and W. Tholen (eds.)
Categorical Foundations

98 M. E. H. Ismail
Classical and Quantum Orthogonal Polynomials in One Variable

99 T. Mora
Solving Polynomial Equation Systems II

100 E. Olivieri and M. Eulália Vares
Large Deviations and Metastability

101 A. Kushner, V. Lychagin and V. Rubtsov
Contact Geometry and Nonlinear Differential Equations

102 L. W. Beineke and R. J. Wilson (eds.) with P. J. Cameron
Topics in Algebraic Graph Theory

103 O. J. Staffans
Well-Posed Linear Systems

104 J. M. Lewis, S. Lakshmivarahan and S. K. Dhall
Dynamic Data Assimilation

105 M. Lothaire
Applied Combinatorics on Words

106 A. Markoe
Analytic Tomography

107 P. A. Martin
Multiple Scattering

108 R. A. Brualdi
Combinatorial Matrix Classes

109 J. M. Borwein and J. D. Vanderwerff
Convex Functions

110 M.-J. Lai and L. L. Schumaker
Spline Functions on Triangulations

111 R. T. Curtis
Symmetric Generation of Groups

112 H. Salzmann
et al.
The Classical Fields

113 S. Peszat and J. Zabczyk
Stochastic Partial Differential Equations with Levy Noise

114 J. Beck
Combinatorial Games

115 L. Barreira and Y. Pesin
Nonuniform Hyperbolicity

116 D. Z. Arov and H. Dym
J-Contractive Matrix Valued Functions and Related Topics

117 R. Glowinski, J.-L. Lions and J. He
Exact and Approximate Controllability for Distributed Parameter Systems

118 A. A. Borovkov and K. A. Borovkov
Asymptotic Analysis of Random Walks

119 M. Deza and M. Dutour Sikirić
Geometry of Chemical Graphs

120 T. Nishiuura
Absolute Measurable Spaces

121 M. Prest
Purity, Spectra and Localisation

122 S. Khrushchev
Orthogonal Polynomials and Continued Fractions

123 H. Nagamochi and T. Ibaraki
Algorithmic Aspects of Graph Connectivity

124 F. W. King
Hilbert Transforms I

125 F. W. King
Hilbert Transforms II

126 O. Calin and D.-C. Chang
Sub-Riemannian Geometry

127 M. Grabisch et al.
Aggregation Functions

128 L. W. Beineke and R. J. Wilson (eds.) with J. L. Gross and T. W. Tucker
Topics in Topological Graph Theory

129 J. Berstel, D. Perrin and C. Reutenauer
Codes and Automata

130 T. G. Faticoni
Modules over Endomorphism Rings

131 H. Morimoto
Stochastic Control and Mathematical Modeling

132 G. Schmidt
Relational Mathematics

133 P. Kornrup and D. W. Matula
Finite Precision Number Systems and Arithmetic

134 Y. Crama and P. L. Hammer (eds.)
Boolean Models and Methods in Mathematics, Computer Science, and Engineering

135 V. Berthé and M. Rigo (eds.)
Combinatorics, Automata and Number Theory

136 A. Kristály, V. D. Rădulescu and C. Varga
Variational Principles in Mathematical Physics, Geometry, and Economics

137 J. Berstel and C. Reutenauer
Noncommutative Rational Series with Applications

138 B. Courcelle
Graph Structure and Monadic Second-Order Logic

139 M. Fiedler
Matrices and Graphs in Geometry

140 N. Vakil
Real Analysis through Modern Infinitesimals
Encyclopedia of Mathematics and its Applications

Hadamard Expansions and Hyperasymptotic Evaluation
An Extension of the Method of Steepest Descents

R. B. Paris
University of Abertay, Dundee
Contents

Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
</tbody>
</table>

1. **Asymptotics of Laplace-type integrals** | 1 |
| 1.1 Historical introduction | 1 |
| 1.2 The method of steepest descents | 5 |
| 1.3 Examples | 20 |
| 1.4 Further examples | 37 |
| 1.5 Uniform expansions | 56 |
| 1.6 Optimal truncation and superasymptotics | 73 |
| 1.7 The Stokes phenomenon | 78 |
| 1.8 Hyperasymptotics | 83 |

2. **Hadamard expansion of Laplace integrals** | 100 |
| 2.1 Introduction | 100 |
| 2.2 The Hadamard series for $I_\nu(x)$ | 101 |
| 2.3 Rapidly convergent Hadamard series | 122 |
| 2.4 Hadamard series on an infinite interval | 126 |
| 2.5 Examples | 134 |
| 2.6 Bounds on the tails of Hadamard series | 140 |

3. **Hadamard expansion of Laplace-type integrals** | 144 |
| 3.1 Introduction | 144 |
| 3.2 Expansion schemes | 145 |
| 3.3 Examples | 151 |
| 3.4 Coalescence problems | 175 |
| 3.5 Examples of coalescence | 178 |

4. **Applications** | 197 |
| 4.1 Introduction | 197 |
| 4.2 The Bessel function $J_\nu(vz)$ | 198 |
| 4.3 The Pearcey integral | 207 |
#Contents

4.4 The parabolic cylinder function 216
4.5 The expansion for $\log \Gamma(z)$ 219

Appendix A: Properties of $P(a, z)$ 224
Appendix B: Convergence of Hadamard series 230
Appendix C: Connection with the exp-arc integrals 232

References 235
Index 241
The aims of this book are twofold. The first is to present a detailed account of the classical method of steepest descents applied to the asymptotic evaluation of Laplace-type integrals containing a large parameter, and the second is to give a coherent account of the theory of Hadamard expansions. This latter topic, which has been developed during the past decade, extends the method of steepest descents and effectively ‘exactifies’ the procedure since, in theory, the Hadamard expansion of a Laplace or Laplace-type integral can produce unlimited accuracy.

Many texts deal with the method of steepest descents, some in more detail than others. The well-known books by Copson Asymptotic Expansions (1965), Olver Asymptotics and Special Functions (1997), Bleistein and Handelsman Asymptotic Expansion of Integrals (1975), Wong Asymptotic Approximations of Integrals (1989) and Bender and Orszag Advanced Mathematical Methods for Scientists and Engineers (1978) are all good examples. It is our aim in the first chapter to give a comprehensive account of the method of steepest descents accompanied by a set of illustrative examples of increasing complexity. We also consider the common causes of non-uniformity in the asymptotic expansions of Laplace-type integrals and conclude the first chapter with a discussion of the Stokes phenomenon and hyperasymptotics.

The next two chapters present the Hadamard expansion theory of Laplace and of Laplace-type integrals possessing saddle points. A study of these chapters makes it apparent how this theory builds upon and extends the method of steepest descents. Considerable emphasis is devoted to explaining the problems associated with coalescence phenomena, such as a saddle point coalescing either with another saddle point or with an endpoint of the integration interval. Methods for dealing with these difficulties in the Hadamard expansion procedure are carefully described. The monograph closes with sophisticated applications of the ideas developed in the earlier chapters to four particular special functions: the Bessel function $J_\nu(\nu x)$ of large order and argument, the Pearcey integral (a two-variable generalisation of the classical Airy function), the parabolic cylinder function $U(a, z)$ of large order and argument, and the logarithm of the gamma function.
Preface

In keeping with the last-mentioned text above, many of the examples in the later chapters are illustrated with numerical studies to better display the calibre of the asymptotic approximations obtained, a strategy that gives the non-expert practitioner a good sense of the method being showcased. This book should be accessible to anyone with a solid undergraduate background in functions of a single complex variable.

The author acknowledges the support of his institution, the University of Abertay, Dundee, which facilitated the writing of this book. A considerable debt of gratitude is owed to several colleagues who generously undertook a careful inspection of various sections and for their critical comments that have helped to improve the presentation of this text. The whole of Chapter 1 was read by N. M. Temme, with the first half of this chapter and Chapter 2 being read by T. M. Dunster; Chapters 2 and 3 were read by D. Kaminski, and C. J. Howls inspected the section on hyperasymptotics of Laplace-type integrals in Chapter 1. Finally, the non-specialist comments on the first part of Chapter 1 by J. S. Dagpunar were helpful. It is almost inevitable, however, that in spite of this careful examination some errors or misprints will have remained undetected, and the author requests the reader’s forebearance for those that prove to be vexatious.