

Exploratory Social Network Analysis with Pajek

Revised and Expanded Second Edition

This is the first textbook on social network analysis integrating theory, applications, and professional software for performing network analysis (Pajek). Step by step, the book introduces the main structural concepts and their applications in social research with exercises to test understanding. In each chapter, each theoretical section is followed by an application section explaining how to perform the network analyses with Pajek software. Pajek software and datasets for all examples are freely available, so the reader can learn network analysis by doing it. In addition, each chapter offers case studies for practicing network analysis. In the end, the reader will have the knowledge, skills, and tools to apply social network analysis in all social sciences, ranging from anthropology and sociology to business administration and history.

Wouter de Nooy is Associate Professor in the Department of Communication Science at the University of Amsterdam, The Netherlands, and a member of the Amsterdam School of Communication Research (ASCoR) and the Netherlands School of Communication Research (NESCoR).

Andrej Mrvar is Associate Professor of Social Science Informatics on the Faculty of Social Sciences, University of Ljubljana, Slovenia. He won several awards for graph drawings at competitions between 1995 and 2005. He has edited *Metodoloski zvezki – Advances in Methodology and Statistics* since 2000.

Vladimir Batagelj is Professor of Discrete and Computational Mathematics at the University of Ljubljana, Slovenia, and a member of the editorial boards of Informatica and Journal of Social Structure. He has authored several articles in Communications of ACM, Psychometrika, Journal of Classification, Social Networks, Discrete Mathematics, Algorithmica, Journal of Mathematical Sociology, Quality and Quantity, Informatica, Lecture Notes in Computer Science, Studies in Classification, Data Analysis, and Knowledge Organization.

More information

Cambridge University Press 978-1-107-00238-8 - Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj Frontmatter

Structural Analysis in the Social Sciences

Mark Granovetter, editor

The series Structural Analysis in the Social Sciences presents studies that analyze social behavior and institutions by reference to relations among such concrete social entities as persons, organizations, and nations. Relational analysis contrasts with reductionist methodological individualism on the one hand and with macro-level determinism on the other, whether based on technology, material conditions, economic conflict, adaptive evolution, or functional imperatives. In this more intellectually flexible structural middle ground, analysts situate actors and their relations in a variety of contexts. Since the series began in 1987, its authors have variously focused on small groups, history, culture, politics, kinship, aesthetics, economics, and complex organizations, creatively theorizing how these shape and in turn are shaped by social relations. Their style and methods have ranged widely, from intense, long-term ethnographic observation to highly abstract mathematical models. Their disciplinary affiliations have included history, anthropology, sociology, political science, business, economics, mathematics, and computer science. Some have made explicit use of "social network analysis," including many of the cutting-edge and standard works of that approach, whereas others have eschewed formal analysis and used "networks" as a fruitful orienting metaphor. All have in common a sophisticated and subtle approach that forcefully illuminates our complex social world.

Other Books in the Series

- 1. Mark S. Mizruchi and Michael Schwartz, eds., Intercorporate Relations: The Structural Analysis of Business
- 2. Barry Wellman and S. D. Berkowitz, eds., Social Structures: A Network Approach
- 3. Ronald L. Brieger, ed., Social Mobility and Social Structure
- 4. David Knoke, Political Networks: The Structural Perspective
- John L. Campbell, J. Rogers Hollingsworth, and Leon N. Lindberg, eds., Governance of the American Economy
- 6. Kyriakos Kontopoulos, The Logics of Social Structure
- 7. Philippa Pattison, Algebraic Models for Social Structure
- 8. Stanley Wasserman and Katherine Faust, Social Network Analysis: Methods and Applications
- 9. Gary Herrigel, Industrial Constructions: The Sources of German Industrial Power
- 10. Philippe Bourgois, In Search of Respect: Selling Crack in El Barrio
- 11. Per Hage and Frank Harary, Island Networks: Communication, Kinship, and Classification Structures in Oceana
- 12. Thomas Schweizer and Douglas R. White, eds., *Kinship, Networks and Exchange*
- 13. Noah E. Friedkin, A Structural Theory of Social Influence
- 14. David Wank, Commodifying Communism: Business, Trust, and Politics in a Chinese City
- 15. Rebecca Adams and Graham Allan, Placing Friendship in Context

(continued after the index)

More information

Cambridge University Press 978-1-107-00238-8 - Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj Frontmatter

Exploratory Social Network Analysis with Pajek

Revised and Expanded Second Edition

WOUTER DE NOOY

University of Amsterdam

ANDREJ MRVAR

University of Ljubljana

VLADIMIR BATAGELJ

University of Ljubljana

Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press 32 Avenue of the America, New York, NY 1001/3-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521174800

© Cambridge University Press 2005, 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005 Revised and expanded second edition 2011

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Nooy, Wouter de, 1962-

Exploratory social network analysis with Pajek / Wouter de Nooy, Andrej Mrvar, Vladimir Batagelj. – 2nd ed.

p. cm. – (Structural analysis in the social sciences; 34) Includes bibliographical references and index.

ISBN 978-1-107-00238-8 (hardback) – ISBN 978-0-521-17480-0 (paperback) 1. Social networks – Mathematical models. 2. Social networks – Computer simulation 3. Pajek (Electronic resource) I. Mrvar, Andrej. II. Batagelj, Vladimir, 1948– III. Title.

HM741.N66 2011

302.307-dc23 2011015985

ISBN 978-1-107-00238-8 Hardback ISBN 978-0-521-17480-0 Paperback

Additional resources for this publication at http://pajek.imfm.si/doku.php.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

To Anuška, who makes things happen

More information

Cambridge University Press 978-1-107-00238-8 - Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj Frontmatter

Contents

Figures	;	page xv
Tables		XXI
Preface	e to the Second Edition	xxiii
Preface	e to the First Edition	XXV
PART I - F	UNDAMENTALS	
1 Lookin	ng for Social Structure	3
1.1	Introduction	3
1.2	Sociometry and Sociogram	3 3 5
1.3	Exploratory Social Network Analysis	5
	1.3.1 Network Definition	6
	1.3.2 Manipulation	12
	1.3.3 Calculation	15
	1.3.4 Visualization	17
1.4	Assembling a Social Network	25
1.5	Summary	29
1.6	Questions	29
1.7	Assignment	30
1.8	Further Reading	31
1.9	Answers	31
2 Attribu	ites and Relations	34
2.1	Introduction	34
2.2	Example: The World System	34
2.3	Partitions	36
2.4	Reduction of a Network	43
	2.4.1 Local View	43
	2.4.2 Global View	46
	2.4.3 Contextual View	49
2.5	Vectors and Coordinates	50

ix

978-1-107-00238-8 - Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition

Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj

Frontmatter

X	Contents		
	2.6	Network Analysis and Statistics	57
	2.7	Summary	60
	2.8	Questions	61
	2.9	Assignment	62
	2.10	Further Reading	62
	2.11	Answers	63
	PART II — CO	OHESION	
	3 Cohesiv	e Subgroups	71
	3.1	Introduction	71
	3.2	Example	71
	3.3	Density and Degree	73
	3.4	Components	77
	3.5	Cores	81
	3.6	Cliques and Complete Subnetworks	84
	3.7	Summary	90
	3.8	Questions	92
	3.9	Assignment	94
	3.10	Further Reading	94
	3.11	Answers	94
	4 Sentime	nts and Friendship	97
	4.1	Introduction	97
	4.2	Balance Theory	97
	4.3	Example	100
	4.4	Detecting Structural Balance and Clusterability	101
	4.5	Development in Time	107
	4.6	Summary	110
	4.7	Questions	111
	4.8	Assignment	112
	4.9	Further Reading	113
	4.10	Answers	113
	5 Affiliation		116
	5.1	Introduction	116
	5.2	Example	117
	5.3	Two-Mode and One-Mode Networks	118
	5.4	Islands	124
	5.5	The Third Dimension	129
	5.6	Summary	133
	5.7	Questions	133
	5.8	Assignment	134
	5.9	Further Reading	135
	5.10	Answers	136

Frontmatter More information

Contents		X	i
PART III – I	BROKERAGE		
6 Center a	and Periphery	141	
6.1	Introduction	141	
6.2	Example	141	
6.3	Distance	143	
6.4	Betweenness	150	
6.5	Eigenvector Centrality	153	
6.6	Summary	154	
6.7	Questions	155	
6.8	Assignment	155	
6.9	Further Reading	156	
6.10	Answers	157	
	and Bridges	159	
7.1	Introduction	159	
7.2	Example	160	
7.3	Bridges and Bi-Components	161	
7.4	Ego-Networks and Constraint	166	
7.5	Affiliations and Brokerage Roles	173	
7.6	Summary	178	
7.7	Questions	179	
7.8	Assignment	180	
7.9	Further Reading	181	
7.10	Answers	182	
8 Diffusio	on	186	
8.1	Example	186	
8.2	Contagion	189	
8.3	Exposure and Thresholds	193	
8.4	Critical Mass	200	
8.5	Summary	205	
8.6	Questions	207	
8.7	Assignment	208	
8.8	Further Reading	208	
8.9	Answers	209	
PART IV - R	ANKING		
9 Prestige		215	
9.1	Introduction	215	
9.1	Example	216	
9.2	Popularity and Indegree	217	
9.3 9.4	Correlation		
		219	
9.5	Domains	221	
9.6	Proximity Prestige	225	

978-1-107-00238-8 - Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition

Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj

Frontmatter

xii	Contents	
	 9.7 Summary 9.8 Questions 9.9 Assignment 9.10 Further Reading 9.11 Answers 	228 229 230 231 232
	10 Ranking 10.1 Introduction 10.2 Example 10.3 Triadic Analysis 10.4 Acyclic Networks 10.5 Symmetric-Acyclic Decomposition 10.6 Summary 10.7 Questions 10.8 Assignment 10.9 Further Reading 10.10 Answers	234 234 235 235 243 246 252 253 255 255 256
	11 Genealogies and Citations 11.1 Introduction 11.2 Example I: Genealogy of the Ragusan Nobility 11.3 Family Trees 11.4 Social Research on Genealogies 11.5 Example II: Citations Among Papers on Network Centrality 11.6 Citations 11.7 Summary 11.8 Questions 11.9 Assignment 1 11.10 Assignment 2 11.11 Further Reading 11.12 Answers	259 259 259 260 268 278 279 288 289 290 290 290
	PART V - ROLES 12 Blockmodels 12.1 Introduction 12.2 Matrices and Permutation 12.3 Roles and Positions: Equivalence 12.4 Blockmodeling 12.4.1 Blockmodel 12.4.2 Blockmodeling 12.4.3 Regular Equivalence 12.5 Summary 12.6 Questions	299 299 300 306 315 315 317 322 327 328

Cambridge University Press
978-1-107-00238-8 - Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition
Wouter De Noor, Andrei Mayor and Vladimin Betageli

Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj Frontmatter

Contents		
12.7 Assignment	330	
12.8 Further Reading	331	
12.9 Answers	332	
13 Random Graph Models	336	
13.1 Introduction	336	
13.2 Example	338	
13.3 Modeling Overall Netv		
13.3.1 Classic Uniform		
13.3.2 Small-World M	odels 345	
13.3.3 Preferential Atta	achment Models 349	
13.4 Monte Carlo Simulatio	n 356	
13.5 Summary	360	
13.6 Questions	362	
13.7 Assignment	364	
13.8 Further Reading	364	
13.9 Answers	365	
Appendix 1 Getting Started with Pa	jek 369	
A1.1 Installation	369	
A1.2 Network Data Formats		
A1.3 Creating Network Files		
A1.3.1 Within Pajek	371	
A1.3.2 Helper Software		
A1.3.3 Word Processor		
A1.3.4 Relational Data		
A1.4 Limitations	381	
A1.5 Updates of Pajek	382	
Appendix 2 Exporting Visualization		
A2.1 Export Formats	383	
A2.1.1 Bitmap	383	
A2.1.2 Encapsulated Po		
A2.1.3 Scalable Vector	=	
A2.1.4 Virtual Reality		
and X3D	387	
A2.1.5 MDL MOL and	Kinemages 388	
A2.2 Layout Options	389	
A2.2.1 Top Frame on t	he Left – EPS/SVG Vertex	
Default	390	
A2.2.2 Bottom Frame of	on the Left – EPS/SVG Line	
Default	392	
A2.2.3 Top Frame on t		
A2.2.4 Middle Frame o	E	
	on the Right – EPS Border 395	

Cambridge University Press 978-1-107-00238-8 - Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition

Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj

Frontmatter

xiv	Contents		
	Appendix 3	Shortcut Key Combinations	396
	A3.1	Main Screen	396
	A3.2	Hierarchy Edit Screen	397
	A3.3	Draw Screen	397
	Glossar	y	399
	Index of	f Pajek and R Commands	409
	Subject	Index	414

Figures

1	Dependencies between the chapters (for the second	
	edition).	<i>page</i> xxvii
2	Sociogram of dining-table partners.	4
3	Partial listing of a multiple relations network data file for	r
	Pajek.	9
4	Pajek Main screen.	11
5	Menu structure in Pajek.	13
6	An information box in Pajek.	13
7	Report screen in Pajek.	16
8	Dialog box of Info> Network> General command.	17
9	Draw screen in Pajek.	18
10	Continue dialog box.	20
11	A selected option in the Draw screen.	22
12	Options menu of the Draw screen.	23
13	Textual output from [Draw] Info> All Properties.	23
14	A 3-D rendering of the dining-table partners network.	25
15	Random network without lines.	27
16	Edit Network screen.	28
17	World trade of manufactures of metal and world system	
	position.	38
18	Edit screen with partition according to world system	
	position.	39
19	Vertex colors according to a partition in Pajek.	41
20	Trade ties within South America.	44
21	The Partitions menu.	45
22	World system positions in South America: (2)	
	semiperiphery and (3) periphery.	45
23	Trade in manufactures of metal among continents (impo	orts
	in thousands of U.S. dollars).	46
24	Trade among continents in the Draw screen.	48

 $\mathbf{x}\mathbf{v}$

978-1-107-00238-8 - Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition

Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj

Frontmatter

	T
XV1	Figures

25	Contextual view of trade in South America.	49
26	Geographical view of world trade in manufactures of	52
27	metal, ca. 1994.	52
27	Info>Vector dialog box.	52 55
28 29	Trade, position in the world system, and GDP per capita. Aggregate trade in manufactures of metal among world	33
	system positions.	64
30	Contextual view of North American trade ties and (mean)	
	GDP per capita.	65
31	Visiting ties in Attiro.	72
32	A simple unconnected directed network.	77
33	Strong components (contours) and family-friendship	
	groupings (vertex colors and numbers) in the network	
	of Attiro.	80
34	<i>k</i> -cores in the visiting network at Attiro.	82
35	k-cores.	83
36	Stacking or nesting of <i>k</i> -cores.	83
37	The complete triad and an example.	85
38	A hierarchy of cliques.	87
39	Viewing a hierarchy in an Edit screen.	88
40	Complete triads and family-friendship groupings (colors	
	and numbers inside vertices).	89
41	Decision tree for the analysis of cohesive subgroups.	91
42	A Person–Other–Object (X) triple.	98
43	P-O-X triple as a signed digraph.	98
44	A balanced network.	100
45	First positive and negative choices between novices at <i>T</i> 4.	102
46	Output listing of a <i>Balance</i> command.	105
47	Three solutions with one error.	106
48	Partial listing of Sampson.net.	108
49	Differences between two solutions with four classes.	114
50	A fragment of the Scottish directorates network.	119
51	One-mode network of firms created from the network in	
	Figure 50.	120
52	One-mode network of directors derived from Figure 50.	121
53	Islands in the network of Scottish firms, 1904–1905	
	(contours added manually).	125
54	The islands network of Scottish firms (1904–1905) with	
	industrial categories (class numbers) and capital (vertex	
	size).	127
55	Islands in three dimensions.	130
56	Coordinate system of Pajek.	130
57	A landscape of islands in the Scottish firms network.	131
58	Communication ties within a sawmill.	142

978-1-107-00238-8 - Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition

Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj

Frontmatter

Figur	es		xvii
59	Star-networks and line-networks.	144	
60	Distances to or from Juan (vertex colors: Default		
	GreyScale 1).	148	
61	Geodesics between HP-1 and EM-4.	149	
62		152	
63	Communication network of striking employees.	160	
64	Cut-vertices (gray) and bi-components (manually circled)	100	
٠.	in the strike network.	163	
65	Hierarchy of bi-components and bridges in the strike	100	
00	network.	166	
66	Three connected triads.	167	
67	Alejandro's ego-network.	168	
68	Proportional strength of ties around Alejandro.	169	
69	Constraints on Alejandro.	170	
70	Energized constraint network.	172	
71	Five brokerage roles of actor v .	174	
72	Bob's ego-network.	175	
73	Constraint inside groups.	176	
74	Two overlapping cliques.	181	
75	Friendship ties among superintendents and year of	101	
, 0	adoption.	188	
76	Adoption of the modern math method: diffusion curve.	190	
77	Diffusion by contacts in a random network ($N = 100$,	1,0	
	vertex numbers indicate the distance from the source		
	vertex).	190	
78	Diffusion from a central and a marginal vertex.	191	
79	Adoption (vertex color) and exposure (in brackets) at the	17.1	
, ,	end of 1959.	194	
80	Modern math network with arcs pointing toward later		
	adopters.	198	
81	Visiting ties and prestige leaders in San Juan Sur.	216	
82	Partitions menu in Pajek.	221	
83	Distances to family 47 (represented by the numbers within		
	the vertices).	223	
84	Proximity prestige in a small network.	227	
85	Student government discussion network.	235	
86	An example of a network with ranks.	237	
87	Triad types with their sequential numbers in Pajek.	238	
88	Strong components in the student government discussion		
	network.	245	
89	Acyclic network with shrunk components.	245	
90	Clusters of symmetric ties in the student government		
	network.	247	

978-1-107-00238-8 - Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition

Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj

Frontmatter

More information

xviii Figures

91	Discussion network shrunk according to symmetric clusters.	247
92	Symmetric components in the (modified) student government discussion network.	248
93	The order of symmetric clusters according to the depth	
	partition (acyclic).	250
94 95	Ranks in the student government discussion network. Three generations of descendants to Petrus Gondola (years	251
	of birth).	261
96	Ore graph.	262
97	Descendants of Petrus Gondola and Ana Goce.	264
98	Shortest paths between Paucho and Margarita Gondola.	265
99	Structural relinking in an Ore graph.	270
100	P-graph.	271
101	Structural relinking in a P-graph.	272
102	Fragment of relinking grandchildren.	275
103	Centrality literature network in layers according to year of publication.	280
104	<i>k</i> -cores in the centrality literature network (without	200
104	isolates).	282
105	Traversal weights in a citation network.	283
106	A main path in the centrality literature network.	286
107	Main path component of the centrality literature network	
	(not all names are shown here).	287
108	Communication lines among striking employees.	300
109	The matrix of the strike network sorted by ethnic and age	
	groups.	302
110	A network and a permutation.	303
111 112	Partial listing of the strike network as a binary matrix. The strike network permuted according to ethnic and age	304
	groups.	305
113	Part of the permuted strike network displayed as a binary	
	network.	306
114	Hypothetical ties among two instructors (i) and three	000
	students (s).	306
115	A dendrogram of similarities.	308
116	Imports of miscellaneous manufactures of metal and world	300
110	system position in 1980.	309
117	Hierarchical clustering of the world trade network.	312
118	Hierarchical clustering of countries in the Hierarchy Edit	312
110	screen.	313
119	An ideal core-periphery structure.	315
120		316
	Image matrix and shrunk network.	318
121	Error in the imperfect core-periphery matrix.	318

978-1-107-00238-8 - Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition

Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj

Frontmatter

Figur	Figures		
122	Optimize Partition dialog box.	319	
123	Output of the <i>Optimize Partition</i> procedure.	320	
124	Random Start dialog box.	321	
125	Matrix of the student government network.	323	
126	Image matrix and error matrix for the student government		
	network.	324	
127	Assembling a blockmodel in Pajek.	326	
128	Random versions of a small friendship network.	337	
129	Political blogosphere, United States, February 8, 2005.	339	
130	Small-world random graph generation: ring of local lines		
	(left) and rewired lines (right).	346	
131	Log-log degree distributions of the blogs network: absolute		
	frequencies (left) and cumulative proportions (right).	352	
132	Read Network dialog box.	370	
133	A network in Pajek matrix format.	371	
134	Editing vertex labels.	372	
135	Edit Network screen.	372	
136	An empty network in Pajek Arcs/Edges format.	374	
137	A network in the Pajek Arcs/Edges format.	375	
138	A network in the Pajek matrix format.	375	
139	A two-mode network in the Pajek Arcs/Edges format.	376	
140	Four tables in the world trade database (MS Access 97).	377	
141	Contents of the Countries table (partial).	377	
142	A lookup to the <i>Countries</i> table.	378	
143	Export a report to plain text.	379	
144	Tables and relations in the database of Scottish companies.	381	
145	The Options screen.	389	
146	Layout of a vertex and its label.	390	
147	The x/y ratio of a vertex.	391	
148	The position and orientation of a line label.	393	
149	Gradients in SVG export: linear (left) and radial (right).	395	

More information

Cambridge University Press 978-1-107-00238-8 - Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj Frontmatter

Tables

1	Tabular output of the command <i>Info> Partition</i> .	page 39
2	Distribution of GNP per capita in classes.	53
3	Output of the <i>Info</i> command.	59
4	Cross-tabulation of world system positions (rows) and GD	P
	per capita (columns).	66
5	Frequency distribution of degree in the symmetrized	
	network of visits.	76
6	Error score with all choices at different moments ($\alpha = .5$).	109
7	Error score with first choices only ($\alpha = .5$).	115
8	Line multiplicity in the one-mode network of firms.	123
9	Frequency tabulation of coordinator roles in the strike	
	network.	177
10	Adoption in the modern math network.	192
11	Adoption rate and acceleration in the modern math	
	diffusion curve.	201
12	Fragment of Table 11.	204
13	Indegree listing in Pajek.	218
14	Input domain of f47.	224
15	Size of input domains in the visiting relations network.	225
16	Balance-theoretic models.	240
17	Triad census of the example network.	241
18	Triad census of the student government network.	243
19	Number of children of Petrus Gondola and his male	
	descendants.	267
20	Size of sibling groups in 1200–1250 and 1300–1350.	269
21	Birth cohorts among men and women.	277
22	Traversal weights in the centrality literature network.	285
23	Dissimilarity scores in the example network.	308
24	Cross-tabulation of initial (rows) and optimal partition	
	(columns).	321

xxi

xxii	Tables			
		Final image matrix of the world trade network.	322	
	26	Monte Carlo simulation results: confidence intervals for the simple undirected blogs network.	357	
	27	Names of colors in Pajek.	391	

Preface to the Second Edition

I go with him out in a shed in back and see he is selling a whole Harley machine in used parts, except for the frame, which the customer already has. He is selling them all for \$125. Not a bad price at all.

Coming back I comment, "He'll know something about motorcycles before he gets *those* together."

Bill laughs. "And that's the best way to learn, too."

Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance

To some of its readers, this book is an introduction to social network analysis; to other readers, it is a manual to Pajek software (http://pajek.imfm.si/doku.php). To us, it is both. As Patrick Doreian argued in his review of our book [In: Social Networks 28 (2006) 269–274], an understanding of social network analysis is required for proper use of Pajek, and, vice versa, understanding the concepts and logic of Pajek fosters comprehension of network concepts. In this second edition, we have aimed to strengthen both aspects, updating the discussion of the Pajek interface and commands to include several capabilities that have been implemented since we submitted the text of the first edition, such as multiplex networks (Section 1.3.1), eigenvector centrality (Section 6.5), matrix multiplication (Section 11.3), and using Pajek output in R (Chapters 5 and 13). The new capabilities cover some important advances in social network analysis, including random graph models to which we have dedicated a new chapter.

We expanded the Further Reading sections with references to seminal, often-cited texts. This should allow the reader to trace the literature on the selected topic in bibliographic and citation databases. For more comprehensive lists of literature, we refer to two other volumes in this series: S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications (Cambridge: Cambridge University Press, 1994) and P. J. Carrington, J. Scott, and S. Wasserman, Models and Methods in Social Network Analysis (Cambridge: Cambridge University Press, 2005).

xxiii

xxiv Preface to the Second Edition

A concise history of social network analysis is published in L. C. Freeman, *The Development of Social Network Analysis: A Study in the Sociology of Science* (Vancouver, Canada: Empirical Press, 2004).

We hope that this second edition will continue to stimulate analysts to sharpen their understanding of social networks and expand their command of network analytic tools.

Preface to the First Edition

In the social sciences, social network analysis has become a powerful methodological tool alongside statistics. Network concepts have been defined, tested, and applied in research traditions throughout the social sciences, ranging from anthropology and sociology to business administration and history.

This book is the first textbook on social network analysis integrating theory, applications, and professional software for performing network analysis. It introduces structural concepts and their applications in social research with exercises to improve skills, questions to test understanding, and case studies to practice network analysis. In the end, the reader will have the knowledge, skills, and tools to apply social network analysis.

We stress learning by doing: Readers acquire a feel for network concepts by applying network analysis. To this end, we make ample use of professional computer software for network analysis and visualization: Pajek. This software, operating under Windows 95 and later, and all example datasets are provided on a Web site (http://vlado.fmf.uni-lj.si/pub/networks/book/) dedicated to this book. All the commands that are needed to produce the graphical and numerical results presented in this book are extensively discussed and illustrated. Step by step, the reader can perform the analyses presented in the book.

Note, however, that the graphical display on a computer screen will never exactly match the printed figures in this book. After all, a book is not a computer screen. Furthermore, newer versions of the software will appear, with features that may differ from the descriptions presented in this book. We strongly advise using the version of Pajek software supplied on the book's Web site (http://vlado.fmf.uni-lj.si/pub/networks/book/) while studying this book and then updating to a newer version of Pajek afterward, which can be downloaded from http://vlado.fmf.uni-lj.si/pub/networks/pajek/default.htm.

XXV

xxvi Preface to the First Edition

Overview

This book contains five parts. The first part (Part I) presents the basic concepts of social network analysis. The next three parts present the three major research topics in social network analysis: cohesion (Part II), brokerage (Part III), and ranking (Part IV). We claim that all major applications of social network analysis in the social sciences relate to one or more of these three topics. The final part (Part V) discusses an advanced technique (viz., blockmodeling), which integrates the three research topics.

The first part, titled Fundamentals, introduces the concept of a network, which is obviously the basic object of network analysis, and the concepts of a partition and a vector, which contain additional information on the network or store the results of analyses. In addition, this part helps the reader get started with Pajek software.

Part II on cohesion consists of three chapters, each of which presents measures of cohesion in a particular type of network: ordinary networks (Chapter 3), signed networks (Chapter 4), and valued networks (Chapter 5). Networks may contain different types of relations. The ordinary network just shows whether there is a tie between people, organizations, or countries. In contrast, signed networks are primarily used for storing relations that are either positive or negative such as affective relations: liking and disliking. Valued networks take into account the strength of ties, for example, the total value of the trade from one country to another or the number of directors shared by two companies.

Part III on brokerage focuses on social relations as channels of exchange. Certain positions within the network are heavily involved in the exchange and flow of information, goods, or services; whereas others are not. This is connected to the concepts of centrality and centralization (Chapter 6) or brokers and bridges (Chapter 7). Chapter 8 discusses an important application of these ideas, namely, the analysis of diffusion processes.

The direction of ties (e.g., who initiates the tie) is not very important in the section on brokerage, but it is central to ranking, presented in Part IV. Social ranking, it is assumed, is connected to asymmetric relations. In the case of positive relations, such as friendship nominations or advice seeking, people who receive many choices and reciprocate few choices are deemed as enjoying more prestige (Chapter 9). Patterns of asymmetric choices may reveal the stratification of a group or society into a hierarchy of layers (Chapter 10). Chapter 11 presents a particular type of asymmetry, namely, the asymmetry in social relations caused by time: genealogical descent and citation.

978-1-107-00238-8 - Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition

Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj

Frontmatter

More information

Preface to the First Edition

xxvii

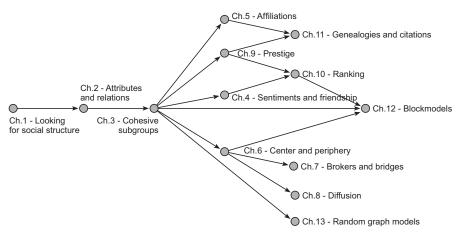


Figure 1. Dependencies between the chapters (for the second edition).

The final section, Part V, on roles concentrates on rather dense and small networks. This type of network can be visualized and stored efficiently by means of matrices. Blockmodeling is a suitable technique for analyzing cohesion, brokerage, and ranking in dense, small networks. It focuses on positions and social roles (Chapter 12).

The book is intended for researchers and managers who want to apply social network analysis and for courses on social network analysis in all social sciences as well as other disciplines using social methodology (e.g., history and business administration). Regardless of the context in which the book is used, Chapters 1, 2, and 3 must be studied to understand the topics of subsequent chapters and the logic of Pajek. Chapters 4 and 5 may be skipped if the researcher or student is not interested in networks with signed or valued relations, but we strongly advise including them to be familiar with these types of networks. In Parts III (Brokerage) and IV (Ranking), the first two chapters present basic concepts and the third chapter focuses on particular applications.

Figure 1 shows the dependencies among the chapters of this book. To study a particular chapter, all preceding chapters in this flowchart must have been studied before. Chapter 10, for instance, requires understanding of Chapters 1 through 4 and 9. Within the chapters, there are no sections that can be skipped.

In an undergraduate course, Parts I and II should be included. A choice can be made between Part III and Part IV; or, alternatively, just the first chapter from each section may be selected. Part V on social roles and blockmodeling is quite advanced and more appropriate for a postgraduate course. For managerial purposes, Part III is probably more interesting than Part IV.

xxviii Preface to the First Edition

Justification

This book offers an introduction to social network analysis, which implies that it covers a limited set of topics and techniques, which we feel a beginner must master to be able to find his or her way in the field of social network analysis. We have made many decisions about what to include and what to exclude, and we want to justify our choices now.

As reflected in the title of this book, we restrict ourselves to exploratory social network analysis. The testing of hypotheses by means of statistical models falls outside the scope of this book. In social network analysis, hypothesis testing is important but complicated; it deserves a book on its own. Aiming our book at people who are new to social network analysis, our first priority is to have them explore the structure of social networks to give them a feel for the concepts and applications of network analysis. Exploration involves visualization and manipulation of concrete networks, whereas hypothesis testing boils down to numbers representing abstract parameters and probabilities. In our view, exploration yields the intuitive understanding of networks and basic network concepts that are a prerequisite for well-considered hypothesis testing.

From the vast array of network analytic techniques and indices we discuss only a few. We have no intention of presenting a survey of all structural techniques and indices because we fear that readers will not be able to see the forest for the trees. We focus on as few techniques and indices as are needed to present and measure the underlying concept. With respect to the concept of cohesion, for instance, many structural indices have been proposed for identifying cohesive groups: *n*-cliques, *n*-clans, *n*-clubs, *m*-cores, *k*-cores, *k*-plexes, lambda sets, and so on. We discuss only components, *k*-cores, 3-cliques, and *m*-slices (*m*-cores) because they suffice to explain the basic parameters involved: density, connectivity, and strength of relations within cohesive subgroups.

Our choice is influenced by the software that we use because we have decided to restrict our discussion to indices and techniques that are incorporated in this software. Pajek software is designed to handle very large networks (up to millions of vertices). Therefore, this software package concentrates on efficient routines, which are capable of dealing with large networks. Some analytical techniques and structural indices are known to be inefficient (e.g., the detection of *n*-cliques), and for others no efficient algorithm has yet been found or implemented. This limits our options; we present only the detection of small cliques (of size 3), and we cannot extensively discuss an important concept such as *k*-connectivity. In summary, this book is neither a complete catalogue of network analytic concepts and techniques nor an exhaustive manual to all commands of Pajek. It offers just enough concepts, techniques, and skills to understand and perform all major types of social network analysis.

Preface to the First Edition

xxix

In contrast to some other handbooks on social network analysis, we minimize mathematical notation and present all definitions verbatim. There are no mathematical formulae in the book. We assume that many students and researchers are interested in the application of social network analysis rather than in its mathematical properties. As a consequence, and this may be very surprising to seasoned network analysts, we do not introduce the matrix as a data format and display format for social networks until the end of the book.

Finally, there is a remark on the terminology used in the book. Social network analysis derives its basic concepts from mathematical graph theory. Unfortunately, different "vocabularies" exist within graph theory, using different concepts to refer to the same phenomena. Traditionally, social network analysts have used the terminology employed by Frank Harary, for example, in his book *Graph Theory* (Reading: Addison-Wesley, 1969). We choose, however, to follow the terminology that prevails in current textbooks on graph theory, for example, R. J. Wilson's *Introduction to Graph Theory* (Edinburgh: Oliver and Boyd, 1972; published later by Wiley, New York). Thus, we hope to narrow the terminological gap between social network analysis and graph theory. As a result, we speak of a vertex instead of a node or a point, and some of our definitions and concepts differ from those proposed by Frank Harary.

Acknowledgments

The text of this book has benefited from the comments and suggestions from our students at the University of Ljubljana and the Erasmus University Rotterdam, who were the first to use it. In addition, Michael Frishkopf and his students of musicology at the University of Alberta gave us helpful comments. Mark Granovetter, who welcomed this book to his series, and his colleague Sean Farley Everton have carefully read and commented on the chapters. In many ways, they have helped us make the book more coherent and understandable to the reader. We are also very grateful to an anonymous reviewer, who carefully scrutinized the book and made many valuable suggestions for improvements. Ed Parsons (Cambridge University Press) and Nancy Hulan (TechBooks) helped us through the production process. Finally, we thank the participants of the workshops we conducted at the Sunbelt International Conferences on Social Network Analysis in New Orleans (XXII) and Cancun (XXIII) for their encouraging reactions to our manuscript.

Most datasets that are used in this book have been created from sociograms or listings printed in scientific articles and books. Notwithstanding our conviction that reported scientific results should be used

xxx Preface to the First Edition

and distributed freely, we have tried to trace the authors of these articles and books and ask for their approval. We are grateful to have obtained explicit permission for using and distributing the datasets from them. Authors or their representatives whom we have not reached are invited to contact us.