Digital Front-End in Wireless Communications and Broadcasting

Circuits and Signal Processing

Covering everything from signal processing algorithms to integrated circuit design, this complete guide to digital front-end is invaluable for professional engineers and researchers in the fields of signal processing, wireless communication, and circuit design. Showing how theory is translated into practical technology, it covers all the relevant standards and gives readers the ideal design methodology to manage a rapidly increasing range of applications. Step-by-step information for designing practical systems is provided, with a systematic presentation of theory, principles, algorithms, standards, and implementation. Design trade-offs are also included, as are practical implementation examples from real-world systems. A broad range of topics is covered, including digital pre-distortion (DPD), digital up-conversion (DUC), digital down-conversion (DDC), and DC-offset calibration. Other important areas discussed are peak-to-average power ratio (PAPR) reduction, crest factor reduction (CFR), pulse-shaping, image rejection, digital mixing, delay/gain/imbalance compensation, error correction, noise-shaping, numerically controlled oscillator (NCO), and various diversity methods.

Fa-Long Luo, Ph.D., is Chief Scientist of two leading international companies on software defined radio and wireless multimedia with headquarters in Silicon Valley, California. He has 27 years of research and industrial experiences in multimedia, communication, and broadcasting with real-time implementation, applications, and standardizations with worldwide high recognition. He has authored two books, more than 100 technical papers, and 18 patents in these and closely related fields.

Digital Front-End in Wireless Communications and Broadcasting

Circuits and Signal Processing

Edited by FA-LONG LUO Element CXI, California

Cambridge University Press 978-1-107-00213-5 — Digital Front-End in Wireless Communications and Broadcasting Edited by Fa-Long Luo Frontmatter <u>More Information</u>

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107002135

© Cambridge University Press 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Digital front-end in wireless communications and broadcasting : circuits and signal processing / edited by Fa-Long Luo.
p. cm.
ISBN 978-1-107-00213-5 (hardback)
1. Radio – Transmitters and transmission. 2. Digital communications. 3. Signal processing – Digital techniques. 4. Radio circuits. I. Luo, Fa-Long.
TK6561.D54 2011
621.384'12–dc22

2011010608

ISBN 978-1-107-00213-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List of contributors Preface	<i>page</i> xii xvii		
Part I In	roduction to digital front-end	1		
1	Introduction to wireless communications and digital broadcasting Hongxiang Li, Guanying Ru, Siqian Liu, Hui Liu, and Jenq-Neng Hwang			
	 Evolution of mobile cellular networks Evolution of broadcast network Key technologies Conclusions References 	4 9 15 23 24		
2	Basic principles and protocols of digital wireless communications Dimitra I. Kaklamani and Panagiotis K. Gkonis			
	 2.1 Introduction 2.2 Digital processing, transmission, and reception 2.3 The WCDMA/OFDMA physical layer protocols 2.4 General principles of MIMO systems 2.5 Space-time and space-frequency transmission over MIMO networks 2.6 Summary References 	28 29 32 39 44 48 48		
3	Digital front-end and system overview in wireless communication Eduard Bertran and Maurizio Pagani			
	 3.1 Introduction 3.2 New objectives and technologies in modern wireless communication systems 3.3 Other emerging standards beyond 3G 	50 56 76		
	3.4 DFE introductory design considerations3.5 Conclusions	79 91		

vi	Cont	Contents				
		List of abbreviations (Chapter 3) References	91 95			
))			
4	-	em overview and front-end technologies in digital broadcasting				
	Franc	esc Tarres and Eduard Bertran	98			
	4.1	Introduction	98			
	4.2	Broadcast mobile multimedia services	102			
	4.3	Common technologies for digital mobile broadcast services	103			
	4.4	Most relevant standards for digital broadcasting to mobile devices	105			
	4.5	Technology aspects of DFE in transmitters	111			
	4.6	Conclusions	116			
		List of abbreviations (Chapter 4)	116			
		References	118			
5	Digit	Digital front-end for multiple standards and multimode compatibility				
		rd Bertran	120			
	5.1	Introduction	120			
	5.2	Receiver architectures	122			
	5.3	Analog-to-digital converters	126			
	5.4	Preselect filters and LNA interface for multiband receivers	128			
	5.5	Power amplifier architectures in multimode-multiband transmitters	130			
	5.6	Conclusions	135			
		List of abbreviations (Chapter 5)	136			
		References	137			
Part II	DPD and	d CFR	141			
6	Gene	eral principles and design overview of digital predistortion				
-		il Braithwaite	143			
	6.1	Introduction	143			
	6.2	Power amplifier nonlinearity	143			
	6.3	Digital predistortion overview	150			
	6.4	Digital predistortion basics	160			
	6.5	Advanced topics in DPD	177			
	6.6	Concluding comments	187			
		References	189			
7	Power amplifier nonlinear modeling for digital predistortion					
	Gabriel Montoro and Pere L. Gilabert					
	7.1	Introduction	192			

Cambridge University Press 978-1-107-00213-5 — Digital Front-End in Wireless Communications and Broadcasting Edited by Fa-Long Luo Frontmatter <u>More Information</u>

	Contents 7.3 Power amplifier behavioral models for digital predistortion 7.4 Discussion References Look-up table based digital predistortion schemes and implementation Pere L. Gilabert and Gabriel Montoro			
	7.3 Power amplifier behavioral models for digital predistortion	196		
	7.4 Discussion	210		
	References	211		
8				
	Pere L. Gilabert and Gabriel Montoro	214		
	8.1 Introduction	214		
	8.2 Look-up table based schemes	215		
	8.3 FPGA implementation of an LUT-based DPD	219		
	8.4 Discussion	240		
	References	241		
9	Digital predistortion and its combination with crest factor reduction			
	Anding Zhu	244		
	9.1 Principles of operation	245		
	9.2 DPD models	246		
	9.3 Model extraction structures	255		
	9.4 Bandwidth and sampling rate requirements	257		
	9.5 System characterization procedures	259		
	9.6 Implementation considerations	264		
	9.7 Combination with crest factor reduction	270		
	9.8 Conclusions and future outlook	276		
	References	277		
10	Adaptive digital baseband predistortion: design and implementation			
	Hua Qian and G. Tong Zhou	280		
	10.1 Introduction	280		
	10.2 Power amplifier nonlinearity behavior and modeling	281		
	10.3 Digital predistortion modeling	286		
	10.4 Predistortion implementation challenges	298		
	10.5 Conclusions	305		
	References	305		
11	Crest factor reduction techniques			
	Nuno Borges Carvalho and Wohoon Jang	309		
	11.1 Introduction	309		
	11.2 Multi-carrier communication systems	311		
	11.3 CF reduction using clipping plus filtering	319		
	11.4 Conclusion	326		
	References	326		

viii

Contents

Part II	I DUC, DD	IC, ADC, DAC, and NCO	331			
12	-	al down-conversion and up-conversion: theory and implementation	333			
	Yue Zhang, Taiwen Tang, Kok-Keong Loo, Ben Allen, and Dayou Li					
	12.1	Introduction	334			
	12.2	Multi-rate, multi-stage, and filter-banks in DDC and DUC	339			
	12.3	Mixing and combining for multi-channels and multi-carriers	348			
	12.4	Hardware implementation for digital down-conversion	352			
	12.5	Hardware implementation for digital up-conversion	370			
	12.6	Summary	377			
		References	378			
13	A/D a	nd D/A data conversion for wireless communications transceivers				
	Jerzy [Dąbrowski	380			
	13.1	A/D conversion in RF receiver	381			
	13.2	ADC for heterodyne and low-IF receiver	386			
	13.3	Digital down-conversion	389			
	13.4	Implementation of ADCs in communications receivers	392			
	13.5	D/A conversion in RF transmitter	397			
	13.6	Digital up-conversion	402			
	13.7	Implementation of DACs in communications transmitters	402			
	13.8	Summary	409			
		References	410			
14	Advanced quadrature sigma-delta modulator designs for A/D interface					
	Mikko	Valkama, Jaakko Marttila, and Markus Allén	413			
	14.1	Sigma-delta basics	413			
	14.2	Considerations on further modulator concepts	427			
	14.3	Advanced modulators	431			
	14.4	Nonidealities in quadrature sigma-delta modulators	434			
	14.5	Examples on complex multiband transfer function design	439			
	14.6	Conclusion	445			
		References	446			
15	Digita	Digital suppression of A/D interface nonlinearities				
	Mikko Valkama, Markus Allén, and Jaakko Marttila					
	15.1	Introduction to ADC nonlinearities	452			
	15.2	Look-up table	456			
	15.3	Dithering	458			
	15.4	Model inversion	459			
	15.5	Adaptive interference cancellation	460			

Cambridge University Press 978-1-107-00213-5 — Digital Front-End in Wireless Communications and Broadcasting Edited by Fa-Long Luo Frontmatter <u>More Information</u>

	Conte	nts	іх		
	15.6	IF 8 F F F F F F F F F F F F F F F F F F	465		
	15.7	Performance examples of online post-processing methods	467		
	15.8		470		
		References	471		
Part IV	Digital c	alibration, imbalance compensation, and error corrections	473		
16	Digital compensation and calibration of I/Q gain and phase imbalances				
	Lauri A	Anttila, Yaning Zou, and Mikko Valkama	475		
	16.1	Introduction	475		
	16.2	I/Q modulation and direct-conversion radio architecture	476		
	16.3	I/Q imbalance signal modeling	477		
	16.4	Compensation and calibration methods	482		
	16.5	Design and testing examples	494		
	16.6	Conclusions	497		
		References	498		
17	Joint	digital predistortion of I/Q modulator and power amplifier impairments			
	Mikko	Valkama and Lauri Anttila	502		
	17.1	Introduction	502		
	17.2	Effects of IQM impairments on PA intermodulation products			
		and predistorter estimation	504		
	17.3	Joint PA and IQM predistortion	510		
	17.4		514		
	17.5	*	519		
	17.6	Conclusions	527		
		References	528		
18		sity and error compensation in OFDM transceivers: principles and			
	•	mentation isa Wada	531		
	18.1	Introduction	531		
	18.2	OFDM transceivers: principles and design	532		
	18.3	Adaptive antenna array and diversity	547		
	18.4	Error detection and compensation	556		
	18.5	Hardware implementation and system integration	563		
	18.6	Conclusions	571		
		References	571		

Cambridge University Press
978-1-107-00213-5 – Digital Front-End in Wireless Communications and Broadcasting
Edited by Fa-Long Luo
Frontmatter
More Information

X	Conte	nts			
19	Front-end architectures and impairment corrections in multimode and multi-antenna systems Guillaume Villemaud, Jacques Verdier, Matthieu Gautier, Ioan Burciu, and Pierre-François Morlat 57				
	19.1	Introduction	573		
	19.2 19.3	State of the art of multi-* receivers Mixed analog–digital front-end architecture for multiband simultaneous	574		
		reception	580		
	19.4	Some methods for simplifying analog parts of multi-antenna front-ends	585		
	19.5		591		
	19.6	Conclusions References	598 599		
			575		
Part V	Circuits a	and system integration in digital front-end	601		
20	Integ i Steven	ration and interface of digital front-end with analog front-end	603		
	20.1	Introduction	603		
	20.2	8	604		
	20.3 20.4		610 618		
	20.4	References	619		
21	Circuits and systems for digital front-ends to support multiple wireless standards				
		n Elahi and Khurram Muhammad	620		
	21.1	Introduction	620		
	21.2	Major Functions of the DFE	621		
	21.3	1	622		
	21.4	0 11	626		
	21.5	11	646		
	21.6	Conclusions References	648 648		
		Keleicies	040		
22	Programming models and implementation platforms for software defined radio configuration				
	Tanguy Risset, Riadh Ben Abdallah, Antoine Fraboulet, and Jérôme Martin 65				
	22.1	Introduction	650		
	22.2	Programming environment and tools for SDR	650		
	22.3	An existing radio virtual machine implementation	658		
	22.4		668		
		References	668		

	Conte	nts	xi		
23	-	ammable discrete-time integrated receiver front-ends Filiol, Robert Klett, and Thomas Riley	671		
	23.1	Background	671		
	23.2	Theory	675		
	23.3	Zero intermediate frequency receivers	684		
	23.4	Low intermediate frequency receivers	688		
	23.5	Case study of a super-heterodyne AM/FM radio receiver	692		
	23.6	Summary and conclusions	703		
	23.7	Acknowledgements	704		
		References	704		
24		-port front-end and transceivers for V-band multi-gigabit/s nunication systems			
	Serioja Ovidiu Tatu, Emilia Moldovan, and Sofiene Affes				
	24.1	Introduction	707		
	24.2	Multi-port interferometer theory	709		
	24.3	Multi-port V-band practical implementation, modeling, and analysis	718		
	24.4	Proposed transceiver architectures	722		
	24.5	Advanced system simulations	727		
	24.6	Conclusion	731		
		References	731		
25	Cross-layer design and digital front-end for cognitive wireless link				
	Matthieu Gautier, Guillaume Villemaud, Cedric Lévy-Bencheton, Dominique Noguet, and Tanguy Risset				
	25.1	Introduction to flexible cognitive wireless link	733		
	25.2	A high-level optimization for SDR: multimode relaying	736		
	25.3	Implementation of the PHY sensing block: example of			
		TV white space sensing	747		
	25.4	Conclusion	755		
		References	756		
	Index		758		

Contributors

Ben Allen University of Bedfordshire, UK

Markus Allén Tampere University of Technology, Tampere, Finland

Sofiene Affes INRS-EMT, Montreal, Quebec, Canada

Lauri Anttila Tampere University of Technology, Tampere, Finland

Riadh Ben Abdallah Université de Lyon, INRIA, INSA-Lyon, CITI, France

Eduard Bertran Technical University of Catalonia -- UPC, Spain

R. Neil Braithwaite Powerwave Technologies, Santa Ana, CA, USA

loan Burciu Université de Lyon, INRIA, INSA-Lyon, CITI, France

Nuno Borges Carvalho Universidade de Aveiro, Portugal

Jerzy Dąbrowski Linköping University, Sweden

Imtinan Elahi Masdar Institute, Abu Dhabi, UAE

List of contributors

Norm Filiol Kaben Wireless Silicon Inc., Ottawa, Canada

Antoine Fraboulet Université de Lyon, INRIA, INSA-Lyon, CITI, France

Matthieu Gautier CEA, LETI, Minatec, Grenoble, France

Pere L. Gilabert Technical University of Catalonia -- UPC, Spain

Panagiotis K. Gkonis National Technical University of Athens, Greece

Jenq-Neng Hwang University of Washington, Seattle, USA

Wohoon Jang Universidade de Aveiro, Portugal

Dimitra I. Kaklamani National Technical University of Athens, Greece

Robert Klett Kaben Wireless Silicon Inc., Ottawa, Canada

Cedric Lévy-Bencheton Université de Lyon, INRIA, INSA-Lyon, CITI, France

Dayou Li University of Bedfordshire, UK

Hongxiang Li North Dakota State University, USA

Hui Liu University of Washington, Seattle, USA

Siqian Liu North Dakota State University, USA

Steven Loh Samsung Telecommunications America, Inc., Richardson, TX, USA xiii

xiv List of contributors

Kok-Keong Loo Middlesex University, UK

Jerome Martin CEA-Leti, Minatec, Grenoble, France

Jaakko Marttila Tampere University of Technology, Tampere, Finland

Emilia Moldovan INRS-EMT, Montreal, Quebec, Canada

Gabriel Montoro Technical University of Catalonia -- UPC, Spain

Pierre-François Morlat Silicom, Toulouse, France

Khurram Muhammad Research In Motion, Irving, TX, USA

Dominique Noguet CEA, LETI, Minatec, Grenoble, France

Maurizio Pagani Ericsson, Vimodrone (MI), Italy

Hua Qian Shanghai Institute of Microsystem and Information Technology, China

Thomas Riley Kaben Wireless Silicon Inc., Ottawa, Canada

Tanguy Risset Université de Lyon, INRIA, INSA-Lyon, CITI, France

Guanying Ru North Dakota State University, USA

Taiwen Tang University of Toronto, Canada

Francesc Tarres Technical University of Catalonia -- UPC, Spain

List of contributors

Serioja Ovidiu Tatu INRS-EMT, Montreal, Quebec, Canada

Mikko Valkama Tampere University of Technology, Tampere, Finland

Jacques Verdier Université de Lyon, CNRS, INSA-Lyon, CITI, France

Guillaume Villemaud Université de Lyon, INRIA, INSA-Lyon, CITI, France

Tomohisa Wada University of the Ryukyus, Okinawa, Japan

Yue Zhang University of Bedfordshire, UK

G. Tong Zhou Georgia Institute of Technology, Atlanta, GA, USA

Anding Zhu University College Dublin, Ireland

Yaning Zou Tampere University of Technology, Tampere, Finland XV

Preface

With the rapid development and worldwide deployment of broadband wireless communication and digital broadcasting infrastructures, the use of digital processing technology in the front-end and radio frequency unit is growing explosively. Digital processing technology for front-end in transmitters and receivers of wireless communication and digital broadcasting covers a broad range of topics including digital predistortion (DPD), digital up-conversion (DUC), digital down-conversion (DDC), DC-offset calibration, peak-to-average power ratio (PAPR) or crest factor reduction (CFR), pulse-shaping, delay/gain/imbalance compensation, noise-shaping, numerically controlled oscillator (NCO), and conversion between the analog and digital domains. These digital processing technologies offer a number of advantages in power efficiency, cost reduction, time-tomarket, and flexibility for software defined radio (SDR) so as to support multiple standards and multimode applications. Unlike baseband processing, front-end is tightly connected to the radio frequency layer, therefore it imposes great limitations and difficulties on digital processing speed, memory, computational capability, power, size, data interfaces, and bandwidths. This suggests that digital processing and circuit implementation of front-end are very challenging tasks and require the huge efforts of the related industry, research, and regulatory authorities.

From an application and implementation design point of view, this book aims to be the first single volume to provide a comprehensive and highly coherent treatment on digital front-end and its system integration for multiple standards, multi-carrier and multimode in both broadband communications and digital broadcasting by covering basic principles, signal processing algorithms, silicon-convergence, design trade-off, and well-considered implementation examples.

This book is organized into twenty-five chapters in five parts.

Part I Introduction to digital front-end

The first part consists of five chapters aiming to present overviews of all the processing components of the digital front-end in both transmitters and receivers of broadband wireless communications and digital broadcasting with emphasis on orthogonal frequency-division multiplexing (OFDM) based systems. General principles and basics of digital wireless communications and digital broadcasting are also provided in the

xviii Preface

first two chapters. Chapter 1 first reviews the wireless evolution by looking at two major applications: cellular networks and TV broadcast networks. Then the discussion of Chapter 1 focuses on some key techniques including multiple-input multiple-output (MIMO) technique, OFDM, and cognitive radio. The purpose of Chapter 2 is mainly to provide an overview of the basic principles and protocols of digital transmission in wireless networks. The emphasis of this chapter is on transmission over MIMO networks with space-time and space-frequency transmission techniques being presented in alignment with the WCDMA/OFDMA physical layer protocols.

Chapter 3 is devoted to the front-end and system overview of broadband wireless communications. Firstly digital front-end and its key processing units are reviewed. Then this chapter presents new objectives and technologies for transmission and reception of modern wireless communication systems with emphasis on the front-end part. In particular, this chapter introduces some recent mobile communications standards, suitable for SDR developments because of their novelty and capability of reconfiguration including the standards in development under the umbrella of the IMT-Advanced Program. Also, this chapter addresses some new standards on the basis of cognitive radio strategies. More importantly, this chapter focuses on various aspects of how to design and implement digital front-end, covering transceivers and related power amplifiers, chip circuits, and their hardware processing platforms.

Chapter 4 presents a system overview and front-end technologies in digital broadcasting. Concepts such as multicast, return channel, video quality, and transcoding are presented in the context of broadcast mobile multimedia services, covering common modulation technologies, different alternatives for audio and video coding, most relevant standards, and proprietary systems for digital multimedia broadcasting. However, the emphasis of this chapter is on key technologies such as analog-to-digital conversion (ADC), digital-to-analog conversion (DAC), DDC, DUC, and power amplifier linearization for digital front-end processing in broadcast transmission and reception.

Digital front-end processing has begun to play an increasingly important role in wireless communication and broadcasting systems to support multiple standards and multimode compatibility, which is the focus of Chapter 5. In this chapter, an overview of the key structures of digital front-end for multiple bands and multiple modes is first presented. Then, this chapter outlines some important aspects regarding the analog-to-digital conversion for multiple and multiband applications as well as the preselect filters and low-noise amplifier (LNA) interface in multimode-multiband transmitters. Power amplifier architectures in multiple standards are also addressed at the end of this chapter.

Part II DPD and CFR

Six chapters in Part II mainly deal with principles, theory, algorithms, circuit designs, and hardware implementations on various computing platforms for digital predistortion and crest factor reduction so as to compensate for power amplifier nonlinearities and to reduce peak-to-average power ratio. With a tutorial style, Chapter 6 presents general principles and design overview of digital predistortion techniques. Chapter 6 first reviews

Preface

various nonlinear behaviors and their modeling of a power amplifier (PA) as well as the impact of the nonlinearity on the output spectrum and entire performance of a PA taking memory effects into account. Moreover, this chapter is devoted to providing the details of the basic algorithms, learning-rules, and model selections in designing and implementing a DPD scheme, and also provides comprehensive discussions on some advanced topics in digital predistortion technology.

Modeling of power amplifiers with nonlinearity and/or memory effects is the starting point to develop effective and practical digital predistortion algorithms and hardware implementations, which is the focus of Chapter 7. In this chapter, a comprehensive overview of the most widely used PA behavioral models is first presented on the basis of neural network modeling and Volterra series based modeling methods also taking dynamics of PA into account. Chapter 7 then provides various adaptive algorithms to estimate the parameters (coefficients) of these models so as to make a better compromise among performance, complexity, and accuracy when using these models to obtain the desired DPD schemes.

Chapter 8 mainly deals with look-up table (LUT) based digital predistortion schemes and implementations. The LUT-based DPD has been considered as the most efficient scheme because of its simplicity in computations and circuit implementations. This chapter covers the principles of LUT-based DPD schemes, the LUT organizations (the 1-D or 2-D table architecture), the optimum size of the LUT (trade-off between the data memory size and accuracy), and the indexing and spacing between entries within the LUT. As design references, some implementation examples using an FPGA platform for the LUT-based DPD schemes are also presented in this chapter.

Digital predistortion and its combination with crest factor reduction are addressed in Chapter 9. This chapter first discusses various issues in designing and implementing a practical DPD scheme including model extraction structures, the bandwidth and sampling rate requirements, and system characterization procedures. Then, the chapter introduces some of the widely used crest factor reduction techniques which are proposed to achieve higher power efficiency by reducing the peaks of the transmit signal to a satisfactory level before digital predistortion and allowing a PA to be operated at higher average power.

Chapter 10 is devoted to one of the most important aspects in compensating for the nonlinearity and memory effect of a PA: that is, design and implementation of adaptive digital baseband predistortion. Through implementation examples and their performance, this chapter covers learning architectures for adaptively modeling nonlinear power amplifiers, adaptive estimation algorithms of DPD coefficients, adaptive DPD architecture designs (filter selection, delay compensation, and signal scaling), and fixed-point implementation issues which take DSP, ASIC, FPGA, or other system-on-chip as computing platforms.

In Chapter 11, crest factor reduction techniques are extensively discussed from design to implementation so as to attack the high PAPR problem encountered in multiband-multicarrier communication and broadcasting systems. This chapter lists various crest factor reduction techniques and makes detailed comparisons in terms of throughput, error vector magnitude (EVM), bit error ratio (BER), and system complexity in order to help readers make the best compromise in designing and implementing a practical CFR scheme.

Part III DUC, DDC, ADC, DAC, and NCO

Organized into four chapters, Part III is devoted to technology and practice of digital upconversion, digital down-conversion, analog-to-digital conversion, digital-to-analog conversion, and numerically controlled oscillator including re-sampling theory, filtering algorithms, aliasing cancellation, combination, mixing, quantization noise, bit-width effect analyses, circuit designs, and hardware implementations. These are the key processing parts that connect radio frequency signals to baseband signals in all broadband wireless communication and digital broadcasting systems.

Chapter 12 deals with up-conversion of the discrete baseband signal stream into a high-resolution radio signal at the transmitter, and down-conversion of a high-resolution radio signal back into a baseband signal at the receiver by covering the basic principles and functionality of DUC and DDC in relation to conversion between intermediate frequency and baseband with the emphasis on the implementation of the DDC and DUC for standard wireless communication systems. Furthermore, this chapter discusses the multi-rate, multi-stage and filter-banks design, I/Q (In-phase/Quadrature) modulation and demodulation, and NCO design in DDC and DUC.

Chapter 13 discusses A/D and D/A data conversion used in the transceivers of wireless communication systems. For ADC, this chapter covers the fundamental specifications like sensitivity, selectivity, dynamic range (DR), equivalent number of bits (ENOB) and linearity constraints. For DAC, this chapter focuses on the fundamental transmitter specifications which include the EVM and the adjacent-channel-power-rejection (ACPR). To show how to meet the above specifications for practical transceivers in RF application systems, this chapter provides design and implementation examples of the state-of-the-art DAC and ADC using CMOS processes.

Design and implementation of advanced quadrature sigma-delta modulator for A/D interface are addressed in Chapter 14. This chapter first outlines the basics of sigma-delta modulation and then extends the discussions to some further modulator concepts (number of bit, stage and band, and related noise shaping). Next, the selected advanced quadrature structures with multi-stage and multiband are provided. In presenting the illustrating examples and their experimental results, this chapter further deals with implementation and design issues related to nonideal factors such as nonlinearity, jitter, and I/Q imbalance.

Chapter 15 deals with ADC nonlinearities and their digital suppression for radio transceivers. Some significant sources of ADC nonlinearities are first analyzed including gain error, offset error, clipping, differential nonlinearity (DNL), and integral nonlinearity (INL). This chapter then discusses the impact of these nonlinearities on ADC performance and presents several digital processing based methods to suppress them. These digital suppression methods mainly employ look-up table, dithering and model inversion. Moreover, some effective adaptive interference cancellation and interpolation techniques are provided in this chapter giving related performance testing examples.

Preface

ххі

Part IV Digital calibration, imbalance compensation, and error corrections

In addition to the nonlinearities and nonideal factors discussed in Part II and Part III, a number of other nonideal factors exist in transceivers of wireless communications and digital broadcasting from RF to baseband which include channel imbalance (gain, offset, and delay), I/Q mismatch, and synchronization error (RF, sampling rate, FFT window position, and symbol timing). More importantly, these nonideal factors impact on one another. Hence, more comprehensive digital processing techniques on the basis of joint-level, cross-layer, system-level, diversity (time, array, frequency), and error-tolerance principles are highly desirable in order to simultaneously perform digital calibration, imbalance compensation, and error correction in a practical and efficient way. This is the topic addressed in the four chapters of Part IV.

Chapter 16 is devoted to digital compensation and calibration of the I/Q gain and phase imbalances which are the main resource of the resulting mirror-frequency interference in direct-conversion type radio transmitters and receivers. After reviewing the I/Q modulation and direct-conversion type radio architectures, this chapter discusses behavioral modeling of the I/Q imbalance problem in radio transceivers, covering both frequency-independent and frequency-dependent I/Q imbalance cases. Moreover, various approaches for imbalance estimation and calibration are presented with design and testing examples by covering both digital predistortion type techniques on the transmitter side and digital post-correction methods on the receiver side. Also, complete link models including imbalanced transmitter, multipath radio channel, and imbalanced receiver are given in Chapter 16.

In Chapter 17, joint digital predistortion is presented to compensate for both I/Q modulator (IQM) and power amplifier impairments with covering principles, modeling, algorithms, designs, implementation and testing results. This chapter first illustrates that I/Q mismatch and LO leakage interact with PA nonlinearity such that extra intermodulation distortion products appear at the PA output and affect the estimation and performance of PA predistorters provided by the DPD methods listed in Part II of this book. A new predistorter structure is then presented so as to be able to jointly mitigate both IQM and PA impairments including frequency-dependent behavior (memory) of the impairments.

Chapter 18 presents principles and implementation of diversity techniques and various error compensations in OFDM-based transceivers. From a system-level point of view, this chapter first presents the principles and designs of OFDM transceivers and then focuses on adaptive antenna array and several diversity techniques in time-domain, frequency-domain, spatial-domain, and the cross-layer level. Furthermore, this chapter deals with the detection and compensation of various error sources and practical factors. At the end, this chapter presents the hardware implementation in ASIC, DSP, and FPGA platforms with the related chip performance.

The emphasis of Chapter 19 is on radio front-end architectures and related impairment corrections for multiband, multi-antenna, and multimode receivers so as to better support multiple standards and multimode applications. This chapter presents various mitigation

xxii Preface

methods of RF impairments such as the phase noise due to local oscillator errors, frequency offset due to error between receiver's and emitter's local oscillators, and IQ mismatches (gain and phase). Different ways of multiplexing signals and sharing resources (hardware, frequency-spectrum, and structure) in multiple band/channel/modes are also described in this chapter.

Part V Circuits and system integration of digital front-end

The last part of this book deals with the system integration, interface, and convergenceto-silicon of digital front-end with analog front-end, baseband processing, and related cross-layer processing to support multiple standards and multimode applications in broadband wireless communication and digital broadcasting. A number of implemented systems are provided in this part to motivate readers that digital and programmable front-end processing can provide better performance, more flexibility, and less-power consumption than analog-based front-end processing and will replace more and more processing parts required from RF to baseband in advanced systems such as MIMO, ultra wideband (UWB), SDR, and cognitive radio.

Chapter 20 describes the integration and interface between the digital front-end and analog front-end focusing on wireless terminals ASICs applications by showing how to minimize costs and size, and also how to optimize power efficiency in designing new devices. This chapter presents several transceiver mixed signal architectures with various analog-to-digital interfaces that have been popularized in today's wireless terminals' ASICs design. Furthermore, this chapter addresses the system aspects of integration and interfaces between digital front-end and analog front-end in detail and also discusses in detail the future directions of these designs.

In Chapter 21, circuits and systems for digital front-end to support multiple wireless standards are addressed with emphasis on receiver front-end. In this chapter, three major functions of digital front-end are first outlined, namely, the sampling rate conversion, channel selection (or filtering), and compensation of various analog/RF impairments. Then, this chapter presents detailed circuit design considerations and system integration specifications of digital front-end to support three major wireless standards: WCDMA, GGE(GSM/GPRS/EDGE), and LTE.

Implementation (computing) platforms and the corresponding programming models are playing a critical role in both digital front-end processing and baseband processing, which is the focus of Chapter 22. This chapter first reviews various platforms and programming models/languages and then presents an efficient programming machine called the radio virtual machine so as to achieve the following functions for SDR dynamic configurations in both baseband processing and digital front-end processing, namely: a programming language that permits an easy expression of physical layers and can be compiled into an executable form (bytecode), an abstraction based on the component model paradigm, mechanism to handle real-time constraints with easy access to hardware, and an arbitrary bit-width arithmetic.

Preface

xxiii

Chapter 23 presents a programmable discrete-time integrated receiver front-end which can greatly reduce the power and other processing costs that are associated with analog-to-digital conversion used in integrated software defined radio. This chapter first discusses sampling theory and various programmable filtering circuits (filter types and transforms, their design and selection). Furthermore, this chapter reviews the programmable zero intermediate frequency and low intermediate frequency discrete-time receiver front-ends outlining the advantages and disadvantages of these receivers. Illustration implementation examples and testing results are also presented in this chapter.

The emphasis of Chapter 24 is on multi-port front-end and UWB transceivers for V-band multi-Gigabit/s communication systems. This chapter shows that multi-port circuits can successfully be used in quadrature down-converters, antenna arrays, and direct modulation of millimeter-wave signals by presenting that the important advantage in using multi-ports is the reduced LO power requested for down-conversion. This is particularly true in millimeter-wave applications where the received RF signal is considerably low, reducing both the cost of LO and the leakage between LO and the RF input.

Chapter 25 presents some algorithms and techniques in designing a flexible or cognitive radio link considering all cross-layer issues from RF, front-end, baseband, and the media-access-control layer. This chapter first introduces four processing steps needed in an SDR transceiver, namely, sensing, analyse, decision, and act; then it presents various advanced algorithms and related implementation examples in performing these four processing steps. How to better use digital front-end processing remains a hot topic in the emerging cognitive radio systems with large number of degrees of freedom and with multimode capabilities. This chapter serves as a starting point for future research and development in this topic.

For whom is this book written?

It is hoped that this book serves not only as a complete and invaluable reference for professional engineers, researchers, manufacturers, network operators, software developers, content providers, service providers, broadcasters, and regulatory bodies interested in broadband wireless communications and digital broadcasting system developments and applications, but also as a textbook for graduate students in circuits, signal processing, wireless communications, microwave technology, antenna and propagation, and system-on-chip implementation.

Fa-Long Luo, Ph.D. Silicon Valley, California, USA