Landslides

Landslides cause tens of billions of dollars’ worth of damage throughout the world every year, and losses are increasing due to a growing population and new development in potentially unstable areas. Fundamentally they have geological causes but can have natural triggers such as rainfall, snowmelt, erosion, and earthquakes, or can be triggered by human actions such as agriculture and construction. To reduce the threat that landslides pose to public safety and property, research aimed at providing a better understanding of slope stability and failure has accelerated in recent years. This acceleration has been accompanied by basic field research and numerical modeling of slope failure processes, mechanisms of debris movement, and landslide causes and triggers.

Written by 78 of the leading researchers and practitioners in the world, this book provides a state-of-the-art summary of landslide science. It features both field geology and engineering approaches, as well as modeling of slope failure and runout using a variety of numerical codes. The book is illustrated with international case studies that integrate geological, geotechnical, and remote sensing studies, and include recent slope investigations in North America, Europe, and Asia.

This comprehensive and complete one-stop synthesis of current landslide research forms an essential reference for researchers and graduate students in geomorphology, engineering geology, geotechnical engineering, and geophysics, as well as professionals in the field of natural hazard analysis.

John J. Clague is the Canada Research Chair in Natural Hazard Research at Simon Fraser University and also, at the same institution, Director of the Centre for Natural Hazard Research. He has published over 250 papers in 45 different journals on a range of earth science disciplines, including glacial geology, geomorphology, stratigraphy, sedimentology, and natural hazards. Professor Clague’s other principal professional interest is improving public awareness of earth science by making relevant geoscience information available: he has written two popular books on the geology and geologic hazards of southwest British Columbia and a textbook on natural hazards. Professor Clague is the recipient of the Geological Society of America Burwell Award, the Royal Society of Canada Bancroft Award, the Geological Association of Canada’s (GAC) 2006 E. R. W. Neale Medal and GAC’s 2007 Logan Medal. He was the 2007/8 Richard Jahns Distinguished Lecturer for the Geological Society of America and the Association of Environmental and Engineering Geology.

Douglas Stead has over 30 years’ experience in rock and soil slope stability in industry, government and academia in the UK, Zambia, Hong Kong, Papua New Guinea, and Canada. He is now professor and Chair in Resource Geoscience and Geotechnics at Simon Fraser University. He has published extensively in the areas of rock mechanics and engineering geology with application to landslides, and to surface and underground mining. Dr. Stead has a strong commitment to continuing development courses for professional engineers and geoscientists – delivering courses on methods of data collection and numerical modeling of rock slopes. He is a Professional Engineer in British Columbia and a Chartered Engineer in the UK and is currently a member of the Engineering Geology Editorial Board and an Associate Editor of the Canadian Geotechnical Journal. He is a recipient of the Canadian Geotechnical Society Thomas Roy Award for Engineering Geology (2008) and the John Franklin Award for Rock Mechanics (2009).
Landslides
Types, Mechanisms and Modeling

Edited by

JOHN J. CLAGUE
Simon Fraser University, British Columbia

DOUGLAS STEAD
Simon Fraser University, British Columbia
Contents

Contributors vii
Preface xi
JOHN J. CLAGUE AND DOUGLAS STEAD

1 Landslide hazard and risk 1
JOHN J. CLAGUE AND NICHOLAS J. ROBERTS

2 Landslides in the Earth system 10
OLIVER KORUP

3 Earthquake ground motion and patterns of seismically induced landsliding 24
NIELS HOVius AND PATRICK MEUNIER

4 Landslides at stratovolcanoes initiated by volcanic unrest 37
CHRISTOPHER F. WAYTHOMAS

5 Mobility of long-runout rock avalanches 50
TIM DAVIES AND MAURI MCSAVENY

6 Rapid rock-slope failures 59
REGINALD L. HERMANNs AND ODDVAR LONGVA

7 Risk assessments for debris flows 71
MATTHIAS JAKOB AND KRIS HOLM

8 Landslides in quick clay 83
J. KENNETH TORRANCE

9 Controls on the distribution of major types of submarine landslides 95
DAVID J. W. PIPER, DAVID C. MOSHER, AND D. CALVIN CAMPBELL

10 Tsunami hazard assessment related to slope failures in coastal waters 108
BRIAN D. BORNHOLD AND RICHARD E. THOMSON

11 Physical impacts of climate change on landslide occurrence and related adaptation 121
CHRISTIAN HUGGEL, NIKOLAY KHABAROV, OLIVER KORUP, AND MICHAEL OBERSTEINER

12 Landslides and geologic environments 134
ROBIN FELL, DAVID STAPLEnD, AND PATRICK MACGREGOR

13 Numerical modeling of rock-slope instability 144
DOUGLAS STEAD AND JOHN COGGAN

14 Remote sensing techniques and landslides 159
DAVID PETLEY

15 Engineering geomorphology of landslides 172
JAMES S. GRIFFITHS AND MALCOLM WHITWORTH

16 Developments in landslide runout prediction 187
SCOTT MCDOUGALL, MIKA MCKINNON, AND OLDRIC HUNGR

17 Models of the triggering of landslides during earthquakes 196
RANDALL W. JIBSON

18 Slow rock-slope deformation 207
FEDERICO AGLIARDI, GIOVANNI B. CROSTA, AND PAOLO FRATTINI

19 Landslide monitoring: The role of investigative monitoring to improve understanding and early warning of failure 222
ERIK EBERHARDT

20 Groundwater in slopes 235
LUCIANO PICARELLI, SERGE LEROUeIL, LUCIO OLIVARES, LUCA PAGANO, PAOLO TOMMASI, AND GIANFRANCO URCIUOLI
Contents

21 Soil slope stabilization 252
Edward N. Bromhead, Seyyedmahdi Hosseyni, and Nobuyuki Torii

22 Rockfall characterization and modeling 267
Paolo Frattini, Giovanni B. Crosta, and Federico Agliardi

23 The 2006 Eiger rockslide, European Alps 282
Michel Jaboyedoff, Marc-Henri Derron, Julien Jakubowski, Thierry Oppikofer, and Andrea Pedrazzini

24 Randa: Kinematics and driving mechanisms of a large complex rockslide 297
Simon Loew, Valentin Gischig, Heike Willenberg, Andrea Alpiger, and Jeffrey R. Moore

25 Characterization and management of rockslide hazard at Turtle Mountain, Alberta, Canada 310
Corey R. Froese, Marie Charrière, Florian Humair, Michel Jaboyedoff, and Andrea Pedrazzini

26 The Åknes rockslide, Norway 323
Lars Harald Blikra

27 A seismometric approach for back-analyzing an unusual rockfall in the Apennines of Italy 336
Gianluca Bianchi Fasani, Carlo Esposito, Luca Lentı, Salvatore Martino, Massimo Pecci, and Gabriele Scarascia Mugnozza

28 Downie Slide, British Columbia, Canada 345
Katherine S. Kalenchuk, D. Jean Hutchinson, Mark Diederichs, and Dennis Moore

29 The 1963 Vaiont landslide, Italy 359
Monica Ghirotti

30 Hong Kong landslides 373
Stephen R. Hencher and Andrew W. Malone

31 Landslides induced by the Wenchuan earthquake 383
Masahiro Chigira, Gongsui Wang, and Xiyong Wu

32 Landslides on other planets 393
Marko H. K. Bulmer

Index 409
Contributors

Federico Agliardi
Dipartemento Scienze Geologiche e Geotecnologie, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
Andrea Alpiger
Engineering Geology, ETH Zurich, 8092 Zurich, Switzerland
Gianluca Bianchi Fasani
CERI Research Center on Prediction, Prevention and Mitigation of Geological Risks, Sapienza University of Rome, Piazza Umberto Ipluzio 9, 00038 Valmontone, Rome, Italy
Lars Harald Blikra
Åknes/Tafjord Early Warning Center, Ødegårdsvegen 176, 6200 Stranda, Norway
Brian D. Bornhold
Coastal and Ocean Resources Inc., A-759 Vanalman Avenue, Victoria, BC, Canada V8Z 3B8
Edward N. Bromhead
Centre for Earth and Environmental Science Research, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK
Marko H. K. Bulmer
Geophysical Flow Observatory, Joint Center for Earth Systems Technology, University of Maryland – Baltimore County, 1000 Hilltop Circle, MD 21250, USA
D. Calvin Campbell
Geological Survey of Canada (Atlantic), Bedford Institute of Oceanography, PO Box 1006, Dartmouth, NS, Canada B2Y 4A2
Marie Charrière
Water Resources Section, Civil Engineering and Geosciences Faculty, Delft University of Technology, 2600 AA Delft, The Netherlands, Previously at: Institute of Geomatics, University of Lausanne, Institut de Géomatique et d’Analyse du Risque – IGAR, Lausanne, Switzerland
Masahiro Chigira
Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji 611-0011, Japan
John J. Clague
Department of Earth Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
John Coggan
Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9EZ, UK
Giovanni B. Crosta
Dipartemento Scienze Geologiche e Geotecnologie, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
Tim Davies
Department of Geological Sciences, University of Canterbury, Private Bag 4800, Canterbury, New Zealand
Marc-Henri Derron
Institut de Géomatique et d’Analyse du Risque – IGAR, Amphipôle 338, University of Lausanne, CH-1015 Lausanne, Switzerland
Mark Diederichs
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, ON, Canada K7L 3N6
Erik Eberhardt
Geological Engineering, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
Carlo Esposito
Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
List of contributors

Robin Fell
School of Civil and Environmental Engineering, University of New South Wales, c/o 75D Roland Avenue, Wahroonga 2076, Australia

Paolo Frattini
Dipartemento Scienze Geologiche e Geotecnologie, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy

Corey R. Froese
Alberta Geological Survey/Energy Resources Conservation Board, 4th Floor, Twin Atria Building, 4999-98 Avenue, Edmonton, Canada T6B 2X3

Monica Ghirotti
Dipartimento di Scienze della Terra e Geologico-Ambientali, Alma Mater Studiorum – Università di Bologna, Via Zamboni 67, 40127 Bologna, Italy

Valentin Gischig
Matousek, Baumann & Niggli AG, Baden, Switzerland

James S. Griffiths
University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK

Stephen R. Hencher
Halcor China Ltd., Level 10, Millennium City 6, Kwun Tong Road, Kowloon, Hong Kong

Reginald L. Hermanns
International Centre for Geohazards, Norwegian Geotechnical Institute, Leiv Eirikssons vei 39, NO-7491 Trondheim, Norway

Kris Holm
BGC Engineering Inc., 1045 Howe Street, Vancouver, BC, Canada V6Z 2A9

Seyyedmahdi Hosseyni
Islamic Azad University, Azadshahr Branch, Iran

Niels Hovius
Department of Earth Sciences, University of Cambridge, Cambridge, UK

Christian Huggel
Glaciology, Geomorphodynamics & Geochronology, Department of Geography, University of Zurich, CH-8057 Zurich, Switzerland

Florian Humair
Institut de Géomatique et d’Analyse du Risque – IGAR, University of Lausanne, Amphipôle 338, CH-1015 Lausanne, Switzerland

Oldrich Hunger
Geological Engineering, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z4

D. Jean Hutchinson
Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON, Canada K7L 3N6

Michel Jaboyedoff
Institut de Géomatique et d’Analyse du Risque – IGAR, University of Lausanne, Amphipôle 338, CH-1015 Lausanne, Switzerland

Matthias Jakob
BGC Engineering Inc., 1045 Howe Street, Vancouver, BC, Canada V6Z 2A9

Julien Jakubowski
Institut de Géomatique et d’Analyse du Risque – IGAR, University of Lausanne, Amphipôle 338, CH-1015 Lausanne, Switzerland

Randall W. Jibson
US Geological Survey, Box 25046, MS 966 Denver Federal Center, Denver, CO 80225, USA

Katherine S. Kalenchuk
Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON, Canada K7L 3N6

Nikolay Khabarov
International Institute for Applied Systems Analysis, Laxenburg, Austria

Oliver Korup
Institute of Earth and Environmental Sciences, University of Potsdam, Karl-Liebknechtstrasse 24 (HS 27), D–14476, Potsdam, Germany

Luca Lenti
French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR), Paris East University, 58 Boulevard Lefebvre, 75732 Paris Cedex 15, France

Serge Leroueil
Department de Génie Civil, Université Laval, Québec, PC, Canada G1K 7P4

Simon Loew
Engineering Geology, ETH Zurich, 8092 Zurich, Switzerland

Oddvar Longva
International Centre for Geohazards, Norwegian Geotechnical Institute, Leiv Eirikssons vei 39, NO-7491 Trondheim, Norway

Patrick MacGregor
Consulting Engineering Geologist, Glenside, South Australia, Australia

Andrew W. Malone
Room 410, James Lee Building, Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong

Salvatore Martino
Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
List of contributors

Scott McDougall
BGC Engineering Inc., Suite 500–1045 Howe St., Vancouver, BC, Canada V6Z 2A9

Mika McKinnon
Geological Engineering, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z4

Mauri McSaveney
GNS Sciences, 1 Fairway Drive, Avalon 5010, PO Box 30-368, Lower Hutt 5040, New Zealand

Patrick Meunier
Laboratoire de Géologie, Ecole Normale Supérieure de Paris, Paris, France

Dennis Moore
Dennis Moore Engineering Inc., Burnaby, BC, Canada

Jeffrey R. Moore
Engineering Geology, ETH Zurich, 8092 Zurich, Switzerland

David C. Mosher
Geological Survey of Canada (Atlantic), Bedford Institute of Oceanography, PO Box 1006, Dartmouth, NS, Canada B2Y 4A2

Michael Obersteiner
International Institute for Applied Systems Analysis, Laxenburg, Austria

Lucio Olivares
Dipartimento di Ingegneria Civile, Seconda Università di Napoli, Aversa via Roma 29, 81031 Aversa, Italy

Thierry Oppikofer
Norwegian Geotechnical Institute, Leiv Eirikssons vei 39, NO-7491 Trondheim, Norway

Luca Pagano
Dipartimento di Ingegneria Idraulica, Geotecnica e Ambientale, Università di Napoli Federico II, Naples, Italy

Massimo Pecchi
Italian Mountain Institute, Piazza dei Caprettari 70, 00186 Rome, Italy

Andrea Pedrazzini
Institut de Géomatique et d’Analyse du Risque – IGAR, Amphipôle 338, University of Lausanne, CH-1015 Lausanne, Switzerland

David Petley
Institute of Hazard, Risk and Resilience, Durham University, Durham DH1 3LE, UK

Luciano Picarelli
Dipartimento di Ingegneria Civile, Seconda Università di Napoli, Aversa via Roma 29, 81031 Aversa, Italy

David J. W. Piper
Geological Survey of Canada (Atlantic), Bedford Institute of Oceanography, PO Box 1006, Dartmouth, NS, Canada B2Y 4A2

John Psutka [deceased]
Engineering, Aboriginal Relations and Generation (EARG), Dam Safety, BC Hydro, Burnaby, BC, Canada

Nicholas J. Roberts
Department of Earth Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

Gabriele Scarascia Mugnozza
Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy

David Stapledon
Consulting Engineering Geologist, Manning Park, New South Wales, Australia

Douglas Stead
Department of Earth Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

Richard E. Thomson
Fisheries and Oceans Canada, 9860 West Saanich Road, PO Box 6000, Sidney, BC, Canada V8L 4B2

Paolo Tommasi
Istituto di Geologia Ambientale e Geo-Ingegneria, Consiglio Nazionale delle Ricerche, Rome, Italy

J. Kenneth Torrance
Geography and Environmental Studies, Carleton University, Ottawa, ON, Canada K1S 5B6

Nobuyuki Torii
Kobe City College of Technology, Kobe, Japan

Gianfranco Urciuoli
Dipartimento di Ingegneria Idraulica, Geotecnica e Ambientale, Università di Napoli Federico II, Naples, Italy

Gonghui Wang
Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji 611-0011, Japan

Christopher F. Waythomas
Alaska Volcano Observatory, US Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA

Malcolm Whitworth
School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL, UK

Heike Willenberg
Matousek, Baumann & Niggli AG, Baden, Switzerland

Xiyou Wu
Southwest Jiaotong University, Chengdu 610031, China
Preface

JOHN J. CLAGUE AND DOUGLAS STEAD

A series of well-publicized disasters and catastrophes during recent years, including a cyclone in Myanmar, earthquakes in China, Haiti, Chile, and New Zealand, and an earthquake and tsunami in Japan, underscore the importance of efforts to reduce risk from natural hazards around the world.

Landslides, floods, drought, wildfire, storms, tsunamis, and earthquakes continue to take a heavy toll in lives and infrastructure. In the past decade, disasters have killed over 750,000 people and caused damage costing hundreds of billions of dollars (Centre for Research on the Epidemiology of Disasters, 2011). Most of the loss of life was the result of earthquakes, tsunamis, and tropical storms; loss of life from landslides was only a small percentage of the total. Nevertheless, landslides are responsible for much primary and secondary economic damage – in the USA alone, landslides cause damage costing $1–2 billion and more than 25 fatalities each year (US Geological Survey, 2011).

As the global population continues to increase, more people will be at risk from landslides. Even small slope failures are a threat to transportation infrastructure, as they disrupt the movement of goods and are costly to clear (Fig. 1). However, the economic costs of landslides are not limited to roads and railways. Underwater landslides have destroyed coastal infrastructure; catastrophic landslides may enter the sea and lakes, triggering destructive tsunamis (Fig. 2); landslides have blocked rivers, producing upstream flooding and reservoirs (Fig. 3), which are subject to sudden emptying and resulting downstream floods; and landslides may enter settled areas, causing death and injury.

Because of the threat that landslides pose to public safety and infrastructure, research aimed at better understanding slope stability and failure has accelerated in recent years. This acceleration is reflected in more basic field research, numerical modeling of slope failure processes, and improvements in understanding the mechanisms of debris movement, and landslide causes and triggers. This book summarizes recent advances in the study of landslides, written by 78 leading specialists from around the world.

The book is broadly divisible into three parts. The first part of the book comprises 12 chapters that deal with landslide types and mechanisms. John Clague and Nick Roberts provide an overview of landslide hazard and risk, set in the context of other hazardous natural processes. This chapter is followed by an overview of landslides in the Earth system by Oliver Korup, which sets the stage for a series of chapters that deal with different types of landslides and that collectively showcase recent developments and emerging technologies. Niels Hovius and Patrick Meunier examine patterns of landslides resulting from different earthquake ground motions. Chris Waythomas then discusses the factors responsible for large-scale instabilities on active stratovolcanoes. Tim Davies and Mauri McSaveney explore theories proposed to explain the long runout of rock avalanches, arguing that only dynamic rock fragmentation can account for the high mobility of this group of landslides.
Reginald Hermanns and Oddvar Longva continue the discussion of large rock-slope failures, drawing upon their considerable experience in the Andes. The next two chapters deal with more fluidized mass movements. Matthias Jakob and Kris Holm turn our attention to debris flows, focusing specifically on methods for assessing the risk from this type of mass movement. Kenneth Torrance describes different types of quick clay failures and the factors responsible for their sudden onset and retrogressive behavior. David Piper and colleagues discuss controls on different types of submarine landslides on the Canadian Atlantic continental margin. Brian Bornhold and Richard Thomson examine tsunami hazards related to landslides in coastal waters.

Christian Huggel and colleagues review current understanding

Fig. 2. The Chehalis Lake rockslide (3 million m³) occurred in December 2007. It entered the lake and triggered a tsunami that removed forest up to 30 m above the lakeshore.

Fig. 3. Lake Sarez, impounded by the Usoi landslide dam in Tajikistan. The lake is 56 km long and holds about 16 km³ of water. The landslide dam (arrowed) is 567 m high and is formed of approximately 2 km³ of rock debris emplaced during an earthquake on February 18, 1911. Usoi Dam is the tallest dam in the world, either natural or engineered. Geologists are concerned that the dam might fail during future large earthquakes or might be overtopped by a displacement wave produced by a landslide into the lake. In either case, a catastrophic flood would devastate the heavily populated Murghab River valley below the dam. (Google Earth image.)

Fig. 4. Three-dimensional analysis of the Frank Slide Plan (left) and oblique (right) views of the simulated moving mass at 20-s intervals. The flow-depth contours are 5 m, and the sliding surface contours are 50 m. The thick solid line demarcates the real extent of the landslide. (After McDougall and Hungr, 2004.)
of the effects of climate change on the occurrence of landslides and debris flows in cold, temperate, and tropical mountains. The final chapter in the first part of the book, by Robin Fell and colleagues, deals with the geologic environments of landslides. They demonstrate that the geologic environment has a major influence on the likelihood and mechanisms of landsliding, the hydrogeology as it affects landsliding, and the strength of potential rupture surfaces in rock and soil.

The second part of the book consists of 10 chapters with a focus on numerical modeling of slope failure and new engineering measures aimed at reducing or eliminating landslide risk. Doug Stead and John Coggan introduce this section of the book with a summary of the state of the art in the numerical modeling of rock-slope instability. The next chapter, authored by David Petley, reviews remote sensing techniques applicable to landslides, including new technologies such as InSAR, LIDAR, and digital photogrammetry that are finding widespread use in characterizing slope instabilities. James Griffith and Malcolm Whitworth illustrate the importance of engineering geomorphology in the study of landslides, providing a review of mapping techniques and the engineering geomorphological aspects of landslide classification. Scott McDougall and colleagues discuss developments in runout prediction and the numerical methods used in current practice (Fig. 4). Randall Jibson then reviews methods of assessing the stability of slopes during earthquakes. Federico Agliardi and colleagues focus on slow, deep-seated rock-slope movements, commonly known by their German name, sackung. Although not as obvious as most other types of landslides, sackung are common around the world and can be very large. Numerical modeling is increasingly important in understanding this phenomenon. Erik Eberhardt then describes how landslide monitoring can be used, both as an early warning of failure and to improve our understanding of landslide failure mechanisms. Luciano Picarelli and colleagues use engineering case studies to illustrate the importance of groundwater in soil and rock slopes. The practical and theoretical concepts behind successful soil slope stabilization are then described by Edward Bromhead and colleagues. In the final chapter of this section of the book, Paolo Frattini and colleagues provide a state-of-the-art review of rockfall modeling.

The third part of the book comprises studies of specific landslides that integrate geologic, geotechnical, and remote sensing data. The case studies include: the 2006 Eiger landslide, Switzerland (Michel Jaboyedooff and colleagues); the 2005 Randa landslides, Switzerland (Simon Loew and colleagues); instability on Turtle Mountain, Alberta (Corey Froese and colleagues); the Åknes rockslide, Norway (Lars Harald Bjork); a rockfall on Corno Grande in the Italian Apennines in 2006 (Gianluca Bianchi Fasani and colleagues); the Downie landslide, British Columbia (Katherine Kalenchuk and colleagues); the 1963 Vaioint Slide, Italy (Monica Ghirotti); landslides in Hong Kong (Steve Hencher and Andrew Malone); and landslides triggered by the 2008 Wenchuan earthquake, China (Masahiro Chigira and colleagues). The final chapter in the book, by Marko Bulmer, provides examples of landslides on other bodies in the solar system, including Mars, Venus, and Io, a moon of Jupiter. The presence of landslides on other planets, moons, and large asteroids illustrates the range of atmospheric and gravitational conditions in which mass movements can occur.

REFERENCES

