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Introduction

1.1 Asset dynamics
1.2 Methods of option pricing

In the Black–Scholes option pricing model the stock price dynamics are
assumed to follow an Itô process with constant characteristics. This key
hypothesis, dating from a 1965 paper by Paul Samuelson, adapts ideas from
a remarkable doctoral thesis by the French mathematician Louis Bachelier
in 1900. The model makes various simplifying assumptions about the mar-
ket, not all of which are borne out by market data. Nonetheless, the Black–
Scholes prices of European derivatives provide benchmarks against which
prices quoted in the market can be judged.

We turn first to a description of the continuous-time price processes for
the assets that comprise the basic single-stock Black–Scholes model.

1.1 Asset dynamics

The market model contains two underlying securities.
• The risk-free asset (money-market account), described by a determinis-

tic function

dA(t) = rA(t)dt,

with A(0) = 1 (for convenience), where r > 0 is the risk-free rate.

This is an ordinary differential equation A′(t) = rA(t) but for consistency
with stock prices, which are assumed to be Itô processes, we use differential
notation. The equation has a unique solution:

A(t) = ert.
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2 Introduction

• The risky asset, thought of as a stock, is represented by an Itô process
of the form

dS (t) = μS (t)dt + σS (t)dW(t), (1.1)

with S (0) given, where we call μ ∈ R the drift, and σ > 0 the volatility,
of the stock price S .

The sign of σ is actually irrelevant. If σ is negative then we change
W to −W and we have an equation with positive σ but with respect to
(−W), which is again a Wiener process. The probability space underlying
W will be denoted by (Ω,F , P), and the associated filtration is given by
F S

t = σ(S (u) : u ≤ t}). Writing out (1.1) we see that

S (t) = S (0) + μ
∫ t

0
S (u)du + σ

∫ t

0
S (u)dW(u).

The stochastic differential equation (1.1) has a unique solution since the
coefficients are Lipschitz with linear growth:

μS (t) = a(t, S (t)), a(t, x) = μx,

σS (t) = b(t, S (t)), b(t, x) = σx,

so that

|a(t, x) − a(t, y)| ≤ |μ||x − y|,
|b(t, x) − b(t, y)| ≤ σ|x − y|,

linear growth being obvious, and we can apply the existence and unique-
ness theorem for stochastic differential equations, proved in [SCF] as
Theorem 5.8.

We can determine the solution immediately: it takes the form

S (t) = S (0) exp{μt − σ
2

2
t + σW(t)}. (1.2)

Exercise 1.1 Show that this process solves (1.1).

As the solution is unique, S given by (1.2) is the unique solution of (1.1).
Note that the filtration F S governing the random fluctuations in the stock
price S coincides with the natural filtration of W, where F W

t = σ(W(u) :
u ≤ t) for each t ∈ [0, T ], since (1.2) shows that W is the only source of
randomness in S .
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1.1 Asset dynamics 3

Exercise 1.2 Find the probability that S (2t) > 2S (t) for some t > 0.

Model parameters

To understand the role of the parameters μ, σ in this model we compute the
expectation of S (t). Recall that for a normally distributed random variable
X with E(X) = 0 we have

E( exp{X}) = exp{1
2

Var(X)}. (1.3)

We apply this with X = σW(t), so that Var(X) = σ2t (we write the expec-
tation of X with respect to P simply as E(X) rather than EP(X) when there
is no danger of confusion):

E(S (t)) = S (0)E( exp{μt − 1
2
σ2t + σW(t)})

= S (0) exp{μt − 1
2
σ2t}E( exp{σW(t)})

= S (0) exp{μt}.
Clearly, if μ = 0 then the expectation of S (t) is constant in time.

The expression for E(S (t)) gives μ as the (annualised) logarithmic return
of the expected price

μ =
1
t

ln
E(S (t))

S (0)
, (1.4)

which should not be confused with the expected (annualised) logarithmic
return

1
t
E(ln

S (t)
S (0)

) =
1
t
E(μt − σ

2

2
t + σW(t)) = μ − σ

2

2
.

The variance of the return is

Var(μt − σ
2

2
t + σW(t)) = Var(σW(t)) (adding a constant has no impact)

= σ2t (since Var(W(t)) = t).

A natural question emerges of how to find these parameters given some
past stock prices. The formula (1.4) suggests taking average prices as the
proxy for the expected price, but the accuracy of this is poor, according to
statistical theory.
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4 Introduction

Much more effective is the approximation of volatility provided, for in-
stance, by the following scheme. Consider the process

ln S (t) = ln S (0) + (μ − 1
2
σ2)t + σW(t),

which is an Itô process with constant characteristics. Its quadratic variation
is equal to σ2t (see [SCF]) and for a partition of [0, t] given by 0 = t1 <

· · · < tn = t, with small mesh max |tk+1 − tk|, we have∑
k

(ln S (tk+1) − ln S (tk))2 ≈ σ2t.

Hence if the times tk represent past instants at which we know the prices,
then we can take

σ =

√
1
t

∑
ln

S (tk+1)
S (tk)

as our estimate of the volatility coefficient, a positive number called the
sample volatility.

Exercise 1.3 Find the formula for the variance of the stock price:
Var(S (t)).

Exercise 1.4 Consider an alternative model where the stock prices
follow an Ornstein–Uhlenbeck process: this is a solution of dS 1(t) =
μ1S 1(t)dt + σ1dW(t) (see [SCF]). Find the probability that at a certain
time t1 > 0 we will have negative prices: i.e. compute P(S 1(t1) < 0).
Illustrate the result numerically.

Exercise 1.5 Allowing time-dependent but deterministic σ1 in
the Ornstein–Uhlenbeck model, find its shape so that Var(S (t)) =
Var(S 1(t)).
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1.2 Methods of option pricing 5

Exercise 1.6 Let L be a random variable representing the loss on
some business activity. Value at Risk at confidence level a is defined
as ν = inf{x : P(L ≤ x) ≥ a}. Compute v for a = 95%, where L
is the loss on the investment in a single share of stock purchased at
S (0) = 100 and sold at S (T ) with μ = 10%, σ = 40%, T = 1.

1.2 Methods of option pricing

We consider a possible line of attack for pricing options in the Black–
Scholes market. To make progress we impose various assumptions, and in
doing so we survey the range of tasks required to solve the option pricing
problem.

Recall that a European derivative security is a contract where the seller
promises the buyer a random payment H at some prescribed future time
T, called the exercise time. In our pricing model H is a random variable
defined on a probability space (Ω,F , P) supporting the Wiener process
W, equipped with its natural filtration (F W

t )t∈[0,T ], and we may assume in
addition that F W

T = F . The natural filtration of W coincides with the
filtration generated by the Itô process S = (S (t))t∈[0,T ] described above.
We call S the underlying security – with S as defined above, (F S

t )t∈[0,T ]

is simply the natural filtration of W. This measurability is the only link
between H and the underlying. If H = h(S (T )) for some Borel function
h, the derivative security is path-independent and it of course satisfies the
measurability condition, but not the other way round, since the σ-field FT

is generated by the entire price process, not simply by S (T ). A familiar
path-independent security is the European call option with strike K, where
h(x) = (x − K)+ = max{0, x − K}, so that the option payoff at expiry is
H = (S (T ) − K)+.

Such a security is sold at time 0 and the first task we tackle is to find its
price at that time – this is known as the option premium.

Risk-neutral probability approach

In the finite discrete-time setting discussed in [DMFM] the key assump-
tion was the absence of arbitrage. This economic hypothesis was given
mathematical form by the first fundamental theorem of asset pricing, which
showed that the No Arbitrage Principle was equivalent to the existence of
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6 Introduction

a measure Q, with the same null sets as P, under which the discounted
price process is a martingale. This result, together with the fact that the
transform (or ‘discrete stochastic integral’) of a martingale is again a mar-
tingale, allowed us to identify the value process of a path-independent
European derivative with that of a ‘replicating’ trading strategy involving
only stocks and the money market account.

In continuous-time models the analogue of the first fundamental theorem
is rather sophisticated and we shall not pursue it directly, but will instead
reformulate the No Arbitrage Principle in more detail later. For our present
purposes we state three assumptions that suffice to explain the approach to
pricing that will enable us to derive the Black–Scholes formula and related
results. This section is intended simply to give the flavour of the arguments
that will be deployed.

Assumption 1.1
There exists a pair (x, y) of processes, adapted to the filtration (F S

t )t∈[0,T ],

producing portfolios consisting of holdings in the stock and the money
market account, with values

V(t) = x(t)S (t) + y(t)A(t)

assumed to match the option payoff at maturity

V(T ) = H

and therefore (x, y) is called a replicating strategy.

The condition we impose on the trading strategies employed is a nat-
ural continuous time analogue of the self-financing condition demanded
of discrete time models, capturing the idea that changes in the values and
holdings of assets are the sole drivers of changes of wealth, allowing no
inflows or outflows of funds.

Assumption 1.2
There exists a replicating strategy satisfying the self-financing condition:

dV(t) = x(t)dS (t) + y(t)dA(t).

In the binomial model the construction of a risk-neutral probability was
straightforward, in continuous time it will be quite involved and for the
time being we impose it as follows.
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1.2 Methods of option pricing 7

Assumption 1.3
There exists a probability Q, with the same null sets as P, such that S̃ (t) =
e−rtS (t) and Ṽ(t) = e−rtV(t) are martingales with respect to Q and the fil-
tration (F S

t )t∈[0,T ].

A martingale has constant expectation so in particular V(0) = EQ(Ṽ(T )),
hence

V(0) = EQ(e−rT H),

which, as we show in Theorem 2.16, must be H(0), the initial price of
the derivative with payoff H, since in the case of inequality an arbitrage
opportunity emerges: buy the cheap asset and sell the expensive one, invest
the profit risk-free, so a riskless profit is maintained at maturity, due to
replication, with some care needed to meet some admissibility conditions
(the details can be found in Chapter 2).

The PDE approach

To develop an alternative pricing method, the replication condition is for-
mulated in a stronger version: in addition to matching at maturity we as-
sume that the entire process of option prices H(t) is indistinguishable from
the value process of the strategy. (Again, this is easily obtained in the
discrete-time setting – see Theorem 4.40 in [DMFM].) We make two fur-
ther assumptions.

Assumption 1.4
There is a self-financing strategy (x, y) such that the option value process
can be written in the form

H(t) = x(t)S (t) + y(t)A(t).

The spirit of the next condition is that there exists a closed form formula
for the option price, though we do not yet know its shape. An additional
feature is that the price does not depend on the history of stock prices (at
this point the reader should recall the Markov property discussed in [SCF]).
This is only applicable to path-independent derivatives.

Assumption 1.5
The process H(t) is of the form

H(t) = u(t, S (t)),

where the deterministic function u(t, z) has continuous first derivative with
respect to t ∈ [0, T ] and continuous first and second derivatives in z ∈ R.
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8 Introduction

(We write u(t, z) rather than u(t, x), in order to avoid confusion with the
use of x for the process of stock holdings in the trading strategy.)

Applying the Itô formula, we find that the process H(t) is an Itô process
and has the following stochastic differential

dH =
(
ut + μS uz +

1
2
σ2S 2uzz

)
dt + σS uzdW. (1.5)

With the given form of dS (t) and dA(t) the self-financing condition reads

dH = (xμS + ryA) dt + xσS dW. (1.6)

Now use the fact that the representation of an Itô process is unique, so the
characteristics on the right-hand sides of (1.5) and (1.6) must agree:

ut + μS uz +
1
2
σ2S 2uzz = xμS + ryA,

σS uz = xσS .

(For better readibility we sometimes omit the arguments of the functions
and processes.)

The second line immediately gives

x(t) = uz(t, S (t)),

which, inserted into the first line, reads

ut(t, S (t)) +
1
2
σ2S 2(t)uzz(t, S (t)) = ry(t)A(t),

providing a formula for the second component of the replicating strategy

y(t) =
1

rA(t)

(
ut(t, S (t)) +

1
2
σ2S 2(t)uzz(t, S (t))

)
.

The replication condition H(t) = x(t)S (t)+ y(t)A(t), with the above expres-
sions for x and y inserted, gives

u(t, S (t)) = uz(t, S (t))S (t) +
1
r

(
ut(t, S (t)) +

1
2
σ2S 2(t)uzz(t, S (t))

)
,

since H(t) = u(t, S (t))) by our assumption. After replacing S (t) by a general
variable z this equation can be reorganised into

ut(t, z) = −1
2
σ2x2uzz(t, z) − rzuz(t, z) + ru(t, z) for 0 < t < T, z ∈ R.

Clearly, at time T the value H(T ) must agree with the option payoff so we
impose the terminal condition

u(T, z) = h(z) for z ∈ R.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-00169-5 - The Black–Scholes Model
Marek Capiński and Ekkehard Kopp
Excerpt
More information

http://www.cambridge.org/9781107001695
http://www.cambridge.org
http://www.cambridge.org


1.2 Methods of option pricing 9

The above partial differential equation (PDE) is known as the Black–
Scholes PDE and solving it will give us the function u, and so the pricing
problem will have a sucessful conclusion. With some knowledge from the
theory of PDEs one may show that this problem has a unique solution given
by a closed-form expression.

In outlining this approach to the pricing problem we have made some
powerful assumptions. It will turn out for the Black–Scholes model we are
able to prove all these statements – the assumptions will be converted into
theorems. We will find the expression for u as well, and then we will revisit
the above PDE to see that this is indeed a solution.
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2

Strategies and risk-neutral probability

2.1 Finding the risk-neutral probability
2.2 Self-financing strategies
2.3 The No Arbitrage Principle
2.4 Admissible strategies
2.5 Proofs

We begin executing some of the elements of the programme outlined in the
previous chapter. The first goal is to discuss the martingale properties of
strategies. For this we must first construct a risk-neutral probability. Next
we define self-financing strategies by analogy with the discrete case and
observe that in the present setting pathologies can emerge which are absent
in discrete-time models. This leads to conclusions about the class of trading
strategies that are admissible in continuous-time models.

2.1 Finding the risk-neutral probability

We consider the discounted stock price process S̃ (t) =e−rtS (t), which, by
the definition of S (t), becomes

S̃ (t) = exp{−rt}S (0) exp
{
μt − 1

2
σ2t + σW(t)

}
= S (0) exp

{
(μ − r)t − 1

2
σ2t + σW(t)

}
.

To explore situations where this becomes a martingale with respect to the
probability P, we compute conditional expectations.
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