Contents

List of illustrations xi
Acknowledgements xiii

1 Introduction 1
1.1 Why is genetics relevant for me? 4

2 Nature, nurture, and heritability 7
2.1 Phenotype, genotype and environment 7
2.2 Innateness, a slippery and complex concept 9
2.3 Some basic notions of statistics 12
 2.3.1 Mean, variance and standard deviation 14
 2.3.2 The normal distribution 15
 2.3.3 Statistical populations and samples 19
 2.3.4 Covariance and correlation 21
 2.3.5 Regression 24
2.4 Basic notions of quantitative genetics 30
 2.4.1 Partitioning the phenotype and broad-sense heritability, H^2 31
 2.4.2 Partitioning the genotype and narrow-sense heritability, h^2 32
 2.4.3 Partitioning the environment 33
 2.4.4 Estimating heritability 34
 2.4.5 Heritability: what it does and does not mean 37
 2.4.6 The heritability of language and speech 39
 2.4.7 Relationships between genotype and environment 40
 2.4.8 Sharing genes between phenotypes: genetic correlations and “generalist genes” 42

3 The molecular bases of genetics 44
3.1 We are composed of cells 45
3.2 The molecules of life 48
Contents

3.3 The genetic material 49
3.4 DNA: storing and transmitting information 50
3.5 Chromosomes are DNA molecules 53
3.6 Genetic loci and recombination 58
3.7 What is a gene? 59
 3.7.1 Decoding genes: transcription and translation 61
 3.7.2 Genes have structure: introns and exons 68

4 Effects of genes on phenotype 72
 4.1 Dominance and recessiveness 72
 4.2 Autosomal dominance and recessiveness 75
 4.2.1 A dominant speech and language disorder 75
 4.2.2 Recessive hearing loss 80
 4.3 Sex-linked dominance and recessiveness 83
 4.3.1 X chromosome inactivation 84
 4.3.2 Anomalous colour perception 84
 4.3.3 Variation in colour perception and language 88

5 Linkage disequilibrium and its role in finding genes 90
 5.1 What is linkage disequilibrium? 90
 5.2 Using linkage disequilibrium 93
 5.3 Association studies 94
 5.3.1 Statistical concepts: power, multiple testing correction and effect size 97
 5.3.2 Controlling for other factors using regression 110
 5.3.3 Accounting for population stratification 113
 5.3.4 Replication as the gold standard 115
 5.3.5 Combining multiple markers 116
 5.3.6 The Transmission Disequilibrium Test 118
 5.3.7 Examples of association studies for language and speech 120
 5.4 Linkage studies 124

6 What do genes actually do? 131
 6.1 Structural proteins: TECTA in the inner ear 131
 6.2 Energy production: mitochondrial gene MTRNR1 133
 6.3 The transportation system: MYO15A 134
 6.4 Unexpected processes: stuttering and the lysosome 135
 6.5 Guiding axons: ROBO1 in dyslexia and normal variation 137
 6.6 Brain growth and development: ASPM and MCHP1 139
 6.7 Regulating the expression of other genes: FOXP2 142
 6.8 Neural development and neural impulse conduction: CNTNAP2 149
Contents

6.9 Post-transcriptional gene regulation: microRNAs
6.9.1 microRNAs and FOXP2
6.9.2 miR-96 and hearing loss

7 The way forward: exome and genome sequencing
7.1 Exome and genome sequencing
7.2 The “missing heritability” and the genetic architecture of complex traits

8 Population and evolutionary genetics
8.1 Foundations of population genetics: loci, alleles, individuals and populations
8.2 A useful baseline: the Hardy-Weinberg equilibrium
8.3 Genetic drift: the power of chance
8.4 Mutation: the creator of diversity
8.5 Selection: when differences do matter
8.5.1 Positive, stabilizing and disruptive selection
8.5.2 Hiking the fitness landscape
8.5.3 When selection seemingly fails
8.5.4 What is selected: de-focusing the individual
8.5.5 The (nearly) neutral theory of evolution
8.5.6 Detecting selection from genetic data
8.5.7 The evolutionary tale of FOXP2
8.6 Population structure: love is not blind
8.6.1 Inbreeding: mating among genetic relatives
8.6.2 (Dis-)assortative mating: choosing partners (un)like yourself
8.6.3 Structured populations: choosing the partners you can actually choose
8.6.4 The genetic structure of modern humans
8.7 Recent and ongoing evolution in humans
8.7.1 Skin colour
8.7.2 Hair, sweat and ear wax
8.7.3 Living at high altitude
8.7.4 Is culture shielding or selecting us?

9 Interactions between genetic and cultural evolution
9.1 Fighting pathogens
9.2 Eating well
9.3 Creating new languages
9.4 Genetically biased cultural evolution
9.4.1 Genetic biases in language

10 Conclusions, topics not covered, future directions
10.1 Resources for further study

Table of Contents

More information