Index

252

Fₜ, 189
H₀, 99
α-level, 99
α-tectorin, 132
χ² test, 76
Fₜ, 181
2′-deoxyribose, 50

ABSL, 204
activation, 149
additive genetic effects, 32
adenine, 50
admixed population, 189
admixture, 189
adoption studies, 35
AIM, 114
Al-Sayyid Bedouin Sign Language, 204
alcohol dehydrogenase, 202
allele, 53
allele frequency, 162
allopatric speciation, 189
alpha-level, 99
American Sign Language, 204
amino acid, 49
amylase enzyme, 202
Ancestry Informative Markers, 114, 192
aneuploidy, 168
anticodon, 67
apocrine glands, 196
archaea, 46
artificial selection, 170
association study, 94
assortative mating, 188
ATP, 133
autosomal inheritance, 75
autosomes, 53
bacteria, 46
balancing selection, 172
Bonferroni correction, 99
brain ventricles, 139
by-product, 176
calibration points, 178
case-control study, 95
cell, 45
cell division, 51
cell line, 150
cell membrane, 45
cell type, 48
centimorgan, 92
centromere, 54
chi-square test, 76
chloroplast, 46
chromatin, 53
chromosomal complement, 56
chromosomal rearrangement, 168
chromosome, 46
chromosome bands, 94
CNTPA2, 121, 150
CNV, 169
co-transmission, 124
Cochran-Armitage trend test, 97
codon, 63
cofactor, 144
complementarity DNA strand, 50
complementation, 82
confidence intervals, 108
congenital, 80
Copy Number Variants, 169
cortical column, 139
covariance, 22
covariates, 110
crossover, 58
cytosine, 50
cytoskeleton, 46
Darwinian selection, 171
de novo mutation, 69
degenerate, 63
detrimental allele, 76
deletions, 67
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>deoxyribonucleic acid</td>
<td>50</td>
</tr>
<tr>
<td>Developmental Systems</td>
<td>178</td>
</tr>
<tr>
<td>Theory</td>
<td></td>
</tr>
<tr>
<td>DFNA12</td>
<td>132</td>
</tr>
<tr>
<td>DFNB21</td>
<td>132</td>
</tr>
<tr>
<td>diploid</td>
<td>55</td>
</tr>
<tr>
<td>directional selection</td>
<td>171</td>
</tr>
<tr>
<td>disruptive selection</td>
<td>172</td>
</tr>
<tr>
<td>dizygotic twins</td>
<td>34</td>
</tr>
<tr>
<td>DNA</td>
<td>50</td>
</tr>
<tr>
<td>DNA chip</td>
<td>98</td>
</tr>
<tr>
<td>DNA elongation</td>
<td>51</td>
</tr>
<tr>
<td>DNA microarray</td>
<td>98</td>
</tr>
<tr>
<td>domains of life</td>
<td>46</td>
</tr>
<tr>
<td>dominance</td>
<td>33</td>
</tr>
<tr>
<td>dominance genetic effects</td>
<td>33</td>
</tr>
<tr>
<td>dominant</td>
<td>73</td>
</tr>
<tr>
<td>dosage compensation</td>
<td>84</td>
</tr>
<tr>
<td>double helix</td>
<td>51</td>
</tr>
<tr>
<td>double-strand DNA</td>
<td>50</td>
</tr>
<tr>
<td>down-regulation</td>
<td>149</td>
</tr>
<tr>
<td>DST</td>
<td>178</td>
</tr>
<tr>
<td>dyslexia</td>
<td>137</td>
</tr>
<tr>
<td>effect size</td>
<td>105</td>
</tr>
<tr>
<td>endoplasmic reticulum</td>
<td>46, 136</td>
</tr>
<tr>
<td>endosymbiotic theory</td>
<td>48, 133</td>
</tr>
<tr>
<td>enhancer</td>
<td>70</td>
</tr>
<tr>
<td>enzyme</td>
<td>49</td>
</tr>
<tr>
<td>epistasis</td>
<td>33, 117</td>
</tr>
<tr>
<td>epistatic genetic variance</td>
<td>33</td>
</tr>
<tr>
<td>error correction</td>
<td>52</td>
</tr>
<tr>
<td>exaptation</td>
<td>176</td>
</tr>
<tr>
<td>exon</td>
<td>69</td>
</tr>
<tr>
<td>exon</td>
<td>68</td>
</tr>
<tr>
<td>extended phenotype</td>
<td>177</td>
</tr>
<tr>
<td>extremophily</td>
<td>46</td>
</tr>
<tr>
<td>False Discovery Rate</td>
<td>101</td>
</tr>
<tr>
<td>false negative</td>
<td>102</td>
</tr>
<tr>
<td>false positive</td>
<td>98</td>
</tr>
<tr>
<td>family tree</td>
<td>73</td>
</tr>
<tr>
<td>family-wise error rate</td>
<td>99</td>
</tr>
<tr>
<td>FDR</td>
<td>101</td>
</tr>
<tr>
<td>fertilization</td>
<td>56</td>
</tr>
<tr>
<td>Fisher’s exact test</td>
<td>95</td>
</tr>
<tr>
<td>fitness landscape</td>
<td>174</td>
</tr>
<tr>
<td>Fixation Index</td>
<td>181</td>
</tr>
<tr>
<td>forkhead transcription factors</td>
<td>144</td>
</tr>
<tr>
<td>founder effect</td>
<td>167</td>
</tr>
<tr>
<td>FOX</td>
<td>144</td>
</tr>
<tr>
<td>frameshift mutation</td>
<td>67, 168</td>
</tr>
<tr>
<td>fraternal twins</td>
<td>34</td>
</tr>
<tr>
<td>frequency-dependent</td>
<td>172</td>
</tr>
<tr>
<td>selection</td>
<td></td>
</tr>
<tr>
<td>FWER</td>
<td>99</td>
</tr>
<tr>
<td>gamete</td>
<td>55</td>
</tr>
<tr>
<td>gene duplication</td>
<td>134</td>
</tr>
<tr>
<td>gene expression regulation</td>
<td>143</td>
</tr>
<tr>
<td>gene flow</td>
<td>189</td>
</tr>
<tr>
<td>gene pool</td>
<td>161</td>
</tr>
<tr>
<td>gene regulation</td>
<td>33, 53</td>
</tr>
<tr>
<td>genealogy</td>
<td>73</td>
</tr>
<tr>
<td>Generalized Linear Model</td>
<td>112</td>
</tr>
<tr>
<td>genetic code</td>
<td>63</td>
</tr>
<tr>
<td>genetic information</td>
<td>49</td>
</tr>
<tr>
<td>genetic marker</td>
<td>93</td>
</tr>
<tr>
<td>Genome-Wide Association</td>
<td>98</td>
</tr>
<tr>
<td>Studies</td>
<td></td>
</tr>
<tr>
<td>Genome-wide Complex</td>
<td>37</td>
</tr>
<tr>
<td>Trait Analysis</td>
<td></td>
</tr>
<tr>
<td>Genomic Control</td>
<td>114</td>
</tr>
<tr>
<td>genotype</td>
<td>73</td>
</tr>
<tr>
<td>genotype frequency</td>
<td>161</td>
</tr>
<tr>
<td>GLM</td>
<td>112</td>
</tr>
<tr>
<td>guanine</td>
<td>50</td>
</tr>
<tr>
<td>GWAS</td>
<td>98</td>
</tr>
<tr>
<td>hair cells</td>
<td>131</td>
</tr>
<tr>
<td>haploid</td>
<td>55</td>
</tr>
<tr>
<td>haplosinsufficiency</td>
<td>138, 146</td>
</tr>
<tr>
<td>haplotype</td>
<td>59, 126</td>
</tr>
<tr>
<td>hard selective sweep</td>
<td>184</td>
</tr>
<tr>
<td>Hardy–Weinberg</td>
<td>162</td>
</tr>
<tr>
<td>equilibrium</td>
<td></td>
</tr>
<tr>
<td>hemizygous</td>
<td>86</td>
</tr>
<tr>
<td>heritability (broad sense)</td>
<td>31</td>
</tr>
<tr>
<td>heterozygote advantage</td>
<td>173</td>
</tr>
<tr>
<td>histone</td>
<td>53, 61</td>
</tr>
<tr>
<td>historical linguistics</td>
<td>207</td>
</tr>
<tr>
<td>Holm’s multiple testing</td>
<td>101</td>
</tr>
<tr>
<td>correction</td>
<td></td>
</tr>
<tr>
<td>homozygous</td>
<td>72</td>
</tr>
<tr>
<td>HWE</td>
<td>162</td>
</tr>
<tr>
<td>hybridization</td>
<td>189</td>
</tr>
<tr>
<td>hybrids</td>
<td>189</td>
</tr>
<tr>
<td>hydrogen bond</td>
<td>50</td>
</tr>
<tr>
<td>hypoxia</td>
<td>197</td>
</tr>
<tr>
<td>i-properties</td>
<td>11</td>
</tr>
<tr>
<td>IBD</td>
<td>187</td>
</tr>
<tr>
<td>identity by descent</td>
<td>187</td>
</tr>
<tr>
<td>immediate early genes</td>
<td>143</td>
</tr>
<tr>
<td>inbred lines</td>
<td>91</td>
</tr>
<tr>
<td>inbreeding</td>
<td>187</td>
</tr>
<tr>
<td>inbreeding coefficient</td>
<td>187</td>
</tr>
<tr>
<td>inbreeding depression</td>
<td>188</td>
</tr>
<tr>
<td>incomplete dominance</td>
<td>33</td>
</tr>
<tr>
<td>indels</td>
<td>67</td>
</tr>
<tr>
<td>independent assortment</td>
<td>56</td>
</tr>
<tr>
<td>innateness properties</td>
<td>11</td>
</tr>
<tr>
<td>insertion</td>
<td>67</td>
</tr>
<tr>
<td>insulator</td>
<td>70</td>
</tr>
<tr>
<td>introgression</td>
<td>189</td>
</tr>
<tr>
<td>interaction genetic</td>
<td>33</td>
</tr>
<tr>
<td>variance</td>
<td></td>
</tr>
</tbody>
</table>
intron, 68
inversion, 168
isoform, 69
karyotype, 54
Kata Kolok, 204
lactase, 203
lactase persistent, 203
lactose tolerance, 203
lagging strand, 51
language change, 207
language universals, 207
Last Universal Common Ancestor, 46
leading strand, 51
linguistic exogamy, 188
linguistic homogamy, 206
linkage disequilibrium, 93
linkage study, 94
lipids, 48
locus, 58
LOD score, 128
log odds ratios, 108
logistic regression, 112
LUCA, 46
lysosome, 136
lysosomes, 46
MAF, 168
magnetoencephalography, 138
major allele, 95
mate choice, 188
matrilocality, 189
mature mRNA, 68
MCHP, 139
MDS, 115
mean, 14
messenger RNA, 62
metabolism, 45
microcephaly, 139
microRNA, 151
microsatellite, 128
minor allele, 95
Minor Allele Frequency, 168
miRNA, 151
missense mutation, 137
mitochondria, 46, 133
mitosis, 51
mixed ancestry, 189
molecular clock, 178
molecule, 48
monozygotic twins, 34
mRNA, 62
multicellular, 45
Multidimensional Scaling, 115
mutation, 53
narrow-sense heritability, 33
natural selection, 170
nearly neutral theory of evolution, 179
negative selection, 172
neo-functionalization, 135
neolocality, 189
nested, 70
neutral progenitor cells, 139
neurexin, 121
neurogenesis, 139
neutral mutation, 178
neutral theory of evolution, 179
Nicaraguan Sign Language, 204
niche construction, 177
non-functionalization, 134
Non-Word Repetition, 138
normal distribution, 16
nucleic acids, 49
nucleoside, 49
nucleosome, 60
nucleotide, 49
nucleus, 46
odds, 108
odds ratio, 108
Okazaki fragment, 51
open reading frame, 67
opsin, 85
ORF, 67
organ, 48
orthologous genes, 190
orthologs, 190
ova, 55
overlapping genes, 70
p-value, 78
panmixia, 187
patrilocality, 189
PCA, 115
pdf, 17
Pearson correlation, 23
pedigree, 73
penetrance, 133
permutation methods, 101
phenotype, 8, 59
phosphate group, 49
photosynthesis, 46
phylogenetics, 212
phylogeography, 212
point mutation, 53, 168
polypeptide, 65
population, 161
population bottleneck, 166
population parameters, 20
population stratification, 114
Index

positive selection, 171
post-transcriptional gene regulation, 151
pre-adaptation, 176
pre-mRNA, 68
precursor mRNA, 68
Primary Autosomal Recessive Microcephaly, 139
primary structure, 67
primary transcript, 68
Principal Component Analysis, 115
prion, 45
probability density function, 17
prokaryote, 46
promoter, 62, 70
proofreading, 52
protein, 49
proteome, 68
protists, 46
pseudoautosomal regions, 83
pseudogene, 134
Punnett square, 74
purifying selection, 172
purine, 50
pyrimidine, 50
quantitative trait, 110
quaternary structure, 67
reading disorder, 137
reading frame, 65
recessive, 73
recessiveness, 33
recombination hotspot, 93
regression, 110
regulatory elements, 70
replication, 51
replication fidelity, 52
replication fork, 51
repression, 149
respiratory chain, 133
ribonucleic acid, 50
rbose, 50
ribosome, 65
risk, 107
risk ratio, 107
RNA polymerase, 62
secondary structure, 67
segregation, 56
selection coefficient, 197
self-splicing, 69
semiconservative replication, 51
serial founder effect, 167, 191
sex chromosomes, 53
sex-biased migration, 189
sexual selection, 170
sickle cell anaemia, 173
significance level, 102
Single Nucleotide Polymorphism, 53, 168
single-strand DNA, 50
SNP, 53, 168
sociolinguistics, 207
soft selective sweep, 184
somatic mutations, 35
speciation, 189
specificity, 102
sperm, 55
spliceosome, 69
splicing, 68
spurious relationship, 94
SRY gene, 55
stabilizing selection, 172
standard deviation, 15
standing variation, 184
start codon, 64
statistical power, 102, 103
statistics
power, 102
specificity, 102
stereocilia, 135
stop codon, 64
structural equation modelling, 37
stuttering, 136
synonymous, 64
sympatric speciation, 189
somatic mutations, 35
systems of organs, 48
TDT, 114, 118
TECTA gene, 132
tectorial membrane, 131
tertiary structure, 67
thymine, 50
tissue, 48
TOL, 46
tone languages, 209
trade-offs, 176
transcription, 62
transcription factor, 144
transcriptional gene regulation, 151
transfer RNA, 67
transgenic mice, 91
translation, 62
translocation, 137, 168
Transmission Disequilibrium Test, 114, 118
Tree of Life, 46
transfer RNA, 67
twin studies, 34
type I error, 102
type II error, 102
unconventional myosin, 135
unicellular, 45
up-regulation, 149
uracil, 50

variance, 15
variant, 53
village sign languages, 204
virus, 45

WES, 69
WGS, 69
Whole Exome Sequencing, 69
Whole Genome Sequencing, 69
wild type, 53

X chromosome, 54
X chromosome inactivation, 84

Y chromosome, 54
zygote, 56