Behavioral scientists – including those in psychology, infant and child development, education, animal behavior, marketing, and usability studies – use many methods to measure behavior. Systematic observation is used to study relatively natural, spontaneous behavior as it unfolds sequentially in time. This book emphasizes digital means to record and code such behavior; although observational methods do not require them, they work better with them. Key topics include devising coding schemes, training observers, and assessing reliability, as well as recording, representing, and analyzing observational data. In clear and straightforward language, this book provides a thorough grounding in observational methods along with considerable practical advice. It describes standard conventions for sequential data and details how to perform sequential analysis with a computer program developed by the authors. The book is rich with examples of coding schemes and different approaches to sequential analysis, including both statistical and graphical means.

Roger Bakeman is professor emeritus in the Psychology Department at Georgia State University. He is a fellow of the American Psychology Association and the Association for Psychological Science, and has served as program co-chair for biennial meetings of the Society for Research in Child Development (SRCD) and the International Conference of Infant Studies (ICIS). He is author, with John M. Gottman, of *Observing Interaction: An Introduction to Sequential Analysis*; with Vicenç Quera, of *Analyzing Interaction: Sequential Analysis with SDIS and GSEQ*; and with Byron F. Robinson, of *Understanding Statistics in the Behavioral Sciences* and *Understanding Log-linear Analysis with ILOG*. He was an associate editor for *Infancy* and has served on editorial boards for several other journals.

Vicenç Quera is a professor in the Department of Behavioral Science Methods, Faculty of Psychology, at the University of Barcelona; director of the Master and Doctorate Programme in Primatology; a member of the Institute for Brain, Cognition and Behavior; and leads the Adaptive Behavior and Interaction Research Group at the University of Barcelona. He is co-author, with Roger Bakeman, of *Analyzing Interaction: Sequential Analysis with SDIS and GSEQ*. He has served on the editorial board of *Behavior Research Methods, Psicològica*, and other journals, and his articles have appeared in numerous journals, including *Psychological Bulletin, Psychological Methods, Behavior Research Methods*, and *Social Science and Medicine*.
Sequential Analysis and Observational Methods for the Behavioral Sciences

Roger Bakeman
Georgia State University

Vicenç Quera
Universidad de Barcelona
CONTENTS

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>page ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1. Introduction to Observational Methods
 Systematic Quantitative Measurement versus Qualitative Narrative 1
 Correlational versus Experimental Designs 3
 Predictor versus Outcome Variables 4
 Variables, Units, and Sessions 4
 Why Use Observational Methods? 6
 Sequential Analysis of Behavior 7
 Summary 11

2. Coding Schemes and Observational Measurement 13
 Where Do Coding Schemes Come From? 13
 Must Codes be Mutually Exclusive and Exhaustive? 14
 Granularity: Micro to Macro 18
 Concreteness: Physically to Socially Based Codes 19
 Codes versus Rating Scales 21
 The Coding Manual 22
 Summary 24

3. Recording Observational Data 26
 Untimed-Event Recording 28
 Timed-Event Recording 29
 Interval Recording 30
 Partial-Interval or One-Zero Sampling 32
 Momentary or Instantaneous Sampling 32
 Whole-Interval Sampling 32
Contents

Selected-Interval Recording ... 34
Live Observation versus Recorded Behavior 35
Digital Recording and Computer-Assisted Coding 37
Summary ... 40

4. Representing Observational Data 43
A Sequential Data Interchange Standard (SDIS) 43
Representing Time .. 44
Single-Code Event Sequences ... 46
Timed-Event and State Sequences 48
Interval and Multicode Event Sequences 50
A Universal Code-Unit Grid ... 51
Alternatives: Spreadsheet and Statistical Package Grids 53
Data Management and File Formats 54
Summary ... 55

5. Observer Agreement and Cohen’s Kappa 57
Point-By-Point versus Summary Agreement 58
The Classic Cohen’s Kappa ... 59
When is Kappa Big Enough? ... 62
Is Statistical Significance Useful? 63
Observer Bias and Kappa Maximum 64
Observer Accuracy, Number of Codes, and Their Prevalence ... 65
Standards for Kappa (Number of Codes Matters) 66
Comparing an Observer with a Gold Standard 68
Agreement and Reliability ... 69
Errors of Commission and Omission 69
Summary ... 70

6. Kappas for Point-By-Point Agreement 72
Event-Based Agreement: The Alignment Problem 72
Time-Based Agreement: Inflated Counts? 77
Event-Based Agreement for Timed-Event Sequences 78
Interval-Based Agreement Using Cohen’s Kappa 81
Weighted Kappa: When Disagreements Differ in Severity 81
Are All Kappas Overrated? ... 83
Summary ... 84

7. The Intraclass Correlation Coefficient (ICC) for Summary Measures .. 87
Relative versus Absolute Agreement 87
8. Summary Statistics for Individual Codes

- Basic Statistics for Individual Codes
 - Frequency
 - Relative Frequency
 - Rate
 - Duration
 - Relative Duration
 - Probability
- Mean Event Durations, Gaps, and Latencies
 - Mean Event Duration
 - Mean Gap
 - Latency
- Recommended Statistics for Individual Codes

9. Cell and Summary Statistics for Contingency Tables

- Individual Cell Statistics
- Observed Joint Frequencies and Hierarchical Tallying
- Lagged Tallies for Single-Coded Events When Codes Can and Cannot Repeat
- Conditional and Transitional Probabilities
- Expected Frequencies and Adjusted Residuals
- Indices of Association for Two-Dimensional Tables
- Contingency Indices for 2×2 Tables
 - Odds Ratio and Log Odds
 - Yule’s Q
 - Vulnerability to Zero Cells
- Summary

10. Preparing for Sequential and Other Analyses

- Creating New Codes from Existing Codes
- Logical Combinations for Timed-Event, Interval, and Multocode Event Data
- RECODE for All Data Types
- EVENT and BOUT for Timed-Event Data
- RECODE, LUMP, and CHAIN for Single-Code Event Data
- REMOVE and RENAME for All Data Types
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>viii</td>
<td>Creating New Codes as “Windows” Anchored to Existing Codes</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Pooled versus Individual Analyses</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Preparing Export Files and Using Statistical Packages</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Deviant Cells, Type I Error, and Winnowing</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>131</td>
</tr>
<tr>
<td>11.</td>
<td>Time-Window and Log-Linear Sequential analysis</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Time-Window Sequential Analysis of Timed-Event Data</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>The Sign Test: A Nonparametric Alternative</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Lag-Sequential and Log-Linear Analysis of Single-Code Event Data</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Overlapped and Nonoverlapped Tallying of m-Event Chains</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>An Illustration of Log-Linear Basics</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Log-Linear Analysis of Interval and Multicode Event Data</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>146</td>
</tr>
<tr>
<td>12.</td>
<td>Recurrence Analysis and Permutation Tests</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Recurrence Analysis</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Permutation Tests for Short Event Sequences</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Epilogue</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Appendix A: Expected Values for Kappa Comparing Two Observers</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Appendix B: Expected Values for Kappa Comparing with a Gold Standard</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>179</td>
</tr>
</tbody>
</table>
FIGURES

1.1. Parten's (1932) coding scheme for social engagement.
1.2. The evolution of three similar coding schemes for social participation as discussed in the text.
2.1. Three coding schemes; each consists of a set of mutually exclusive and exhaustive codes.
2.2. A coding scheme consisting of two sets of mutually exclusive and exhaustive codes.
2.3. Codes for chimpanzee mother and infant food transfer.
2.4. Examples of coding schemes, one more physically based (infant) and one more socially based (maternal).
2.5. Definitions for three types of mountain gorilla vocalizations.
3.1. Recording strategies described in the text.
3.2. A paper form for untimed-event recording with two sets of ME&E codes.
3.3. A paper form for timed-event recording.
3.4. A paper form for interval recording.
4.1. Recording strategies, data types, and coding and universal grid units.
4.2. An example of an SDIS single-code event sequential data file.
4.3. An example of an SDIS timed-event sequential data file, with data shown in the grid at the top.
4.4. An example of an SDIS state sequential data file for the data shown in Figure 4.3.
4.5. Examples of an SDIS interval sequential data file (based on Figure 3.4) and an SDIS multicode event sequential data file (based on Figure 3.2).
Figures

4.6. An example of a code-unit grid for which rows represent codes and successive columns could represent either events, time units, or intervals. 52

5.1. A kappa table tallying the frequency of agreements and disagreements by two observers coding infant state for 120 intervals. 60

5.2. The five 2×2 tables produced by collapsing the 5×5 table in Figure 5.1. 62

5.3. Expected values for kappa when number of codes and their prevalence varies as shown for observers who are 95% accurate (top set of lines), 90% accurate (second set), 85% accurate (third set), and 80% accurate (bottom set). 66

5.4. Sensitivity-specificity table. 70

6.1. Sequential data types and the appropriate kappa variant for each. 73

6.2. Two single-code event sequences, their alignment per the dynamic programming algorithm as implemented in GSEQ, and the kappa table resulting from tallying agreement between successive pairs of aligned events. 76

6.3. Two timed-event 20-minute sequences (in this case, state sequences) with durations in seconds, and the kappa table resulting from tallying agreement between successive pairs of seconds with no tolerance. 77

6.4. Alignment of the two timed-event sequences shown in Figure 6.3 per the dynamic programming algorithm as implemented in GSEQ (with 10-second tolerance for onset times and 80% overlap for agreements-disagreements), and the kappa table resulting from tallying agreement between successive pairs of aligned events. 80

6.5. Two sets of weights for computing weighted kappa given four ordered codes. 83

7.1. Summary contingency indices for ten targets (sessions) derived from data coded by two observers, their analysis of variance statistics, and the formulas and computations for ICC_{rel} and ICC_{abs}, respectively. 90

8.1. An SDIS timed-event data file with 1-second precision (top) and an SDIS interval data file with 1-second intervals (bottom) describing the same events. 94

8.2. A code-unit grid for the timed-event data (60 seconds) and the interval data (60 intervals) shown in Figure 8.1. 95
Figures

8.3. Formulas for six basic simple statistics.

9.1. Definitions for five basic cell statistics and the notation used to describe them.

9.2. Cell statistics for Figure 8.1 data.

9.3. Observed Lag 1 counts and transitional probabilities for Figure 8.1 data after being converted into single-code event data with Assure, Explain, and Touch removed.

9.4. Definitions for two chi-square table statistics.

9.5. Notation and definitions for three basic 2×2 contingency indices.

9.6. Two 2×2 contingency tables for the Figure 8.1 data with their associated odds ratios (95 CIs for the ORs are given in parentheses), log odds, and Yule's Qs.

10.1. Use of logical combinations and the RECODE command to create new codes from existing ones, assuming 1-second precision for timed-event data or 1-second intervals for interval sequential data.

10.2. Resulting sequences when applying the RECODE and LUMP data modification commands to the single-code event sequence shown and applying CHAIN to the sequence resulting from the LUMP command.

10.3. Existing data and WINDOW command specifications for new codes anchored to onsets and offsets of the existing code.

10.4. Table-fit statistics and adjusted residuals for four models illustrating winnowing.

11.1. Scores are mean odds ratios, n = 16 for males and 14 for females.

11.2. Two three-dimensional, Lag 0×Lag 1×Lag 2 contingency tables showing, on the left, tallies for 3-event chains using overlapped sampling derived from a sequence of 250 events when codes can repeat and, on the right, from a sequence of 122 events when codes cannot repeat.

11.3. Log-linear analysis of the three-dimensional table shown on the left in Figure 11.2 (codes can repeat).

11.4. Log-linear analysis of the three-dimensional table shown on the right in Figure 11.2 (codes cannot repeat).

11.5. Four-dimensional Age × Dominance × Prior possession × Resistance contingency table.

11.6. Log-linear analysis of the four-dimensional table for the data given in Figure 11.5.
Figures

12.1. Examples of recurrence plots. 149
12.2. Two recurrence plots for a single-code event sequence of a couple’s verbal interaction. 151
12.3. Recurrence plots for a random event sequence (top) and a highly patterned event sequence of verbal interactions (bottom). 153
12.4. At bottom, a timed-event sequence of a child’s crying and fussing episodes, and at top, its recurrence plot. 154
12.5. A recurrence plot for an interval sequence of mother-infant interaction, and above it the novelty score time series indicating sequence segmentation. 155
12.6. The first number in each cell (top) is the observed count for 2-event chains (i.e., Lag 1 transitions) computed for the single-code event sequence shown at the bottom (N = 75). The second number in each cell is the exact p-value for each 2-event chain, estimated using sampled permutations. 159
12.7. The sampling distribution for the Attentive-Write transition, based on shuffling an event sequence (N = 75) 1,000 times. 160
We wrote this book because it's time. The TLA (three-letter acronym) for because it's time is BIT, and what used to be called the bit-net (now the Internet) let the authors begin their long-distance collaboration between Atlanta and Barcelona. When we began working together in the early 1990s, many investigators believed – with some justification – that observational methods were appealing but too expensive and too time-consuming. At that time, analog video recording on tape had replaced film, and electronic means of recording observational data were replacing paper and pencil; yet most electronic and computer systems were specialized, expensive, and a bit cumbersome. We knew the digital revolution had begun, but we had no idea it would have the reach and impact it has today.

As we begin the second decade of this century, times have indeed changed. We now live in an image-saturated world where no moment seems private and everything seems available for instant download. Thus it is no wonder that researchers increasingly see merit in digitally recording behavior for subsequent systematic observation. Indeed, for recording behavior, digital has become the standard and preferred method. And although the systematic observation of the sort described in this book can still be done live, it works far better when behavior is digitally recorded for later replay, reflection, and review. Digital multimedia (audio-video) files can be created, copied, played, and stored with relative ease – and increasingly at minimal expense.

Coding behavior for subsequent quantitative analysis has likewise been transformed by the digital revolution. Computer-assisted coding programs remove much of the tedium and potential for error from the coding task – and can even make coding fun. Once such programs were a bit exotic, few in number, and required relatively expensive equipment. Now – given digital multimedia files – such programs are easier to implement, and the kind of computer capability they require has become ubiquitous and inexpensive.
As a consequence, users have more choices than formerly, and some software has become less expensive or even free.

Spurred by the advent of digital recording and coding and by their greater ease and accessibility, we think it is time to revisit matters first discussed in our 1995 book, *Analyzing Interaction: Sequential Analysis with SDIS and GSEQ*. In the early 1990s – recognizing the power of standard formats such as those underlying almost everything the Internet touches – we defined a standard set of conventions for sequential observational data: the Sequential Data Interchange Standard, or SDIS. We then wrote a general-purpose computer program for analyzing sequential observational data that relied on those standards: the General Sequential Querier, or GSEQ. Our 1995 book had described how to run this program in the dominant computer system of the day; that system (the Disk Operating System, or DOS) is now essentially extinct, and the book is out of print. GSEQ, however, has now been updated to run in the Windows environment (the current version is available at www.gsu.edu/~psyrrab/gseq or www.ub.edu/gcai/gseq).

The present book differs from our 1995 book in several ways. Primarily, it is greatly expanded in scope: it focuses on observational methods generally and is not confined to the details of GSEQ. It also offers considerable practical advice regarding sequential analysis and data analytic strategies for sequential observational data – advice that applies whether or not GSEQ is used. At the same time, we have striven to write a relatively brief and nonencyclopedic book that is characterized by straightforward, reader-friendly prose. Here, the interested reader may still learn how to use GSEQ effectively with sequential observational data, if desired, but should also be able to gain a sound conceptual overview of observational methods – a view grounded in the contemporary digital world.

It is the grounding in the digital world and its explication of GSEQ capabilities that most distinguishes this volume from the book Roger Bakeman wrote with John Gottman, *Observing Interaction: An Introduction to Sequential Analysis* (1st ed. 1986, 2nd ed. 1997). Granted some conceptual overlap, the topics covered in the two volumes are sufficiently different that *Observing Interaction* can easily be read with profit as a companion to this one. Certainly the intended audience is the same.

The audience we have in mind consists of behavioral and social science researchers, of whatever level, who think observational methods might be useful and who want to know more about them, or who have some familiarity with observational methods and want to further hone their skills and understanding. Apart from an interest in behavioral research, we assume
that readers of this volume will be familiar with research methods and statistical analysis, at least at the level presented in introductory courses in these topics. Such knowledge may not be needed for the first chapter – which is intended as a basic introduction to observational methods generally (and which more knowledgeable readers may skim) – but is required for subsequent chapters.

As with our 1995 book, many people have helped us in our task. One author Roger Bakeman (RB) recognizes the debt owed his graduate school advisor, Robert L. Helmreich, who first encouraged him to learn more about observational methods, and his debt to Gene P. Sackett, who introduced him to sequential analysis. For RB, those interests were honed in collaborative work at Georgia State University, beginning first in the 1970s with Josephine V. Brown, a lifelong friend; and continuing since the 1980s with Lauren B. Adamson, an invaluable friend, supporter, and research partner. More recently, Augusto Gnisci of the Second University of Naples and Eugene H. Buder and D. Kimbrough Oller of the University of Memphis have helped us improve GSEQ, our computer program for sequential analysis. Eugene H. Buder also offered many thoughtful and cogent suggestions for improving an earlier draft; we appreciate his contribution to the clarity of the final volume, while taking responsibility for any murkiness that remains. The other author Vicenç Quera (VQ) recognizes the debt owed the late Jordi Sabater-Pi, who transmitted his enthusiasm for naturalistic research to VQ and first taught him how to observe and analyze behavior systematically; and his debt to his early mentor, colleague, and friend, Rafael López-Feal, who supported and encouraged his teaching and research. RB would also like to acknowledge Maria Teresa Anguera, who translated Bakeman and Gottman (1986) into Spanish, invited RB to speak at the University of Barcelona in 1991, and introduced us. Our collaboration began immediately and has now continued through almost two decades.

As is always the case, colleagues and friends – too many to mention – have contributed to our thinking and work over the years. RB would like to thank, in particular, Daryl W. Nenstiel, who – in addition to being a lifelong critic and partner – attempted to improve the prose of the current volume (any remaining flaws, of course, remain ours), and Kenneth D. Clark, who manages to keep RB on target and humble. VQ would like to thank Esther Estany, who from time to time manages to extract him from writing papers and computer code to visit distant deserts and other exotic regions, and to his colleagues from the Adaptive Behavior and Interaction Research Group at the University of Barcelona for sharing good and bad academic times and for their irreplaceable friendship and collaboration.