Index

Abbreviations
AAA – abdominal aortic aneurysm
ANH – acute normovolemic hemodilution
EGDT – early, aggressive goal-directed therapy
GDT – goal-directed therapy
HES – hydroxyethylstarch
PVI – pleth variability index
TUR – transurethral resection

Note: All index entries pertain to fluid therapy, unless otherwise noted. “Fluid therapy” is not listed in the index, and readers are advised to seek more specific topics.

4/2/1 rule, 66
abdominal aortic aneurysm (AAA), hypovolemic shock, 168
abdominal aortic surgery heart rate and blood pressures, 168
HES and renal function, 145 hypovolemic shock, 168 “rules-of-thumb” for fluids, 25–6
acetate, in Ringer’s solution, 3 acute normovolemic hemodilution (ANH), 112, 184–5
advantages, 112, 117
anesthesia effects, 113, 114, 115
definition/description, 112, 117
efficacy, 116–17
studies/literature reports, 117
theoretical, 116–17
limits, 113–16, 187
cardiac conditions, 115–16
hemostasis and, 116, 141
physiological compensatory mechanisms, 112–13, 117
tolerance to, 115, 185
see also anemia, dilutional; hemodilution
acut respiratory distress syndrome (ARDS), 74, 75, 123
“fluids and catheter treatment trial”, 161
adrenaline see epinephrine (adrenaline)
reverse reactions of iv fluids, 137–47
acid-base imbalance, 140–1
excess tissue hydration and edema, 139–40
hemostatic see hemostatic disturbances, fluid-associated
hypersensitivity and anaphylaxis, 13, 123, 143–4
hypovolemia and hypotension, 138–9
see also fluid overload
hyperthermia, 140, 141
local effects, 137–8, 145
organ function impairment, 145
summary, 145–6
systemic, 138, 145
temperature-/osmolality-associated, 138
tissue deposition and pruritus, 144–5
Aesculon system, 99
albumin, 11, 123
adverse effects, 12, 123
clinical use, 12, 123
in infants and neonates, 69
iodated, 127–8, 130
pharmacokinetics, 11–12
plasma volume expansion, 123, 124
“albumin debate,” 12
ammonia, 150
analgesia, multimodal, day surgery, 56
anaphylactoid reactions, 143–4
anaphylaxis, 143–4
dextran associated, 13, 123, 143–4
anemia in critically ill patients, 161
preoperative, 20
anemia, dilutional tolerance, 184–5, 189
in anesthetized subjects, 186
indirect signs for, 186
limits, 185–6, 187, 189
physiological mechanisms, 184–5
therapeutic increase, 188
see also hemodilution
anesthesia compensatory mechanisms in hemorrhage and, 178
depth, dilutional anemia tolerance, 188
effects on ANH response, 113, 114, 115
number of procedures, 103
physiological adjustments to, 113
“rules of thumb” for perioperative fluids, 21–2
in severe sepsis/septic shock, 158
in trauma, hemorrhage resuscitation and, 182
anesthesia (cont.)
uncontrolled hemorrhage,
management, 181
volume kinetics affected by,
133
anesthetic drugs, dilutional
anemia tolerance, 188
anthropometry, 128–9
aortic reconstruction,
hypertonic fluids,
outcome, 78
aortic surgery
abdominal see abdominal
aortic surgery
hypertonic fluid benefits, 78
"Arg-Arg" phenotype, 172
arterial pressure, 103
AAA surgery, 168
hypovolemic shock, 166
plasma volume expansion
and, 124
reduced during surgery, 133
blood loss reduction, 178
target in trauma
resuscitation, 179
in uncontrolled hemorrhage, 178, 179
see also mean arterial
pressure (MAP)
arterial pressure waveform
analysis
dynamic indices from, 85–6,
97, 98, 104
limitations, 106
PPV see pulse pressure
variation (PPV)
respiratory systolic
variation test, 86
SVV see stroke volume
variation (SVV)
systolic pressure variation,
86, 162
goal-directed therapy, 97–8,
108
limitations, 98
arterial waveform pulse
contour cardiac output
see pulse contour
analysis
atrial natriuretic peptide
(ANP), 46, 124, 169
bariatric surgery, 61
baroreceptors, 167
basal fluid requirements, 18–19
Bezold–Jarish reflex, 170
bioimpedance (BIA), 128
BioZ system, 99
bleeding
in hepatic surgery, 39
see also blood loss (surgical);
hemorrhage
blood
preoperative autologous
donation, 180, 184
random-donor fresh whole, 180
blood–brain barrier (BBB), 122
disrupted, 122, 123
normal functions, 122
blood flow
cerebral, in hypovolemic
shock, 171–2, 173
microcirculatory,
autoregulation, early
septic shock, 160
microvascular, enhancement,
20, 24
by colloids, 20, 24, 97
by hypertonic solutions,
73
redistribution, hemodilution
effect, 113
blood fluidity, 112–13
blood groups, coagulation
response to
hemodilution, 116
blood loss (surgical), 92
children, 67
fluid "efficiency" measurement, 130
GDT using esophageal
Doppler, 94–5
management, 184
reduction in hepatic surgery,
39
"rules of thumb," 21
see also hemorrhage
blood pressure see arterial
pressure
blood products, fluids vs.,
184–92
blood transfusions
antiviral testing, 180
costs, 184
deliberate hypotension in
hemorrhage and, 178
hemorrhagic shock and
hypertonic fluid trials, 75
indications, 20
minimization strategies, 184
blood pressure management,
184
dilutional anemia
tolerance see anemia,
dilutional
intraoperative autologous,
184
rapid, in hemorrhage, 182
reduced by ANH, 112
risk/benefits dilemma, 184
in septic shock/severe sepsis,
161
side effects, 125
in uncontrolled hemorrhage,
180
uncrossmatched type-O
RBC, 180
blood viscosity, 13, 115
blood volume
central see central blood
volume (CBV)
expansion see plasma volume
expansion
intrathoracic see central
blood volume (CBV)
reduced by hemorrhage, 177,
178
body temperature, reduced
see hypothermia
body volume, 127–36
calculation, using tracers,
127
normal, 127
see also fluid volumes;
volume kinetics
bowel preparation, 23, 29,
52–3
bradycardia, in stage II of
hypovolemic shock, 168–9
brain injury
hypertonic fluid
benefits, 73, 74
clinical trials, 75–8
Ringer's solution in, 5
bromide, extracellular fluid
volume, 127
calories, requirements by
children, 66
capillary fluid exchange
see transcapillary fluid
exchange
capillary leak, 12, 15, 19
in sepsis, 157–8
carbohydrates, preoperative, 58
carbon monoxide, 128, 130
cardiac index, 91
improvement by hypertonic fluids, 78
cardiac output, 177
aortic blood flow velocity and, 39
continuous, determination, 83–5
dilutional anemia tolerance mechanism, 185
hypovolemic shock, 170, 171–2
increased, hemodilution effect, 112–13
infants, 65
inter-individual variation, 172
maximization in surgery, 103
measurement/calculation arterial waveform pulse contour, 84
esophageal Doppler monitoring, 88
fluid responsiveness in septic shock, 162
transesophageal echocardiography, 87
monitoring, preload dependence and, 105
reduced, in hemodilution, anesthesia effects, 113, 114
spinal anesthesia effect, 46–7
surrogate parameters for monitoring, 104, 105
see also pulse pressure variation (PPV); stroke volume variation (SVV)
thermodilution see thermodilution cardiac output
cardiac resuscitation, hypovolemic shock and, 168, 169
cardiac surgery
acute normovolemic hemodilution, 115–16
dilutional anemia tolerance, 186
GDT using esophageal Doppler, 94
 cardiopulmonary bypass surgery, hypertonic fluids, 78
 cardiovascular response, absorption of irrigating fluids, 150–1
carotid baroreceptors, 167
catecholamines, 134
see also specific catecholamines
cell membrane, 1
central blood volume (CBV), 38, 166
heart rate and arterial pressure response, 166
in hypovolemic shock, 166, 170, 171
Bezold–Jarish reflex and, 170
pre-shock, 167
stage II, 168–9
stage III, 170
surgeons, 171–2, 173
tilt table experiments, 171
measurement, 129
reduced, impact, 171
central venous oxygen saturation (ScvO2), 159, 162
central venous pressure (CVP), 38
in EGD T, 159
fluid resuscitation in septic shock, 162
hepatic surgery, blood loss reduction, 39
in hypovolemic shock see hypovolemic shock in liver transplantation, 39
volume status assessment, 93, 104
cerebral blood flow, in hypovolemic shock, 171–2, 173
cerebral capillaries, 122
cerebral damage, glucose solutions worsening, 6
cerebral edema absorption of irrigating fluids and, 151
reduction by hypertonic fluids, 74
vasogenic, 122, 123
cerebral oxygenation evaluation and maintaining, 172
in hypovolemic shock, 171–2, 173
cesarean section, 45, 46, 54
children, 65–72
acute hyponatremia, 70
blood loss (surgical), 67
dehydration, 67
fluid therapy for, 67
fasting fluid deficit, 67
fasting guidelines, 66
fluid losses, 67, 68
fluid volumes and renal function, 65
inhaeoperative fluid management, 67–8
clinical guidelines, 68
glucose debate, 67–8
isotonic hydrating solutions, 68
quantity, 67
metabolic requirements, 66
oral fluid intake, 70
perioperative hyperglycemia danger, 67–8
postoperative fluid therapy, 70
clinical guidelines, 70
consensus on, 70
controversies, 70
postoperative hyponatremia, 70
preoperative assessments, 66–7
preoperative hypoglycemia, 67
resuscitation, hydroxyethyl starch (HES), 69
septic shock, 67, 69
volume replacement crystalloids, 67
hydroxyethyl starch (HES), 69
see also infants
chloride ion levels, 140
cholecystectomy, laparoscopic liberal fluids and outcome, 37
perioperative fluids, 58
postoperative nausea and vomiting, 24
“rules-of-thumb” for fluids, 25
circulation, function, 103
citrate, 182
coagulation cascade activation prevention in trauma, 20
colloids affecting, 15
coagulation (cont.)
HES effect on in children, 69
crystalloids effect, 141
hemodilution effect, 116, 189
management, after fluid replacement, 189
procoagulatory drugs, 190
temperature for, hypothermia avoidance, 140, 141
in uncontrolled hemorrhage, 189
coagulopathy
colloid infusion-associated, 141
dilutional, 189
hypothermia-associated, 140, 141
see also hemostatic disturbances, fluid-associated
colloid fluids (colloids), 11–17
adverse reactions, 11, 137, 138, 146
hemostatic disturbances, 141–3
local, 137
organ function impairment, 145
renal failure, 145
tissue deposition, 144–5, 146
in uncontrolled hemorrhage, 180
albumin see albumin
based on balanced electrolyte fluids, 141
clinical use, 11
crystalloids comparison see under crystalloid fluids (crystalloids)
dextran see dextran
elimination, 133
fluid overload, 139
in gastrointestinal surgery, 24
gelatin see gelatin
goal-directed therapy, 97
intra-abdominal surgery, 40
in hypovolemic shock, 172, 173
indication, 11, 97
in massive fluid requirements, 20
for microvascular blood flow enhancement, 20, 24, 97
miscellaneous effects, 15
plasma volume expansion, 122–4, 138
colloid osmotic pressure effect, 138
reducing need for, 124–5
preloading, in spinal anesthesia, 47, 48
saline base, effect on chloride load, 141
in severe sepsis/septic shock, 161
starch see hydroxyethyl starch (HES); starch synthetic, plasma volume expansion, 123
in uncontrolled hemorrhage, 180
volume kinetics, 133
volume replacement in infants, 69
colloid osmotic pressure (COP), 11, 138
hydroxyethyl starch (HES), 139
maintaining, to avoid tissue edema, 20
reduced, crystalloids and, 139, 140
coload, in spinal anesthesia, 46
crystalloid vs. colloid, 48
support lacking for, 48
colonic resection, 30, 36
colorectal surgery, GDT using esophageal Doppler, 95
compensatory mechanisms
dilutional anemia tolerance, 184–5
hemodilution, 112–13, 117, 184–5
hemorrhage, and anesthesia, 178
continuous cardiac output, 83–4
coronary artery disease (CAD), 116
coronary blood flow, 115, 116
corrected flow time (FTc), 88, 94, 96
creatinine, 14
critically ill patients, 157–8
anemia in, 161
HES and renal failure risk, 145
severe sepsis and septic shock, 157–8
see also sepsis; septic shock
crystalloid fluids (crystalloids), 1–10
advantages, 4
adverse reactions, 137, 138
acid–base imbalance, 140
edema and excess tissue hydration, 139–40
hemostatic disturbances, 141, 142
local, 137
for children, 67, 69
colloid fluids vs., 15–16
gastrointestinal surgery, 23, 24
GDT, 96–7, 98
hemostasis affected by, 116
hypovolemic shock, 172, 173
response to ANH, 115
severe sepsis/septic shock, 161
spinal anesthesia, 46–7
in uncontrolled hemorrhage, 180
coload in spinal anesthesia, 48
composition, comparisons, 2
definition, 1
distribution, 97, 123, 139
elimination, 15
fixed administration with GDT of colloids, 48
fluid kinetics modeling, 47
gastrointestinal surgery, 23
glucose solutions, 5–8
in hypovolemic shock, 172, 173
indication, 97
for infants, 69
isotonic, in uncontrolled hemorrhage, 179–80
mannitol, 8
massive fluid resuscitation, 139–40
normal saline see normal saline
overhydration with, adverse effects, 29
plasma volume expansion, 122–4, 133, 139, 171
preload, in spinal anesthesia, 46, 47, 48, 54
obstetric, 45–6, 47
preoperative, geriatric
surgery, 52–3
in severe sepsis/septic shock, 161
volume kinetics, 132–3
volume needed, 139
over estimated, 97
weight gain in elderly, 52, 140
see also glucose solutions;
Ringer’s solution
cystoscopy, 148
DSW fluid, 5
daily fluid requirements, 18–19
day surgery, 56–64
adverse events, 61
benefits, 56
discharge criteria, 61
drugs impact on fluid balance, 61
elderly patients, 56–7
intermediate, clinical trials of
fluid therapy, 58
key messages, 62
outcomes and safety, 56, 61–2
perioperative fluids, 58–61
postoperative fluids, 61
preoperative fasting, 57
preoperative nutrition
correction of deficits, 57–8
energy loading, 58
dehydration, 52
abdominal surgery, 29
children, 67
iatrogenic, gastrointestinal
surgery, 29
desmopressin, 189
dextran (DEX), 12–13
anaphylaxis risk, 13, 123, 143–4
clinical use, 13, 123–4
hemostatic disturbances due
to, 141, 142, 143
hypertonic solution with, in
hemorrhagic shock, 74
low-molecular weight
dextran-1, 144
metabolism, 144
pharmacokinetics, 13, 123
plasma volume expansion, 123–4
rheological effect, 15
safe use, 144
solutions commercially
available, 13
Dextran 40, 138
Dextran 70, 123, 138
dextrose
intraoperative, children, 67, 68
postoperative fluids for
children, 70
diuresis
osmotic see osmotic diuresis
promoting/monitoring, 21
diuretics, TUR syndrome
treatment, 154
DO₂
critical, 185–6
“luxury” (over-supply of oxygen), 185
dobutamine, 163
dopamine, 163
Doppler-guided monitoring
see esophageal Doppler
monitoring (EDM)
drugs
impact on fluid balance, day
surgery, 61
pharmacokinetics, 131
early, aggressive goal-directed
therapy (EGDT), 158
clinical trials, 158, 159–60
importance of speed/timing, 159
principles and benefits, 159
echocardiography,
transesophageal, 86–8
costs, advantages and
contraindications, 87
multiplane probe, 87
pulmonary artery catheter
use vs., 87
edema, 120
adverse effects of infusion
fluids, 139–40
cerebral see cerebral edema
crystalloids in plasma
volume expansion, 123
fluid replacement in sepsis, 160
mechanisms, 121, 122
peripoperative fluid excess, 92
pitting, 4
prevention, colloid osmotic
pressure, 20
sequelae, 123
elderly patients

cardiac output in spinal
anesthesia, 46–7
colonic surgery, liberal vs.
restricted fluids, 53
critically ill patients, 158
day surgery, 56–7
restrictive vs. liberal
fluids, 58
definition, for trials, 52
fluid retention, 52
orthopedic surgery,
restrictive vs. liberal
fluids, 53
perioperative cardiovascular
events, 57
spinal anesthesia in, 46–7, 48
hypotension, 45, 46
weight gain and fluid
overload, 52, 140
see also geriatric surgery
elective surgery
fluid status assessment, 51
fluid types to administer,
51
see also specific surgery types
electrocautery, irrigating fluids,
148
electrolytes
glucose solutions with, 2,
5, 6, 7
isotonic hydrating solutions
for children, 68
requirements by children, 66
encephalopathy,
hypervolemic, 150
endothelial cell edema, 73
energy loading, preoperative
nutrition, 58
Enhanced Recovery after
Surgery (ERAS)
programs, 96
epinephrine (adrenaline), 163
stage II of hypovolemic
shock, 168
esophageal Doppler monitoring
(EDM), 51, 86, 87–8
cardiac output calculation,
88
contraindication, 40
corrected flow time (FTc),
88, 94, 96
in GDT see goal-directed
therapy (GDT)
fluid exchange
see microvascular fluid exchange
fluid intake (oral)
postoperative, in children, 70
preoperatively, 57
fluid kinetics see volume kinetics
fluid losses children, 67, 68
see also hypervolemia
fluid overload adverse effects, 29
avoidsence strategy, 140
colloids, 139
crystalloids, 139–40
perioperative complications, 92
in elderly, 53
postoperative, 51, 54
pulmonary surgery, 54
see also hypervolemia
fluid retention, 51
elderly, 52
fluid status assessment, 51
fluid volumes calculation, using tracers, 127
kinetics see volume kinetics measurement
anthropometry, 128–9
bioimpedance, 128
sodium method, 129
tracers, 127–9
sizes, normal, 127
“fluids and catheter treatment trial,” 161
Frank–Starling fluid challenge, 93, 104
Frank–Starling relationship/curve, 85, 93, 97, 98
absorption of irrigating fluids, 151
cardiac function affecting, 104, 105
description, 105
in hemorrhage, 177
preload dependence, 104, 105
respiratory variations in arterial pulse pressure, 105
fresh frozen plasma (FFP), 189, 190
frusemide, 154
FTc (corrected flow time), 88, 94, 96
functional body fluid spaces, 132
functional hemodynamic parameters, 103–6
algorithm for monitoring in surgery, 109
fluid responsiveness in septic shock, 162
monitoring, clinical outcome and, 108
see also arterial pressure waveform analysis; pleth variability index (PVI); pulse pressure variation (PPV); stroke volume variation (SVV)
gas exchange, hemodilution and anesthesia effects, 114
gastrointestinal surgery accelerated care protocols, 29
laparoscopic, 24–5
liberal vs. restrictive fluids in elderly, 53
open abdominal, fluid therapy, 23–4
“rules-of-thumb” for perioperative fluids, 23–5
laparoscopic surgery, 25
open abdominal surgery, 24
gelatin (GEL), 15, 124
anaphylactoid/allergic reactions, 144
hemostatic disturbances due to, 142, 143
HES comparison, 143
metabolism, 144
plasma volume expansion, 124
preloading, in spinal anesthesia, 47
products and types, 144
volume replacement in infants, 69
general anesthesia, “rules of thumb” for fluids, 21
geriatric surgery, 52–3
perioperative fluid management, 53
postoperative fluid management, 53
preoperative fluid management, 52–3
see also elderly patients
Glasgow Coma Scale, 168
hypertonic fluid administration, 75–8
glucose isotonic hydrating solution effect (pediatric), 68
renal threshold, 7
glucose-free solutions, for children, 68
"glucose loading," 6
glucose solutions, "glucose loading,"
"glucose loading,"
glucose-free solutions, for children, 68
"glucose loading," 6
"glucose loading," 6
surgical stress, 68
adverse reactions cerebral damage, 6
local, 137
volume overload and hypertension, 139
clinical use, 6
composition, 2
contraindications, 6
dosing and requirements, 7
electrolytes with, 2, 5, 6, 7
hyperosmolar, adverse effects, 139
hypertonic, 6
hypotension due to, 7
insulin with, 6
intraoperative fluids for children, 67–8
"nitrogen-sparing effect," 6, 7
osmolality, 137
perioperative, in day surgery, 61
pharmacokinetics, 5–6
rebound hypoglycemia, 7–8
volume kinetics, 134
glycine solution, 150
elimination and absorption, 150
in TURP, 149
glycosuria, 139
"Gly-Gly" phenotype, 172
goal-directed therapy (GDT), 37, 51, 91–102
in abdominal surgery see intra-abdominal surgery
background to, 91
benefits, 92, 99, 108
colloids, with fixed crystallloid administration, 140
definition/description, 91
early aggressive see early, aggressive goal-directed therapy (EGDT)
early, supranormal oxygen delivery, 91–2, 93, 99
mechanisms, 92
esophageal Doppler for, 93–6
improvement, 95
studies, 96
inotropes and vasodilators with, 96
limitations, 96
recommendations, 96
hypovolemic shock, 172
limitations, 92, 99
modern, individualized
volume optimization, 92–9
arterial pressure waveform analysis, 97–8, 108
fluid use, 96–7
technologies (other), 98–9
see also pulse pressure variation (PPV); stroke volume variation (SVV)
monitors for volume status, 93
guidelines, fluid management, 21–2
esophageal Doppler for GDT, 95
intraoperative fluids for children, 68
postoperative fluids for children, 70
see also "rules-of-thumb"
Haemaccel™, 69
Hartmann's solution see lactated Ringer's solution
head injury, albumin-related mortality, 12
head-up tilt (HUT), 166, 167, 170
heart rate
AAA surgery, 168
hypovolemic shock, 166, 167
stage II, 168–9, 170
stage III, 170
hematocrit (Hct)
critical, 185
in dilutional anemia
tolerance, 185
hemodilution, 112–19, 172
acute normovolemic
see acute normovolemic
hemodilution (ANH)
anesthesia effects, 113, 114, 115, 188
compensatory mechanisms, 112–13, 117, 184–5
crystalloids, effect on coagulation, 141
hemostasis affected by, 116, 141, 189
hypovolemic, 188
limits, 113–16
cardiac conditions, 115–16, 186
DO₂crit, 185–6
hemostasis and, 116, 141, 189
normovolemic, 184, 185
limits, 187
tolerance to, 115, 185
see also anemia, dilutional
hemodynamic instability, 19
hemodynamic monitoring, 108
invasive see invasive hemodynamic monitoring
non-invasive see non-invasive guidance, fluid therapy
hemodynamic parameters
fluid administration in intra-abdominal surgery, 38
functional see functional hemodynamic parameters
hemoglobin
critical value, tissue oxygenation, 113, 125, 185, 187, 189
critically ill patients, 161
postoperative, mortality, 186
dilution concept, 130
fluid "efficiency" measurement by, 130
measurements, volume kinetic analysis, 131, 134
normal, plasma volume expansion and, 125
recommended levels, 20
restrictive vs. liberal transfusion strategies, 20
hemolysis-induced renal failure, 148
hemostatic disturbances, fluid-associated, 141–3

coagulation disturbances, fluid-associated, 141–3

colloid-associated, 141–3

crystalloid-associated, 141, 142

mechanisms, 141

see also coagulopathy

hematocrit, 22

hepatic surgery, 39

hypertonic fluids in, 78

Hetastarch, 13, 73, 142

high-flow, low-pressure state, 181

hip surgery, "rules of thumb" for perioperative fluids, 22

HSD (hypertonic saline dextran), effect on ARDS, 74

hydroxyethyl starch (HES), 13, 14, 124

130/0.4 preparations, 144

safety aspects, 145

anaphylactoid reaction rate

low, 143

anti-inflammatory effects, 20, 26

bleeding association, 142

clinical use, 14, 124, 141

colloid osmotic pressure, 139

first generation, hemostatic effects, 142

gelatin comparison, 143

in hemorrhage, 188

hemostatic disturbances due to, 116, 141–3

hyperoncotic, 14

in hypertonic saline, 14

metabolism, 144

incomplete, tissue deposition, 144

in neonates, 69

pharmacokinetics, 14, 124

in plasma-adapted solutions, 142, 145

plasma volume expansion, 124

preloading, in spinal anesthesia, 47

preparations, characteristics, 141

pruritus due to, 144–5

renal failure risk after, 145

third generation, hemostatic disturbances, 142–3

volume replacement in infants/children, 69

coadsorption, effect on, 69

quantity and types, 69

hyperchloremic metabolic acidosis, 46, 140

normal saline causing, 1, 46, 150, 180

hypercoagulable state, dextran countering, 143

hyperdynamic state, 160, 162, 163

hyperglycemia, 139

perioperative, in children, 67–8

hyperosmolar solutions, volume overload and hypertension, 139

hypersensitivity, reaction to iv fluids, 143–4

hypertension, adverse effect of iv fluids, 138–9

hypertonic fluids, 73–81

in aortic surgery, 78

benefits, 73

in brain injury, 73, 74

prehospital administration, outcomes, 75–8

in cardiopulmonary bypass surgery, 78

clinical trials, 74–8

hemorrhagic shock, 74–5, 76

traumatic brain injury, 75–8

in hemorrhagic shock, 73, 74–5, 76

in hepatic surgery, 78

intraoperative studies, 78–9

intracranial pressure reduction, 74, 75

mechanism of action, 73–4

in spinal surgery, 78

types, 73

in uncontrolled hemorrhage, 180

see also hypertonic saline

hypertonic saline, 3, 73

adverse reactions

local, 137–8

volume overload and hypertension, 139

in aortic reconstruction, 78

in aortic surgery, 78

in hypotension, 7

for increased intracranial pressure, 75

osmolality, 137–8

prehospital administration, outcome in brain injury, 75–8

TUR syndrome treatment, 153
volume kinetics, 132, 134
hypertonic saline dextran
(HSD), effect on ARDS, 74
hypervolemia
absorption of irrigating fluids, 150–1
adverse effect of iv fluids, 138–9
see also fluid overload
hypo-osmolality, 151
hypalbuminemia, 12
hypocalcemia, 182
hypoglycemia
glucose solutions, 6
preoperative, in children, 67
rebound, 7–8
hyponatremia, 150
absorption of irrigating fluids, 151
treatment, 153–4
acute, management in children, 70
brain damage, 153
glucose solutions inducing, 7
postoperative, in children, 70
hypotension
anesthesia-induced, 21, 22
deliberate, in resuscitation,
178, 179, 181
barriers/problems, 179
drug-induced, 4
hemorrhage in trauma
patients and, 179
maintenance, in hemorrhage, 178–9
in spinal anesthesia
see spinal anesthesia
hypothermia, 140, 141
benefits in resuscitation, 182
dilutional anemia tolerance, 188
hypovolemia, 120
central, 168
consequences, 92
fluid status assessment and,
51
increased transcapillary escape rate, 122
plasma volume expanders
see plasma volume expansion
prevention, perioperative fluids, 19
reversal, Ringer’s solutions, 4
signs, 104
Starling curve, LV stroke volume, 98
tissue oxygenation and
hemodilution effect, 114
hypovolemic shock, 166–76
AAA surgery, 168
“cardiac arrest” in, 168
cardiac output, 170, 171–2
central blood volume
see central blood volume
(CBV)
central venous pressures, 170–2
normovolemia definition, 171
characteristics, 166
heart rate and arterial pressure, 166
hypertonic fluid benefits, 73
pre-shock, 167
stage II, 168–70
Bezold–Jarisch reflex, 170
bradycardia, 168–9
pale skin and sympathetic activity, 169–70
to stop bleeding, 169
stage III, 168, 170
volume treatment, 166,
171–2
aim, 172
choice, 172–3, 174
titration for normovolemia, 172
hypoxia, tissue, 185
hysterectomy, hypertonic saline, 78
immunosuppressive response,
hypertonic fluids, 73–4
indications and challenges, of fluid therapy, 18–21
basal fluid requirement provision, 18–19
microvascular blood flow enhancement, 19–20
oxygen transport adequacy, 20
promoting/monitoring of diuresis, 21
tissue edema prevention, 20
indocyanine green (ICG), 128
infants
fasting guidelines, 66
guidelines for intraoperative fluid therapy, 68
volume replacement, 69
albumin, 69
crystalloids, 69
gelatins, 69
hydroxyethylstarch preparations, 69
lactated Ringer’s solution, 69
see also children; neonates;
premature infants
inflammation
early vs. late septic shock, 158
prevention in trauma, 20
inflammatory cytokines,
hypertonic fluid effects, 73
infusion fluids
dilutional anemia tolerance, 188
as drugs, ix, 131
warming, importance, 140, 141
see also colloid fluids
(colloids); crystalloid fluids (crystalloids)
inotropic agents, 82, 159, 163
inspiratory oxygen fraction
(FIO2), 188
insulin, glucose solutions with, 6
interstitial fluid space, 3, 4, 11
interstitial fluid volume, 1, 127
measurement, 128
normal adult, 127
intra-abdominal surgery, 29–44
clinical trials, “fixed” fluid volumes, outcome,
30–7, 39
improved outcome with liberal fluids, 36–7
improved outcome with restricted fluids, 30–6
outcome differences lacking, 36
PVI monitoring, 108
preclinical trials, 31
clinical trials, goal-directed fluid volume, outcome,
37–9, 108
infants
fasting guidelines, 39
colloid boluses, 40
Doppler-guided fluid management, 37, 39
hepatic surgery, 39
optimization protocol, 38
restricted fluids vs., 38–9
intra-abdominal surgery (cont.)
- summary of trials, 33
- duration, effect on fluid balance, 37
- inadequacy of predefined strategy, 40
- "rules of thumb" for fluids, 29
- criticisms of, 29–30
- summary of findings, 39–40
- timing of fluid administration, 40
- see also gastrointestinal surgery

intracellular fluid (ICF)
- hypo-osmotic irrigating fluids effect, 150
- volume, 127
- measurement, 128, 129
- normal adult, 127
- intracellular fluid (ICF) space, 1, 6
- intracranial pressure
- increase, causes, 122
- reduction by hypertonic fluids, 74, 75
- reduction by mannitol, 8, 75
- intraoperative period
- fluids for children
 - see children
- hypertonic fluids, 78–9
 - "rules of thumb" for
 - perioperative fluids, 21
 - intra-abdominal surgery, 29
- laparoscopic cholecystectomy, 24
- open gastrointestinal surgery, 24
- orthopedic surgery, 22
- vascular surgery, 26
- intrathoracic blood volume (IBV)
 - see central blood volume (CBV)
- intravascular volume, 18, 51, 85
- deficit, before surgery, 19
- overload, colloid infusions, 139
- replacement, in children, 67
- invasive hemodynamic monitoring, 82–90, 92, 103
- arterial waveform pulse contour cardiac output
 - see pulse contour analysis
- dynamic indices see arterial pressure waveform analysis
- echocardiography, 86–8
- esophageal Doppler monitoring (EDM)
- pulmonary artery catheterization
 - see pulmonary artery catheterization (PAC)
- transpulmonary thermal dilution cardiac output, 84
- iohexol, 127
- irrigating fluids, 148–56
- absorption, 148
- fluid comparisons, 151
- incidence and presentation, 149
- measurement, 151–3
- mechanisms, 148–9
- pathophysiology, 150–1
- prevention, 153
- treatment, 153–4
- types of fluids used, 150
- see also transurethral resection (TUR)

hemolysis-induced renal failure, 148
- types, 150
- iso-osmotic fluid, 1
- isotonic solution, 1
- intraoperative, for children, 68
- normal saline, 1–3
- perioperative, 58
- postoperative fluids for children, 70
- Jehovah's Witnesses, 114, 186
- knee surgery
- perioperative restrictive vs. liberal fluids, 53
- "rules of thumb" for
 - perioperative fluids, 23
- labor, 8
- lactate
- in resuscitation in hemorrhage, 182
- in Ringer's solution, 3
- serum levels, intra-abdominal surgery, 38–9
- lactated Ringer's solution, 3
- composition, 2
- perioperative, in day surgery, 58, 62
- in uncontrolled hemorrhage, 179–80
- volume kinetics, 132
- volume loading, 5
- volume replacement in infancy, 69
- laparoscopic cholecystectomy
 - see cholecystectomy
- laparoscopic gastrointestinal surgery, 25
- "rules of thumb" for fluids, 25
- left ventricular end-diastolic area, 87
- assessment by
 - transesophageal echocardiography, 87
- left ventricular end-diastolic pressure (LVEDP), 98
- left ventricular end-diastolic volume (LVEDV), 82, 87
- esophageal Doppler monitoring, 88
- left ventricular preload, 82–3, 85
- liberal fluid regimens
 - day surgery, 58
 - description, 52
 - in elderly, restrictive fluids vs.
 - colonic surgery, 53
 - orthopedic surgery, 53
 - laparoscopic cholecystectomy
 - outcome, 37
- LiDCO, 84–5, 98
- lithium dilution, calibrated pulse contour analysis
- by, 84–5
- liver transplantation, 39, 78
- lower body negative pressure (LBNP), 166, 170
- lower limb surgery, "rules-of-thumb" for fluids, 25
- lymphatic system, 120, 121–2
- stimulation, 125
malnutrition, preoperative management, 57–8
mannitol, 8, 75, 150
elimination and absorption effects, 150
hypertonic, 154
mass balance equation, 129
mean arterial pressure (MAP), 167
in EGDT, 159
noradrenaline use, 163
reduced central blood volume, 167
reduced, stage II of hypovolemic shock, 168, 173
in uncontrolled hemorrhage, 179
see also arterial pressure mechanical ventilation, 104, 106
metabolic acidosis
hyperchloremic
see hyperchloremic metabolic acidosis
hypochloremic, 1
normal saline inducing, 1, 11, 46, 150, 180
microvascular blood flow
see blood flow
microvascular fluid exchange, 120–6
inside brain, 122
lymphatic system, 121–2
outside brain, 120–1, 122
2-pore theory, 121, 124
see also hypovolemia; plasma volume expansion
moderate-risk surgery, 103
pulse oximeter waveforms, 106
morbidity, perioperative, 92
mortality, high-risk surgery, 91
muscular relaxation, dilutional anemia tolerance, 188
myocardial function, dilutional anemia tolerance, 188
neonates
albumin use for volume expansion, 69
HES use, 69
see also infants
neutrophil action, 73
NICOM, 99
nitric oxide, 112
non-invasive guidance, fluid therapy, 103–11
functional hemodynamic parameters, 104–6
see also pulse pressure variation (PPV)
pleth variability index
see pleth variability index (PVI)
plethysmographic waveform
(ΔPOP), 103, 106, 107
preload dependence determination, 104
pulse oximeter waveforms, 106–7
static parameters, 104
static vs. dynamic parameters, 104
see also pulse oximeter waveforms
nonlinear least squares regression, 131
non-steroidal anti-inflammatory drugs (NSAIDs)
day surgery, 61, 62
impact on fluid balance, 61
noradrenaline
(norepinephrine), 163
stage II of hypovolemic shock, 168
normal saline, 1–3
adverse effects, 3, 180
composition, 2
hyperchloremic metabolic acidosis due to, 1, 46, 150, 180
for infants, 69
irrigating solution, 150
adverse effects, 151
postoperative fluids for children, 70
normovolemia
hemodilution
see hemodilution maintenance, in anemia tolerance, 188
plasma volume expanders for see plasma volume expansion
"rules-of-thumb," 19, 26
in vascular surgery, 26
nutrition, preoperative day surgery and, 57–8
energy loading, 58
obstetric spinal anesthesia
see spinal anesthesia, obstetric
obstetric surgery, fluid management, 54
oedema see edema
oncotic pressure, plasma, 124
reduced, 70, 123
oozing, 13
optimal fluid strategy, 18
gastrointestinal surgery, 23–4
see also under goal-directed therapy (GDT)
orthopedic surgery
GDT using esophageal Doppler, 96
restrictive vs. liberal fluids in elderly, 53
“rules of thumb” for perioperative fluids, 22–3
osmolality, 1
osmolality-associated adverse effects, 137–8
osmotic diuresis, 7, 8
glycine solution absorption causing, 150
osmotic pressure, colloid
see colloid osmotic pressure (COP)
overhydration
adverse effects, 29
see also fluid overload
oxygen consumption
hemodilution and anesthesia effects, 114
increased, ANH, 113
myocardial, 115, 116, 188
VO₂, 185, 186
oxygen supply-dependency, 185
oxygen delivery, 103, 185
critical DO₂, 185–6
factors affecting, 186
myocardial, 115, 116
optimization, 103
over-supply (luxury DO₂), 185
supranormal, early GDT, 91–2, 99
targets, 91
oxygen dissociation curve, 113
oxygen, inspiratory fraction (FiO2), 188
oxygen saturation central venous (ScvO2), 159, 162
measurement, pulse oximetry, 107
venous see venous oxygen saturation (SvO2)
oxidation, tissue adequacy, fluids for, 20
criticisms of hypothesis involving, 29
hemodilution effects, 112, 113–14
increased by liberal fluid use, 36
increased, hemodilution effect, 113–14
efficacy, 114–15
intra-abdominal surgery, 36, 40
parasympathetic activation, hypovolemic shock, 168
pediatrics, 65–72
see also children; infants
pentastarch, 13, 144
perfusion index (PI), 107
perioperative fluids
day surgery, 58–61
geriatric surgery, 53
importance, 18
indications see indications and challenges
optimization, 18
principles, 19, 158
volume, 58
see also more specific topics
pharmacokinetics
albumin, 11–12
crystalloids, 97
dextran, 13, 123
drugs, 131
solutions, 5–6
hydroxyethyl starch (HES), 14, 124
infusion fluid kinetics and, 131–4
mannitol, 8
Ringer’s solution, 3–4
starch, 14
phenylephrine, 54
physiotherapy, 125
PiCCO, 85, 86, 98
pitting edema, 4
plasma administration, 15, 184, 189
in trauma, 181
adverse reactions, 15
composition, 2
dilution, after infusion, 131
fresh frozen, 189, 190
in volume plasma expansion, 15
plasma colloid osmotic pressure see colloid osmotic pressure (COP)
Plasma-Lyte A, 2, 5
in uncontrolled hemorrhage, 179–80
plasma volume, 127
body weight relationship, 129
measurement, 127–8
normal adult, 127
plasma volume expansion adverse effects, 124
colloid fluids, 11, 122–4, 138
albumin, 11–12, 123, 124
dextran, 13, 123–4
gelatin, 124
hydroxyethyl starch, 14, 124
reducing need for, 124–5
crystalloids fluids, 122–4, 1
33
efficiency of fluid, 129–31
ideal/“target,” 134
normal arterial pressure and, 124
reduced renal clearance effect, 133
responders and non-responders, 134
Ringer’s solution, 4
effectiveness, 133
pleth variability index (PVI), 103, 107–8
monitoring, clinical outcomes, 108
plethysmographic waveform see pulse oximeter waveforms
polycythemia, neonatal, 69
polyionique B66, 68
ΔPOP, 106, 107
2-pore theory, 121, 124
positive-pressure ventilation, 85, 97, 104
postoperative complications, “minor,” 103
postoperative fluid management
in children/infants see children
day surgery, 61
geriatric surgery, 53
“rules of thumb,” 21–2
laparoscopic surgery, 25
open gastrointestinal surgery, 24
orthopedic surgery, 22
vascular surgery, 26
postoperative nausea and vomiting (PONV), 169
day surgery, 62
laparoscopic gastrointestinal surgery, 24
prevention, 24–5
postoperative pain management, day surgery, 62
potassium, serum levels, absorption of irrigating fluids, 151
pre-eclampsia, 46, 48
preload dependence, 104, 105
assessment, 104
importance, 105
definition/description, 104
premature infants
albumin use for volume expansion, 69
volume replacement, 69
preoperative assessments, children, 66–7
preoperative fluids
geriatric surgery, 52–3
“rules of thumb,” 21
laparoscopic surgery, 25–6
open gastrointestinal surgery, 24
orthopedic surgery, 22
vascular surgery, 26
pressure breathing, 166
protein exchange, microvascular, 120, 121
mechanisms, 121
convection, 121
passive, 121
2-pore theory, 121, 124
protein-sparing effect, 6, 7
pruritus, 144–5
hydroxyethyl starch (HES), 144–5
pulmonary artery catheterization (PAC), 82–4
continuous cardiac output, 83–4
early, GDT, 91
thermodilution cardiac output, 83
transesophageal echocardiography vs., 87
usage, trends, 82
pulmonary artery occlusion pressure (PAOP), 162
pulmonary artery wedge pressure (PAWP), 82–3
pulmonary capillary wedge pressure (PCWP), 104
pulmonary edema, 29, 54, 123
fluid volume relationship, 54
rapid infusion of Ringer’s solution, 4, 5
pulmonary surgery, fluid management, 54
pulse contour analysis, 84
 calibrated, 84
by lithium dilution (LiDCO), 84–5, 98
by thermodilution (PiCCO), 85, 86, 98
continuous, 84–5
contraindications, 84
fluid responsiveness in septic shock, 162
non-calibrated, 84, 85
pulse oximeter waveforms, 106–7
amplitude (ΔPOP), 106, 107
components, 106
fluid responsiveness prediction, 107
principles, 106
respiratory variations, 106–7
pulse oximetry, oxygen saturation measurement, 107
pulse pressure, 38
pulse pressure variation (PPV), 86, 97, 103
applications, conditions for, 106
fluid responsiveness in septic shock, 162
mechanical ventilation effect, 104
monitoring, clinical outcomes, 108
respiratory variations, pulse oximeter, 105, 106
tidal volume impact, 106
red blood cells (RBCs)
hemostasis and, 116
labeling, mass calculation, 128
reduction, hemodilution, 112
transfusions, 180, 184
velocity, 113
reflection coefficient, proteins, 120, 121
regression equations, 129, 131
rehydration, 19
renal damage, absorption of irrigating fluids, 151
renal failure
colloid-associated, 145
critically ill patients, 158
hemolysis-induced, 148
renal function, children, 65
renal insufficiency, Ringer’s solutions cautions, 5
renal threshold, glucose, 7
respiratory systolic variation test, 86
restrictive fluid regimens description, 52
intra-abdominal surgery effect on outcome, 30–6
GDT fluid volume effect on outcome vs., 38
perioperative, in elderly, 53, 58
resuscitation
cardiac, hypovolemic shock and, 168, 169
children, hydroxyethyl starch (HES), 69
deliberate hypotension in see hypotension
hypertonic fluids in see hypertonic fluids
massive, crystalloid adverse effects, 139–40
in severe sepsis see sepsis in uncontrolled hemorrhage see hemorrhage
Resuscitation Outcomes Consortium, 75
right ventricular filling, 83
Ringer’s solution, 3–5
acetated, 132
adverse effects, 4, 5, 29
in brain injury, 5
clinical use, 4
composition, 2
chloride, 141
lactate and acetate, 3
dosage/infusion volume, 4–5
for infants, 69
lactated see lactated Ringer’s solution
pharmacokinetics, 3–4
Plasma-Lyte A see Plasma-Lyte A
plasma volume expander, effectiveness, 133
preloading, laparoscopic cholecystectomy, 24–5
in spinal anesthesia, 47
volume kinetics, 132–3
“rules-of-thumb,” ix, 18–28
for adequate colloid osmotic pressure, 20
for adequate oxygen transport, 20
for basal fluid requirements, 19
general principles, 18–21
intra-abdominal surgery, 29
for normovolemia and hemodynamic stability, 19, 26
to prevent hypovolemia, 19
to prevent trauma-induced cascade systems, 20
procedure-specific, 22
gastrointestinal surgery see gastrointestinal surgery
orthopedic surgery, 22–3
vascular surgery, 25
to promote/monitor diuresis, 21
for rehydration in fluid deficiency, 19
standard (perioperative fluids), 21–2
see also guidelines, fluid management
SAFE study, 161, 180
saline
hypertonic see hypertonic saline
physiological (isotonic) see normal saline
sepsis, 157
HES avoidance, 14
severe, 157–65
anesthesia in, 158
crystalloids vs. colloids, 161
definition, 157
sepsis (cont.)

early fluid resuscitation, 158–60
fluid responsiveness, 162
later fluid resuscitation, 160–1
positive fluid balance and edema, 160
summary/key messages, 163
vasopressors and inotropic agents, 163

septic shock, 157–65
anesthesia in, 158
children, 67
definition, 157
early vs. late, 158
fluid management, 158, 160
crystalloids vs. colloids, 161
early, 158–60
later, 160–1
summary/key messages, 163
fluid responsiveness, 162
hydroxyethyl starch in children, 69
vasopressors and inotropic agents, 163

shock
cold see hemorrhagic shock
warm see septic shock
smoking, 149
sodium
isotonic hydrating solution effect (pediatric), 68, 70
for measuring irrigating fluid absorption, 151, 152, 153
postoperative fluids for children, 70
sodium method, 129
sorbitol solutions, 150
spinal anesthesia, 45–50
cardiac output affected by, 46–7
colloid fluid preloading, 47, 48
coload, vs. preload, 46, 48
crystalloid fluid preloading, 45–6, 47, 48, 54
with gelatin or HES, 47
crystalloids vs. colloids, 46–7, 54
coload, 48
in elderly, 45, 46–7, 48
hypertonic fluids in, 78

hypotension in, 45, 47, 54
elderly, 45, 46
etiological factors, 45
fluid management summary, 48–9
non-obstetric, hypotension in, 46
obstetric, 45–6, 48
hypotension, 45–6, 47, 54
recommendations of fluids, 49
“rules of thumb” for perioperative fluids, 21
knee surgery, 23
orthopedic surgery, 22
timing of fluid administration, 48
spinal surgery, intra-aortic hypertonic fluids, 78
starch, 13–14
adverse effects, 14
clinical use, 14
pharmacokinetics, 14
preparations/formulations, 13–14
see also hydroxyethyl starch (HES)

Starling curve see Frank–Starling relationship/curve

Starling fluid equation, 120, 121
sterile water, 148, 150
steroids, impact on fluid balance, 61
Stewart–Hamilton equation, 83
stroke, acute, 6
stroke volume (SV), 38, 87
increase in preload, 104
increased, hemodilution effect, 113
maximization, GDT for see goal-directed therapy (GDT)
optimization, Starling curve, 93, 96
pulse contour analysis, 84
‘recruitable’, in GDT, 93, 94
Starling curve see Frank–Starling relationship/curve
stroke volume variation (SVV), 104
measurement, 86, 97
monitoring, clinical outcomes, 108
“Surviving Sepsis Campaign”, 159, 161, 162, 163

sympathetic activation
hypovolemic shock, 167, 168
reduced, hypovolemic shock, 168, 169–70
in severe hemorrhage, 169, 170
systemic inflammatory response syndrome (SIRS), 157
systemic vascular resistance (SVR), 162, 163
systolic pressure, 38, 85, 86
systolic pressure variation, 86
fluid responsiveness in septic shock, 162

T cells, hypertonic fluid effects, 73–4
tachycardia, in hypovolemic shock, 170
temperature-associated adverse effects, 137, 138
tetraslarch, 142
thermodilution, calibrated pulse contour analysis by, 85, 86
thermodilution cardiac output, 83
transpulmonary, 84
thermodilution curve, 83, 84
“third-day” transient circulatory overload, 140
third space, 23, 29, 67, 97, 134
uncontrolled hemorrhage, resuscitation, 179
thyroid surgery, 58, 133, 134
tidial volume, 106
tilt table experiments, 166, 167, 171
timing of fluid administration
EGDT, 159
intra-abdominal surgery, 40
spinal anesthesia, 48
tissue deposition, adverse reaction, 144–5
tissue edema see edema
tissue hydration, excessive, 139–40
tissue oxygenation see oxygenation, tissue

tonicity, 1
total body water, 127, 129
children, 65
trace methods
fluid “efficiency” measurement, 130
fluid volume measurement, 127–9
limitations of use, 128
transcapillary escape rate (TER), 120, 121
increased, 122, 124
transcapillary fluid exchange, 20, 120–1
2-pore theory, 121, 124
transcapillary/transvenular hydrostatic pressure, 121
transcervical resection of the endometrium (TCRE), 148, 149
measurement of fluid absorption, 151
transcystosis, 121
transesophageal echocardiography
see echocardiography
transfusion-related cardiac overload (TACO), 189, 190
transpulmonary thermodilution cardiac output, 84
transurethral resection of the prostate (TURP), 148, 149
bipolar resection technique, 153
glycine solution, absorbed fluid, 149
irrigation fluid absorption prevention, 153
transurethral resection (TUR) syndrome, 148
death from, 151
fluid absorption measurement, 151–3
irrigating fluids causing, 150, 151
pathophysiology, 150–1
prevention, 153
symptoms, 149
treatment, 153–4
transvascular fluid exchange, 120–1, 122
see also microvascular fluid exchange
trauma
- crystalloid vs. colloid fluids, 15, 16
- hemorrhage, 179, 182
- blood pressure target, 179
see also hemorrhage prevention of coagulation/cascade activation, 20
tricuspid valve regurgitation, 83
vagal activity, hypovolemic shock and, 169
vascular surgery, "rules of thumb" for fluids, 25, 26
vasoconstriction, in hemorrhage in trauma, 179, 182
vasodilatation, 3, 133
vasodilator peptides, 46, 47
vasopressin, 169
vasopressors
- avoidance, plasma volume expansion and, 124
- in septic shock, 163
- in spinal anesthesia, 48–9
Venofundin, 14
venous oxygen saturation (SvO₂)
- fluid responsiveness in septic shock, 162
- hypovolemic shock, 171, 172, 174
- inter-individual variation, 172
vesicle transport, 121
volume effect, infusion fluid, 129
volume kinetics, 127–36
anesthesia/surgery effect, 133
clinical use, 134
colloid fluids, 133
crystalloid fluids, 47, 132–3
distribution, compartments, 131, 132
elimination, 131, 133
"functional" fluid spaces, 132
glucose solutions, 134
hemoglobin measurements for, 131, 134
hypertonic saline, 134
modeling, crystalloids distribution, 47
"nonfunctional" fluid spaces, 134
volunteer studies, 132–3
volume status, assessment bedside, 82
invasive see invasive hemodynamic monitoring
volumetric fluid balance, irrigating fluid absorption, 151–2, 153
Voluven, 14
von Willebrand factor, 142, 143, 189
von Willebrand-like syndrome, 142, 143
warming, infusion fluids, 140, 141
water isotopes, 127
water requirements, children, 66
weight, fluid volumes relationship, 129
weight gain, 29, 30, 51
crystalloid fluids in elderly, 52, 140