
Cambridge University Press
978-1-107-00068-1 — UNIX and Perl to the Rescue!
Keith Bradnam, Ian Korf
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

 Introduction 1.1

 Why this book?
 If this book had to have a mission statement, we would say that it is designed to help you

make the transition from computer user to computer programmer . 1

 We wrote this book with life scientists in mind. But it is equally appropriate for

anyone who needs to slice and dice large, diverse data sets. A few years ago, biologists

did not need to know how to program. With the arrival of the Human Genome Project

and other -omic technologies, biology has been transformed into an incredibly data-rich

science. While the science is moving ahead at a staggering rate, most people have not

changed themselves to match. Not everyone needs to know how to program, but for

those that desire it, this book will help them catch up quickly.

 We have both watched students struggle with trying to analyze mountains of data, and

sometimes the struggle has not been because the students lack the ability to tackle the prob-

lem. Rather, it is because they frequently lack the tools to tackle the problem. For many

people, data analysis means ‘using a spreadsheet.’ Sometimes this is all you need, but for

many problems a programming solution will be faster, easier, and much more powerful.

 This is not a book for dummies or idiots. Conversely, it’s also not for super-geniuses.

It’s for ordinary educated people who haven’t needed to program until now. Whether the

topic is language, mathematics, or programming, some people learn faster than others.

But we all learn to read, write, multiply, and divide. And we can all learn to program.

Rest assured, you can program. We are happy to be your guides.

 Learning to program is a journey. Like other journeys, it takes time and effort. But

the rewards are worth every step. Not only will you be learning a new skill that you can

apply to your work, you will be seeing the world of data from a completely different

perspective. We guarantee you will fi nd this personally enlightening, and we are not

exaggerating when we say that your newfound knowledge will empower you more than

you can imagine.

 Why Unix?
 The Unix OS has been around since 1969 and it’s not likely to disappear any time soon.

Back then there was no such thing as a graphical user interface (GUI). You typed every-

thing. It may seem archaic to use a keyboard to issue commands today, but it’s much

easier to automate keyboard-driven tasks than mouse-driven tasks. There are several var-

iants of Unix (including Linux), though the differences do not matter much. Although

you may not have noticed it, Apple has been using Unix as the underlying OS on all of

their computers since 2001. 2

 1 Note that this doesn’t mean you need to grow a beard, start reading science-fi ction books, or wear T-shirts bearing

unfathomable geeky slogans. Indeed, all of these clich é s about programmers should be tossed aside. Programmers are real

people … well, most of us are anyway.

 2 If you haven’t noticed it, that’s probably because it is ‘hidden’ behind a very slick-looking GUI. But it’s there

nonetheless.

www.cambridge.org/9781107000681
www.cambridge.org

Cambridge University Press
978-1-107-00068-1 — UNIX and Perl to the Rescue!
Keith Bradnam, Ian Korf
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction and background4

 Increasingly, the raw output of biological research exists as in silico data, usually in

the form of very large text fi les that can grow to several gigabytes in size. Unix is par-

ticularly suited to working with such fi les and has several powerful (and fl exible) com-

mands that can process your data for you. The real strength of learning Unix is that most

of these commands can be combined in an almost unlimited fashion. If you can learn

just fi ve Unix commands, you will be able to do a lot more than just fi ve things.

 Why Perl?
 Perl is one of the most popular programming languages, and has a particularly strong

following in the bioinformatics community. People sometimes get argumentative about

which language is best. There is no single best language for everything. Perl does most

things very well, and is a fi ne programming language to learn. Other equally capable and

easy to use languages include Python and Ruby. Once you learn how to program well in

one language, adapting to other languages is trivial.

 Originally developed in 1987, Perl remains under active development and there is

therefore a lot of supporting material available to help you learn it. 3 You are very likely

to fi nd Perl pre-installed on just about every type of Unix/Linux-based OS, and it is also

available for Windows.

 Among programming languages, there is often a distinction between those that are

 interpreted (e.g., Perl, Python, Ruby) and those that are compiled (e.g., C, C++, Java).

People often call interpreted programs scripts . It is generally easier to learn program-

ming with a scripting language because you don’t have to worry as much about variable

types and memory allocation. The downside is that the interpreted programs often run

much slower than compiled ones. But let’s not get lost in petty details. Scripts are pro-

grams, scripting is programming, and computers can solve problems quickly regardless

of the language.

 About the authors
 Keith Bradnam started out his academic career studying ecology. This involved lots of

fi eld trips and throwing quadrats around on windy hillsides. He was then lucky enough

to be in the right place at the right time to do a Masters degree in bioinformatics (at a

time when nobody was very sure what bioinformatics was). From that point onwards he

has spent most of his waking life sat at a keyboard (often staring into a Unix terminal).

A PhD studying eukaryotic genome evolution followed; this was made easier by the fact

that only one genome had been completed at the time he started (this soon changed).

After a brief stint working on an Arabidopsis genome database he moved to working

on the excellent model organism database, WormBase, at the Wellcome Trust Sanger

Institute. It was here that he fi rst met Ian Korf and where they bonded over a shared love

of Macs, neatly written code, and English puddings. Ian then tried to run away and hide

in California at the UC Davis Genome Center, but Keith tracked him down and joined

his lab. Apart from doing research, he also gets to look after all the computers in the lab

 3 A good ‘fi rst port of call’ would be www.perl.org, the offi cial web site of the Perl programming language.

www.cambridge.org/9781107000681
www.cambridge.org

Cambridge University Press
978-1-107-00068-1 — UNIX and Perl to the Rescue!
Keith Bradnam, Ian Korf
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 5

and teach the occasional class or two. However, he would give it all up for the chance

to be able to consistently beat Ian at foosball, but that seems unlikely to happen anytime

soon. Keith still likes Macs and neatly written code, but now has a much harder job fi nd-

ing English puddings.

 As a youth, Ian Korf’s favorite classes were sciences and his favorite pastime was

computer gaming. At the time, you wouldn’t have thought that hacking and writ-

ing computer games would be very useful skills for a budding molecular biologist.

Certainly nobody ever counseled Ian to do so, especially when he was doing it at

2 a.m.! But apparently the misspent hours of youth can sometimes turn out to be

worthwhile investments. Ian’s fi rst experience with bioinformatics came as a post-doc

at Washington University (St. Louis), where he was a member of the Human Genome

Project. He then went ‘across the pond’ to the Sanger Institute for another post-doc.

There he met Keith Bradnam, and found someone who truly understood the role of

communication and presentation in science. Ian was somehow able to persuade Keith

to join his new lab in Davis, California. This book is but one of their hopefully useful

contributions.

 Acknowledgments
 This book evolved from a course that we both teach to graduate and undergraduate

students at UC Davis. We are grateful to the students for their patience with us, as this

course has evolved quite a bit since we started teaching it. Their feedback, and their

enthusiasm for learning Unix and Perl, have made this book what it is. We also would

like to thank Nancy Parmalee for helpful suggestions about the index.

 Keith would also like to thank his wife Mel for her tireless support and understand-

ing throughout the long book-writing process. He would also like to express profound

gratitude to the wonders of caffeine, the relaxation afforded by his iTunes music library,

and to the entire nation of Belgium.

 Ian would like to thank all his students, past, present, and future. May your adven-

tures take you to lands unimagined, and your skills see you safely home.

 This book was written using Apple’s excellent ‘Pages’ word-processing software,

with extensive use of Dropbox software by Dropbox Inc. to make the process of collab-

orative writing a joy. Code examples were written using TextMate by MacroMates Ltd

and TextWrangler by Bare Bones Software.

www.cambridge.org/9781107000681
www.cambridge.org

Cambridge University Press
978-1-107-00068-1 — UNIX and Perl to the Rescue!
Keith Bradnam, Ian Korf
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

 How to use this book 1.2
 Or rather, how not to use this book

 Organization
This book is divided into seven parts (you are currently reading Part 1). You may be

impatient to start programming with Perl, but if you don’t know any Unix we suggest

that you start with Part 3, which will teach you the basics of Unix. When you fi nish that,

you can optionally jump ahead to Part 5, which covers some advanced Unix topics. Or

you might just want to proceed to Part 4, which covers all of the fundamentals of Perl.

The choice is yours. Of course, if you don’t yet have Unix and Perl installed on your

computer, then you might want to start with Part 2, which covers how you can get Unix

and Perl for your PC.

 If you’ve never programmed, we hope that after learning the ‘essential’ Perl of Part 4,

you will be able to write many fantastic and powerful scripts. More importantly, we hope

that you will be able to write scripts that are actually useful . For this part of the book,

we’ve tried, where possible, to only ever introduce one new concept at a time. Hopefully

this will prevent you from being overloaded with too many new concepts at once. This

also keeps chapters short and, mostly, self-contained. For a few topics that have increased

complexity, we use two or more chapters to cover all aspects of that topic.

 We have strived to make sure there are lots of examples. These are all scripts that we

encourage you to copy and try yourself. However, you may still gain much understand-

ing just from reading them. In addition to the examples, Part 4 of this book also features

a number of problems at the end of most chapters. 4 You are strongly encouraged to

tackle the problems. Ultimately, this it the best way to learn Perl (or any programming

language). For each problem we provide a solution, 5 but be aware that one of the famous

mottos associated with Perl is:

 TMTOWTDI 6 – There’s more than one way to do it

 We have hopefully provided solutions that are easily understandable, but if you want to

solve each problem in a different way then that is great.

 The topics covered in Part 4 might be all you ever need to know in order to solve

many different problems. However, we go further into the more advanced aspects of Perl

in Part 6. The distinction between ‘essential’ and ‘advanced’ is somewhat arbitrary. If

you fi nish Part 4 then you should at least have a look at Part 6.

 Part 7 covers many different subjects that are not unique to Perl. In general, this is

the section that focuses on ‘good programming practices.’ Most subjects in this part are

relevant to many programming languages, though we also include two sections on how

to fi x broken Perl scripts.

 Finally, we should note that we do not cover every aspect of Unix and Perl. The

world of Unix is especially vast, and several books would be needed in order to cover

 4 We include some problems in the Unix section too, but not as many.

 5 Included in an appendix.

 6 Some people pronounce this ‘Tim Toady.’

www.cambridge.org/9781107000681
www.cambridge.org

Cambridge University Press
978-1-107-00068-1 — UNIX and Perl to the Rescue!
Keith Bradnam, Ian Korf
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

How to use this book 7

the myriad number of Unix commands you could learn about. Likewise, we do not cover

every feature or function available in Perl. However, we strongly feel that this book cov-

ers all of the basics (and much more besides). Readers are therefore encouraged to use

this book as a launch pad for a journey into a much wider world of programming. If you

develop a hunger for learning about new Unix commands, Perl functions, and even new

programming languages, then dare to venture beyond the confi nes of this book. You will

be rewarded!

 Style conventions
 Each chapter has a main heading and a subheading. The subheadings are one area where

we have tried to infl ict our pun-tastic sense of humor on you. 7 We will often include both

Unix and Perl examples, which you should attempt to follow. The Unix examples will

include simple instructions of Unix commands that you should type, whereas the Perl

examples will contain complete scripts, accompanied by line numbering. E.g.:

 Example 1.2.1

 1. #!/usr/bin/perl

 2. print "The shortest script in the world?\n";

 The line numbers are just there so we can refer to them in the text. You are not meant to

type the line numbers! Following just about every example will be a section that tries to

explain what the point of the example was. For the Unix examples, this will be a section

titled Explanation , but for the Perl scripts it will be a line-by-line breakdown of how the

script is working. E.g.:

 Understanding the script

 Line 2 contains a simple print statement.

 In addition to having worked-through examples, we will also set problems that you

should try to solve. Where appropriate, answers will be provided, but we encourage you

to try solving the problems without looking at the solution.

 Hopefully you will have noticed that we use a fi xed-width font for writing any Perl

or Unix code. This will be done for complete scripts and even when we mention a single

Unix command or Perl function within a sentence. E.g., we might mention that the Unix

command sed shares similarities with Perl’s substitution operator (s//).

 Sometimes we will show fragments of Perl scripts, just to illustrate a point or to dem-

onstrate the syntax of a command. We do not include line numbers for these examples,

and they are not intended to be run as complete scripts. E.g.:

 my @array_A = @array_B; # copying an array

 7 Footnotes, like this one, are another place where you might fi nd occasional diversionary comments on matters which may

not be entirely related to Unix and Perl. E.g., did you know that there are no words in the English language that rhyme

with the word ‘orange’?

www.cambridge.org/9781107000681
www.cambridge.org

Cambridge University Press
978-1-107-00068-1 — UNIX and Perl to the Rescue!
Keith Bradnam, Ian Korf
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction and background8

 Occasionally, we will want to shout something at you because it is so important, and the

world will cease to exist if you fail to understand the critical point we are making. E.g.:

 The world will cease to exist if you fail to understand the critical point

we are making!

 Any time you see something written in this style, you should probably re-read it several

times and remember that we will be not-inconsiderably displeased if you fail to remem-

ber our advice!

www.cambridge.org/9781107000681
www.cambridge.org

