Contents

<table>
<thead>
<tr>
<th>List of contributors</th>
<th>page xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxiv</td>
</tr>
<tr>
<td>List of abbreviations and symbols</td>
<td>xxv</td>
</tr>
</tbody>
</table>

Part I Chlorophylls and carotenoids

1. Microalgal classes and their signature pigments
 S. W. Jeffrey, Simon W. Wright and Manuel Zapata
 1.1 Introduction 3
 1.2 Algal classification 4
 1.3 Origins of microalgal plastids 9
 1.4 Biological characteristics of currently recognized photosynthetic microalgal classes 10
 1.5 Pigment characteristics of currently recognized photosynthetic microalgal classes 45

2. Recent advances in chlorophyll and bacteriochlorophyll biosynthesis
 Robert J. Porra, Ulrike Oster and Hugo Scheer
 2.1 Introduction 78
 2.2 Structures of chlorophylls 78
 2.3 Biosynthesis of protoporphyrin IX 81
 2.4 Biosynthesis of chlorophylls 92
 2.5 Concluding remarks 102

3. Carotenoid metabolism in phytoplankton
 Martin Lohr
 3.1 Introduction 113
 3.2 Biosynthesis of carotenes 114
 3.3 Biosynthesis of xanthophylls 128
Part II Methodology guidance

4 New HPLC separation techniques

José L. Garrido, Ruth L. Airs, Francisco Rodríguez, Laurie van Heukelem and Manuel Zapata

4.1 Introduction

4.2 HPLC algal pigment methods published since the 1997 UNESCO monograph

4.3 Separation principles and applications of new HPLC pigment techniques

4.4 Choice of HPLC method

4.5 Applications

5 The importance of a quality assurance plan for method validation and minimizing uncertainties in the HPLC analysis of phytoplankton pigments

Laurie van Heukelem and Stanford B. Hooker

5.1 Introduction

5.2 Method validation

5.3 Results from inter-laboratory comparisons

5.4 Performance metrics

5.5 Quality assurance plan

5.6 Future directions

Appendix 5A A symbology and vocabulary for an HPLC lexicon

Stanford B. Hooker and Laurie van Heukelem

6 Quantitative interpretation of chemotaxonomic pigment data

Harry W. Higgins, Simon W. Wright and Louise Schlueter

6.1 Introduction

6.2 Qualitative assessment of data

6.3 Non-taxonomic interpretation of pigment data sets

6.4 Mathematical tools for taxonomic interpretation of pigment data sets

6.5 Variability of marker pigment: Chl a from cultures and field studies

6.6 Comparison with results from microscopy and other techniques

6.7 Conclusions

7 Liquid chromatography-mass spectrometry for pigment analysis

Ruth L. Airs and José L. Garrido

7.1 LC-MS analysis of chlorophylls and carotenoids: introduction

7.2 Description of instrumentation

7.3 Approaches to LC-MS analysis
8 Multivariate analysis of extracted pigments using spectrophotometric and spectrofluorometric methods

Jacques Neveux, Jukka Seppälä and Yves Dandonneau

8.1 Introduction

8.2 Presentation of multi-component analysis methods

8.3 Multi-component spectrophotometric methods

8.4 Multi-component spectrofluorometric methods

8.5 Methods comparison

8.6 Recommendations and future considerations

Appendix 8A A proven simultaneous equation assay for chlorophylls \(a\) and \(b\) using aqueous acetone and similar assays for recalcitrant algae

Robert J. Porra

8A.1 Introduction

8A.2 History of Arnon’s simultaneous equation method

8A.3 Accurate simultaneous equations for use with aqueous 80% acetone extractant

8A.4 Extraction methods

8A.5 The accuracy of the simultaneous equations used with buffered aqueous 80\% acetone

8A.6 Two simultaneous equation techniques specifically designed for use with recalcitrant algae

Part III Water-soluble ‘pigments’

9 Phycobiliproteins

Kai-Hong Zhao, Robert J. Porra and Hugo Scheer

9.1 Introduction

9.2 Structures of phycobiliproteins

9.3 Biosynthesis of phycobilin chromophores

9.4 Optical spectroscopy of phycobiliproteins

9.5 Functions of phycobiliproteins

9.6 Some useful information and procedures

9.7 Concluding remarks

10 UV-absorbing ‘pigments’: mycosporine-like amino acids

José I. Carreto, Suzanne Roy, Kenia Whitehead, Carole A. Llewellyn and Mario O. Carignan

10.1 Description and role of MAAs

10.2 Distribution of MAAs in marine phytoplankton

10.3 Biosynthesis, trophic transfer and extra-cellular release

10.4 MAAs and bioptics

10.5 Methodology, extraction and separation of MAAs
Part IV Selected pigment applications in oceanography

11 Pigments and photoacclimation processes 445
CHRISTOPHE BRUNET, GEIR JOHNSEN, JOHANN LAVAUD AND SUZANNE ROY
11.1 Introduction 445
11.2 Long-term photoacclimative processes 446
11.3 The xanthophyll cycle and short-term photoacclimation 449
11.4 The xanthophyll cycle and the ecological properties of phytoplankton 454

12 Pigment-based measurements of phytoplankton rates 472
ANDRÉS GUTIÉRREZ-RODRÍGUEZ AND MIKEL LATASA
12.1 Pigment labelling method 472
12.2 Serial dilution method 477
12.3 Emerging views from pigment-taxa approaches to estimate phytoplankton rates 481
12.4 Other methodologies 483

13 In vivo bio-optical properties of phytoplankton pigments 496
GEIR JOHNSEN, ANNICK BRICAUD, NORMAN NELSON, BARBARA B. PRÉZELIN AND ROBERT R. BIDIGARE
13.1 Introduction 496
13.2 In vivo absorption and scattering properties 497
13.3 In vivo Chl a fluorescence excitation spectra 512
13.4 In vivo absorption properties of CDOM and non-phytoplankton particles 519
13.5 Light-harvesting complexes in Chromophyta, Chlorophyta and Cyanobacteria 522

14 Optical monitoring of phytoplankton bloom pigment signatures 538
GEIR JOHNSEN, MARK A. MOLINE, LALLE H. PETTERSSON, JAMES PINCKNEY, DMITRY V. POZDNYAKOV, EINAR SKARSTAD EGELAND AND OSCAR M. SCHOFIELD
14.1 Introduction 538
14.2 General optical properties of seawater and its constituents 545
14.3 Current techniques for in situ monitoring and remote sensing of phytoplankton blooms by optical sensors 553
14.4 Platforms addressing the varying scales of blooms 557
14.5 Case studies of optical phytoplankton monitoring 562
14.6 Future perspectives 565

Appendix 14A Pigments and toxins of harmful algae 582
EINAR SKARSTAD EGELAND
Part V Future perspectives

15 Perspectives on future directions 609
CAROLE A. LLEWELLYN, SUZANNE ROY, GEIR JOHNSEN,
EINAR SKARSTAD EGELEND, MATILDE CHAUTON,
GUSTAFF HALLEGRAEFF, MARTIN LOHR, ULRIKE OSTER,
ROBERT J. PORRA, HUGO SCHEER AND KAI-HONG ZHAO
15.1 Introduction 609
15.2 Pigments in marine bacteria and cyanobacteria – recent discoveries 609
15.3 Carotenoid biosynthesis – a perspective 610
15.4 Chlorophyll and bacteriochlorophyll biosynthesis – recent advances 611
15.5 Chlorophyll degradation – a perspective 612
15.6 Phycobiliproteins – a perspective 613
15.7 Adaptation and acclimation of phytoplankton to stressful environments – recent advances 614
15.8 Underpinning technical advances 614
15.9 Characterising algae using HR-MAS-NMR – recent advances 615
15.10 Recent improvements in remote sensing 616
15.11 The increased use of pigments with a cautionary note – a perspective 617
15.12 Applied phycology 618
15.13 The crystal ball 619

Part VI Aids for practical laboratory work

Appendix A Update on filtration, storage and extraction solvents 627
JAMES L. PINCKNEY, DAVID F. MILLIE AND LAURIE VAN HEUKELEM
Appendix B HPLC instrument performance metrics and validation 636
AIMEE R. NEELEY, CRYSTAL S. THOMAS, STANFORD B. HOOKER AND LAURIE VAN HEUKELEM
Appendix C Minimum identification criteria for phytoplankton pigments 650
EINAR SKARSTAD EGELEND
Appendix D Phytoplankton cultures for standard pigments and their suppliers 653
SUZANNE ROY, SIMON W. WRIGHT AND S.W. JEFFREY
Appendix E Commercial suppliers of phytoplankton pigments 658
EINAR SKARSTAD EGELEND AND LOUISE SCHLÜTER
Part VII Data sheets aiding identification of phytoplankton carotenoids and chlorophylls

EINAR SKARSTAD EGELEND IN COLLABORATION WITH JOSÉ LUIS GARRIDO,
LESLEY CLEMENTSON, KJERSTI ANDRESEN, CRYSTAL S. THOMAS, MANUEL
ZAPATA, RUTH AIRS, CAROLE A. LLEWELLYN, GREGORY L. NEWMAN,
FRANCISCO RODRÍGUEZ AND SUZANNE ROY

1 Chlorophylls 675
2 Carotenes 718
3 Xanthophylls 728

Index 823

The colour plates are to be found between pages 230 and 231.