A GENERAL RELATIVITY COURSEBOOK

General relativity is a subject that most undergraduates in physics are particularly curious about, but it has a reputation for being very difficult. This book provides as gentle an introduction to general relativity as possible, leading you through the necessary mathematics in order to arrive at important results. Of course, you cannot avoid the mathematics of general relativity altogether, but, using this book, you can gain access to and appreciation of tensors and differential geometry at a pace you can keep up with. Early chapters build up to a complete derivation of Einstein's equations, while the final chapters cover the key applications on black holes, cosmology and gravitational waves. It is designed as a coursebook with just enough material to cover in a one-semester undergraduate class, but it is also accessible to any numerate readers who wish to appreciate the power and beauty of Einstein's creation for themselves.

ED DAW is Professor of Particle Astrophysics at the University of Sheffield. He has worked as an experimental physicist since 1998, on searches for dark matter and gravitational waves. His work on gravity led him to volunteer to teach general relativity at Sheffield, which he has continued to do from 2003 until the present. He considers general relativity a hobby, albeit one that is crucial to underpin his understanding of his own research. He also enjoys trying to explain hard things in simple terms, a very good habit for a professor.

The approach in the book is unique, and especially valuable for the student first encountering general relativity. It shows in detail the computational steps involved in gaining the main results.

RAINER WEISS, Nobel laureate; Professor Emeritus at MIT

I think this is an excellent introduction to general relativity, and its important applications to cosmology and gravitational wave astrophysics, for the serious student who has not experienced the necessary mathematical formalism before and is willing to follow the text and attempt the many examples. It is an ideal lead-in to many of the more sophisticated modern textbooks which are now available.

SIR JAMES HOUGH, OBE FRS FRSE; University of Glasgow

A GENERAL RELATIVITY COURSEBOOK

ED DAW University of Sheffield

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781009242431

DOI: 10.1017/9781009242479

© Ed Daw 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

A catalogue record for this publication is available from the British Library.

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-24243-1 Hardback ISBN 978-1-009-24244-8 Paperback

Additional resources for this publication at www.cambridge.org/daw-GR

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Dedicated to my father, Stephen Francis Daw, 1944–2012

Cambridge University Press & Assessment 978-1-009-24243-1 — A General Relativity Coursebook Ed Daw Frontmatter <u>More Information</u>

Contents

	Prefa	ice	<i>page</i> xi
1	The l	Principle of Equivalence	1
	1.1	Are Smooth Curves Natural?	1
	1.2	The Birth of General Relativity	3
	1.3	Tangents to Curves in One Dimension	4
	1.4	Curved Surfaces and Tangent Planes	7
	1.5	Four-Dimensional Space-Time	10
	1.6	Einstein's Principle of Equivalence	13
	1.7	The Einstein Summation Convention	15
	1.8	Diagnostic Quiz	16
	1.9	Problems	17
2	Tens	ors	19
	2.1	Curvilinear Coordinates	19
	2.2	Metric Coefficients in Plane Polar Coordinates	20
	2.3	A Closer Look at Polar Coordinates	24
	2.4	Tensors in Polar Coordinates	26
	2.5	Transformation Laws for the Components of Tensors of	
		Arbitrary Rank	27
	2.6	Tensor Analysis	27
	2.7	Tensors in Space-Time	30
	2.8	Some More Space-Time Tensors	33
	2.9	Index Tricks of the Trade	35
	2.10	Problems	39

viii		Contents	
3	Matt	ter in Space-Time	43
	3.1	Dust	43
	3.2	Energy and Momentum of Dust	46
	3.3	The Stress Energy Tensor of Dust	46
	3.4	Conservation of Energy	50
	3.5	Problems	51
4	Geodesics		53
	4.1	The Action and Lagrangian for a Curve	53
	4.2	The Euler–Lagrange Equations	55
	4.3	Geodesics in Flat Space	59
	4.4	Tensor Expression for the Lagrangian	62
	4.5	Lagrangians in Space-Time	63
	4.6	Cyclic Coordinates	66
	4.7	Differentiation of Tensors	67
	4.8	Christoffel Symbols	69
	4.9	Covariant Derivatives	71
	4.10	The Metric Coefficients	75
	4.11	The Geodesic Equations	76
	4.12	Problems	78
5	Einstein's Equations		83
	5.1	Curvature Tensors	83
	5.2	Parallel Transport	83
	5.3	Curvature from Christoffel Symbols	87
	5.4	Symmetries of the Riemann Tensor	88
	5.5	The Ricci Curvature Tensor	94
	5.6	Bianchi Identities	95
	5.7	Einstein's Equations, up to a Constant	96
	5.8	Problems	98
6	Schwarzschild's Solution		100
	6.1	Introduction	100
	6.2	General Form of the Metric	100
	6.3	Christoffel Symbols	101
	6.4	Evaluation of Riemann Components	104
	6.5	Ricci Tensor Coefficients	107
	6.6	The Ricci Scalar	110

		Contents	ix
	6.7	The Einstein Tensor	110
	6.8	Correspondence with Newtonian Gravity	112
	6.9	The Event Horizon	114
	6.10	Kruskal–Szekeres Coordinates	116
	6.11	Metric Coefficients in Kruskal Coordinates	117
	6.12	Wormholes	121
	6.13	Problems	122
7	Cosn	Cosmology	
	7.1	The Cosmological Principle	131
	7.2	Spaces of Uniform Curvature	132
	7.3	Cosmologial Redshift	132
	7.4	What Is the <i>r</i> Coordinate?	134
	7.5	Lagrangian and Christoffel Symbols	135
	7.6	Riemann Curvature	138
	7.7	Ricci Tensor Coefficients	139
	7.8	The Ricci Scalar	140
	7.9	The Einstein Tensor	141
	7.10	Einstein's Equations	142
	7.11	Energy Density and the Friedmann Equation	143
	7.12	Equations for Pressure	143
	7.13	Comoving Versus Laboratory Coordinates	144
	7.14	The Cosmological Constant	147
	7.15	Review	148
	7.16	Problems	148
8	Grav	vitational Waves	151
	8.1	Astronomy with Gravity	151
	8.2	Einstein's Equations for a Flat Vacuum	152
	8.3	Linear Metric Perturbations	152
	8.4	Gauges in Gravitation	155
	8.5	Observers of the Transverse Traceless Gauge	157
	8.6	Laboratory Coordinates	158
	8.7	Cross and Plus Polarised Waves	160
	8.8	Gravitational Wave Detection	162
	8.9	Differential Interferometry	166
	8.10	Summary of Gravitational Waves	174
	8.11	Problems	175

www.cam	brid	ge.o	rg
mmeum	OIIG	50.0	-2

х	Contents		
9	A G	uide to Further Reading	179
	9.1	Epilogue	179
	9.2	Books for Ongoing Study	179
	9.3	Other Conventions in Tensor Analysis	180
	9.4	Where from Here?	187
	Refe	erences	192
	Index		195

Preface

General relativity (GR) is one of the most fascinating areas of physics. It is therefore naturally an attractor for undergraduates, often given as a reason for choosing the subject. It is not, however, always offered as an undergraduate course because it is hard to teach. I have taught an undergraduate GR course at Sheffield since 2004 (with a few years off at one point). I have developed some strategies that have allowed the course to continue to be successful. My notes are now mature enough that I offer them up as a coursebook, hoping it will be of service to others faced with the same task.

I try to adhere to the maxim of uncovering some of the material rather can covering all of it. A detailed description of the tensor formalism is unavoidable. I use what some would consider an old fashioned approach, defining tensors in terms of the transformation properties of their components. The book contains all the mathematical detail students need to arrive at important results. In this sense, it differs markedly from other books, which tend to leave the lengthier components of derivations as stated without proof or for the students to derive. Experience has taught me that students are simply not ready for such long tracts of algebra, or they don't have the time for it. So, almost everything is there, even though the algebra is sometimes tedious. I also leave in all the factors of c and G, so the whole book is in SI (MKS) units. These constants also allow you to maintain constant contact with the experimental world, to assess the relative magnitudes of terms, and to check your algebra with dimensional analysis.

There are three chapters on applications, on the Schwarzschild solution, the Friedman–Lemaître–Robertson–Walker cosmology, and gravitational waves. The chapters contain the GR at the core of these areas; the problems at the end contain selected applications. Many of the problems are therefore foundational general relativity. I find it pedagogically far better to have the students go through this work for themselves than to teach it as bookwork, as in my experience students fail to digest the latter and it is almost immediately forgotten. The problems are at a spec-

Cambridge University Press & Assessment 978-1-009-24243-1 — A General Relativity Coursebook Ed Daw Frontmatter More Information

xii

Preface

trum of levels of difficulty from extremely easy to quite long and involved. The idea is that there is something there for students having a wide range of abilities and levels of preparedness. There is also an example of what I refer to as a 'diagnostic quiz' in Section 1.8. I set a quiz like this to students starting the course well before the drop date, as a refresher course and a friendly warning shot across the bows for those who have embarked upon the course not understanding the required level of mathematical competency. I recommend this practice to my fellow teachers.

I find that I can cover the material up to the end of Section 8.8 in 18–20 50 minute lectures and that students who spend perhaps 6 hours a week studying for themselves succeed in learning the material. If you only have 18 lectures, then you can move quite quickly through the calculations leading to the Einstein tensors in Chapters 6 and 7, though your course will be improved if you can dwell in these areas and give students a strong feel for the weight and work represented in these calculations. At the end of the book, starting in Section 8.9.1, I have included some 'optional extras'. Firstly, there is a look at some of the technical aspects of practical experimental gravitational wave interferometry. This is not general relativity, but I believe that the subject should not live in isolation from the rest of science. It can be by all means left out of a one semester course. The final chapter is a guide to further reading, a summary of conventions in differential geometry that differ from mine, and a short review of the more advanced literature in various research fields to which general relativity is connected.

I do not know if I have succeeded in walking the balance beam between the abyss of a book that is too advanced and the disappointment a book that is too superficial. Now that I consider the book in its entirety, I see that it might be of interest beyond the original target audience. Time will tell. I hope at least to convey the love of the subject that I have gained through familiarity and that you enjoy what is between these covers.

Acknowledgments

When my colleagues at Sheffield found out that I had written this book, many of them asked how I had found the time. The book evolved as I addressed areas of confusion that I perceived amongst the students. So I thank the students for their many questions, comments and corrections. I am sure that many times at home I have been staring at my computer or into space when I should have been with my family. I thank my wife Anne and my children Georgia and Eli for their patience, encouragement and love during this journey. I would also like to thank Pieter Kok for a careful reading and my colleagues at LIGO for numerous invigorating discussions, which informed my thinking in many areas, most significantly for Chapter 8.