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Introduction

The Kähler–Einstein K-stability correspondence for Fano varieties is one of the

most important contributions achieved in the 21st century [71, 212, 78, 82, 59,

214]. It links together complex algebraic geometry and analytic geometry:

a smooth Fano variety admits a Kähler–Einstein metric ⇐⇒ it is

K-polystable.

However, the notion of K-stability is elusive and often difficult to check (see

Chapter 1). On the other hand, for two-dimensional Fano varieties, Tian and

Yau proved

Theorem ([215, 211]) Let S be a smooth del Pezzo surface. Then S is K-

polystable if and only if it is not a blow up of P2 in one or two points.

Smooth Fano threefolds have been classified in [118, 119, 158, 159] into 105

families, which are labeled as №1.1, №1.2, №1.3, . . ., №9.1, №10.1 (see the

Big Table in Chapter 6). Threefolds in each of these 105 deformation families

can be parametrized by a non-empty irreducible rational variety [161, 163]. We

pose the following problem.

Calabi Problem Find all K-polystable smooth Fano threefolds in each family.

This problem has already been solved for many families, and partial results

are known in many cases [2, 3, 7, 14, 39, 46, 47, 55, 69, 79, 93, 101, 117, 146,

165, 199, 202, 212, 219, 227]. In particular, it has been proved in [93] that all

smooth threefolds in the 26 families

№2.23, №2.28, №2.30, №2.31, №2.33, №2.35, №2.36, №3.14,

№3.16, №3.18, №3.21, №3.22, №3.23, №3.24, №3.26, №3.28, №3.29,

№3.30, №3.31, №4.5, №4.8, №4.9, №4.10, №4.11, №4.12, №5.2
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2 Introduction

are divisorially unstable (see Definition 1.20), so that none of them is K-

polystable.

We show that all smooth Fano threefolds №2.26 are not K-polystable, and

prove

Main Theorem Let X be a general Fano threefold in the family №N . Then

X is K-polystable ⇐⇒ N , 2.26 and N <




2.23,2.28,2.30,2.31,2.33,

2.35,2.36,3.14,3.16,3.18,

3.21,3.22,3.23,3.24,3.26,

3.28,3.29,3.30,3.31,4.5,

4.8,4.9,4.10,4.11,4.12,5.2




.

Corollary Let X be a general Fano threefold in the family №N , №2.26.

Then

X is K-polystable ⇐⇒ X is divisorially semistable ⇐⇒ X is K-semistable.

Note that K-stability is an open property [170, 80, 19, 147]. Therefore, to

prove that a general element of a given deformation family is K-polystable, it

is enough to produce at least one K-stable (possibly singular) threefold in this

family. However, this approach does not always work because many deformation

families contain only Fano threefolds with infinite automorphism groups [45],

so that none of these threefolds are K-stable, but some of them a priori could

be K-polystable.

Before we finished the proof of the Main Theorem, its assertion had been

already known for 65 deformation families (see Chapter 3 and Section 4.1 for

more details). These families are

№1.1, №1.2, №1.3, №1.4, №1.5, №1.6, №1.7, №1.8, №1.10, №1.11,

№1.12, №1.13, №1.14, №1.15, №1.16, №1.17, №2.4, №2.23, №2.28,

№2.6, №2.29, №2.30, №2.31, №2.32, №2.33, №2.34, №2.35, №2.36,

№3.1, №3.11, №3.14,

№3.16, №3.18, №3.19, №3.20, №3.21, №3.22, №3.23, №3.24, №3.26,

№3.27, №3.28, №3.29, №3.30, №3.31, №4.4, №4.5, №4.7, №4.8, №4.9,

№4.10, №4.11, №4.12, №5.2, №5.3, №6.1, №7.1, №8.1, №9.1, №10.1.

For some families, we solved the Calabi Problem for all smooth threefolds

in the family. For details, see the proof of the Main Theorem and check the Big

Table in Chapter 6.

Example (see Section 4.7) Smooth Fano threefolds №2.24 are divisors in

P2 × P2 that have degree (1,2). For a suitable choice of coordinates ([x : y :

www.cambridge.org/9781009193399
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-19339-9 — The Calabi Problem for Fano Threefolds
C. Araujo , A.-M. Castravet , I. Cheltsov , K. Fujita , A.-S. Kaloghiros
J. Martinez-Garcia , C. Shramov , H. Süß , N. Viswanathan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction 3

z], [u : v : w]) on P2 × P2, these smooth Fano threefolds can be described as

follows.

(i) One parameter family that consists of threefolds given by

xu2
+ yv

2
+ zw2

+ µ
(
xvw + yuw + zuv

)
= 0, (F)

where µ ∈ C such that µ3
, −1. All such threefolds are K-polystable.

(ii) One non-K-polystable threefold given by (u2
+vw)x+(uw+v2)y+w2z = 0,

(iii) One non-K-polystable threefold given by (u2
+ vw)x + v2

y + w
2z = 0.

If µ3
= −1 or µ = ∞, then (F) defines a singular K-polystable Fano threefold.

Smooth Fano threefolds with infinite automorphism groups have been de-

scribed in [45]. We completely solve the Calabi Problem for all of them. To be

precise, we proved

Theorem Let X be a smooth Fano threefold in the family №N such that

Aut0(X) , 1. Then X is K-polystable if and only if either

N ∈




1.15,1.16,1.17,2.20,2.22,2.27,2.32,2.34,2.29,3.5,3.8,3.9,3.12,

3.15,3.17,3.19,3.20,3.25,3.27,4.2,4.3,4.4,4.6,4.7,4.13,5.1,5.3,

6.1,7.1,8.1,9.1,10.1




or one of the following cases hold:

• N = 1.10 and Aut0(X) � PGL2(C) or Aut0(X) � Gm;

• N = 2.21 and Aut0(X) � PGL2(C) or Aut0(X) � Gm;

• N = 2.24 and Aut0(X) � G2
m;

• N = 3.10 and either Aut0(X) � G2
m, or Aut0(X) � Gm and X can be

obtained by blowing up the smooth quadric threefold in P4 given by

w
2
+ xy + zt + a(xt + yz) = 0

along two conics that are given by w
2
+ zt = x = y = 0 and w

2
+ xy = z =

t = 0, where a ∈ C is such that a < {0,±1}, and x, y, z, t, w are coordinates

on P4;

• N = 3.13 and Aut0(X) � PGL2(C) or Aut0(X) � Gm.

At present, the Calabi Problem is not yet completely solved for the following

34 families:

№1.9, №1.10, №2.1, №2.2, №2.3, №2.4, №2.5, №2.6,

№2.7, №2.8, №2.9, №2.10, №2.11, №2.12, №2.13, №2.14,

№2.15, №2.16, №2.17, №2.18, №2.19, №2.20, №2.21, №2.22, №3.2,

№3.3, №3.4, №3.5, №3.6, №3.7, №3.8, №3.11, №3.12, №4.1.
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4 Introduction

For 27 of these families, we expect the following to be true:

Conjecture All smooth Fano threefolds in the deformation families

№1.9, №2.1, №2.2, №2.3, №2.4, №2.5, №2.6, №2.7, №2.8,

№2.9, №2.10, №2.11, №2.12, №2.13, №2.14, №2.15, №2.16, №2.17,

№2.18, №2.19, №3.2, №3.3, №3.4, №3.6, №3.7, №3.11, №4.1

are K-stable and, in particular, they are K-polystable.

The remaining seven families №1.10, №2.20, №2.21, №2.22, №3.5, №3.8,

№3.12 contain non-K-polystable smooth Fano threefolds, but their general

members are K-polystable. We present conjectural characterizations of their

K-polystable members in Chapter 7.

Remark After the original version of this book appeared in June 2021 as

Preprint 2021-31 in the preprint series of the Max Planck Institute for Math-

ematics, our Conjecture has been confirmed for the families №2.8, №3.3 and

№4.1 in [16, 34, 145], and our conjectural characterizations of the K-polystable

members of the families №2.22 and №3.12 have been proved in [38, 68]. Note

that it follows from [38, 68] that every smooth Fano threefold in the deformation

families №2.22 and №3.12 is K-semistable.

In Chapter 1, we present some K-stability results used in the proof of the Main

Theorem. In Chapter 2, we prove the Tian–Yau theorem and find δ-invariants

of del Pezzo surfaces. In Chapters 3, 4, and 5, we prove the Main Theorem.

In Chapter 6, we present the Big Table that summarizes our results. In the

Appendix, we present technical results used in the book.

Notations and conventions. Throughout this book, all varieties are assumed

to be projective and defined over the field C. For a variety X , we denote by

Eff(X), NE(X) and Nef(X) the closure of the cone of effective divisors on X ,

the Mori cone of X , and the cone of nef divisors on X , respectively. For a

subgroup G ⊂ Aut(X), we denote by ClG(X) and PicG(X) the subgroups in

Cl(X) and Pic(X) consisting of Weil and Cartier divisors whose classes are

G-invariant, respectively.

A subvariety Y ⊂ X is said to be G-irreducible if Y is G-invariant and is not

a union of two proper G-invariant subvarieties. We also denote by Aut(X,Y )

the group consisting of automorphisms in Aut(X) that maps Y into itself.

We denote by Fn the Hirzebruch surface P(OP1 ⊕ OP1 (n)). In particular,

F0 � P
1 × P1, and the surface F1 is the blow up of P2 at a point.

For a divisor D on P = Pn1 × Pn2 × · · · × Pnk , we say that D has degree

(a1,a2, . . . ,ak) if

www.cambridge.org/9781009193399
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Introduction 5

D ∼

k∑

i=1

pr∗i
(
OPni (ai)

)
,

where pri : P → Pni is the projection to the ith factor. For a curve C ⊂ P,

we say that C has degree (a1,a2, . . . ,ak) if pr∗
i
(OPni (1)) · C = ai for every

i ∈ {1, . . . , k}.

We denote by µn the cyclic group of order n, we denote by D2n the dihedral

group of order 2n, where n > 2 and D4 = µ
2
2
. Similarly, we denote bySn and

An the symmetric group and its alternating subgroup, respectively. We denote

by Ga the one-dimensional unipotent additive group, and we denote by Gm the

one-dimensional algebraic torus.

We denote by Gm o µ2 the unique non-trivial semi-direct product of Gm and

µ2, we denote by Gm oS3 the unique non-trivial semi-direct product of Gm

andS3, and we denote by Ga o Gm the semi-direct product such that Gm acts

on Ga as x 7→ tx.

For positive integers n > k1 > · · · > kr , we denote by PGLn;k1 ,...,kr (C) the

parabolic subgroup in PGLn(C) that consists of images of matrices in GLn(C)

preserving a flag of subspaces of dimensions k1, . . . , kr . For n > 5, we denote

by PSOn;k(C) the parabolic subgroup of PSOn(C) preserving an isotropic linear

subspace of dimension k. By PGL(2,2)(C) we denote the image in PGL4(C) of

the group of block-diagonal matrices in GL4(C) with two 2 × 2 blocks. This

group acts on P3 preserving two skew lines. By PGL(2,2);1(C) we denote the

stabilizer in PGL(2,2)(C) of a point on one of these lines.
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K-Stability

1.1 What is K-stability?

Let X be a Fano variety of dimension n > 2 that has Kawamata log terminal

singularities. In most of the cases we consider, the variety X will be smooth. Set

L = −KX . A (normal) test configuration of the (polarized) pair (X; L) consists

of

• a normal variety X with a Gm action,

• a flat Gm-equivariant morphism p : X → P1, where Gm acts naturally on P1

by

(
t, [x : y]

)
7→ [t x : y],

• a Gm-invariant p-ample Q-line bundle L → X and a Gm-equivariant iso-

morphism

(
X\p−1(0),L

��
X\p−1(0)

)
�

(
X ×

(
P1\{0}

)
,pr∗1(L)

)
,

where pr1 is the projection to the first factor, and 0 = [0 : 1].

For such a test configuration, we let

DF
(
X;L

)
=

1

Ln

(
Ln · KX/P1 +

n

n + 1
Ln+1

)
. (1.1)

This number is called Donaldson–Futaki invariant of the test configuration

(X,L).

Remark 1.1 Quite often, we will omit L in DF(X;L) and write it as DF(X).

Denote the central fiber p−1(0) by X0, and denote the fiber at infinity p−1(∞)

by X∞, where ∞ = [1 : 0]. The test configuration (X,L) is said to be

7
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8 1 K-Stability

• trivial if there is a Gm-equivariant isomorphism

(
X\X∞,L

��
X\X∞

)
�

(
X ×

(
P1\∞

)
,pr∗1(L)

)
,

• product-type if we have an isomorphism X\X∞ � X × (P1\∞),

• special if the fiber X0 is irreducible, reduced, and (X,X0) has purely log ter-

minal singularities, so that X0 is a Fano variety with Kawamata log terminal

singularities.

Definition 1.2 The Fano variety X is said to be K-semistable if for every test

configuration (X,L), DF(X;L) > 0. Similarly, the Fano variety X is said to

be K-stable if for every non-trivial test configuration (X,L), DF(X;L) > 0.

Finally, the Fano variety X is said to be K-polystable if it is K-semistable and

DF(X;L) = 0 ⇐⇒ (X,L) is of product type.

Thus, we have the following implications:

X is K-stable =⇒ X is K-polystable =⇒ X is K-semistable.

If X is not K-semistable, we say that X is K-unstable. Similarly, if X is K-

semistable, but the Fano variety X is not K-polystable, we say that X is strictly

K-semistable.

Theorem 1.3 ([6, 155]) If X is K-polystable, then Aut(X) is reductive.

Theorem 1.4 ([21, Corollary 1.3]) If X is K-stable, then Aut(X) is finite.

Corollary 1.5 If Aut(X) is finite, then X is K-stable if and only if it is K-

polystable.

By the Chen–Donaldson–Sun theorem, the product of smooth K-polystable

Fano varieties is K-polystable. This can be proved purely algebraically:

Theorem 1.6 ([225]) Let V and Y be Fano varieties with Kawamata log

terminal singularities. Then V×Y is K-semistable (resp. K-polystable, K-stable)

if and only if V and Y are both K-semistable (resp. K-polystable, K-stable).

Let G be a reductive subgroup in Aut(X). A given test configuration (X,L)

is said to be G-equivariant if the product G × Gm acts on (X,L) such that

• {1} × Gm acting on (X,L) is the original Gm-action,

• the Gm-equivariant isomorphism
(
X\p−1(0),L

��
X\p−1(0)

)
�

(
X ×

(
P1\{0}

)
,pr∗1(L)

)

is G × Gm-equivariant.
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1.1 What is K-stability? 9

Definition 1.7 The Fano variety X is said to be G-equivariantly K-polystable

if for every G-equivariant test configuration (X,L), DF(X;L) > 0, and

DF(X;L) = 0 if and only if (X,L) is of product type.

Remark 1.8 It has been proved in [142, 89] that it is enough to consider only

special test configurations in Definitions 1.2 and 1.7.

If X is K-polystable, then X is G-equivariantly K-polystable. Surprisingly,

we have

Theorem 1.9 ([67, 140, 148, 226]) Suppose that X is G-equivariantly K-poly-

stable. Then X is K-polystable.

Remark 1.10 One can naturally define K-polystability for Fano varieties de-

fined over an arbitrary field F of characteristic 0. By [226, Corollary 4.11], if

X is defined over F, and G is a reductive subgroup in AutF(X), then

X is G-equivariantly K-polystable over F ⇐⇒ X is K-polystable over F,

where F is the algebraic closure of the field F.

Let us conclude this section by briefly explaining how K-stability behaves in

families.

Theorem 1.11 ([6, 19, 20, 80, 147, 141, 170, 218]) Let η : X → Z be

a projective flat morphism such that X is Q-Gorenstein, Z is normal, and all

fibers of η are Fano varieties with at most Kawamata log terminal singularities.

For every closed point P ∈ Z , let XP be the fiber of the morphism η over P.

Then the set {
P ∈ Z

�� XP is K-stable
}

is a Zariski open subset of the variety Z . Similarly, the set
{
P ∈ Z

�� XP is K-semistable
}

is a Zariski open subset of the variety Z . Furthermore, the set
{
P ∈ Z

�� XP is K-polystable
}

is a constructible subset of the variety Z .

Thus, if X is a K-polystable smooth Fano threefold such that the group Aut(X)

is finite, then X is K-stable by Corollary 1.5, so that general Fano threefolds in

the deformation family of X are K-stable. We will use this observation often in

the proof of the Main Theorem to prove that a general member of a given family

is K-stable. Vice versa, to prove that a given Fano threefold is not K-polystable,

we will use the following result (cf. [31, 170]).
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10 1 K-Stability

Theorem 1.12 ([21, Theorem 1.1]) Let η : X → Z and η′ : X′ → Z be

projective surjective morphisms such that both X and X′ are Q-Gorenstein, Z

is a smooth curve, and all fibers of η and η′ are Fano varieties with at most

Kawamata log terminal singularities. Let P be a point in Z , and let XP and

X ′
P

be the fibers of the morphisms η and η′ over P, respectively. Suppose that

there is an isomorphism X \ XP � X′ \ X ′
P

that fits the following commutative

diagram:

X \ XP

η

��
X\XP

��

�
// X′ \ X ′

P

η
′
��
X′\X′

P

��

Z \ P Z \ P

If both XP and X ′
P

are K-polystable, then they are isomorphic.

Together with Theorem 1.11, this result gives

Corollary 1.13 Let p : X → P1 be a test configuration for the Fano variety X

such that the fiber p−1(0) is a K-polystable Fano variety with at most Kawamata

log terminal singularities that is not isomorphic to X . Then X is strictly K-

semistable.

In some cases, it is possible to prove that the general element of the deforma-

tion family of a K-polystable Fano threefold X is also K-polystable, even when

X has infinite automorphism group. This is achieved by relating K-polystability

and GIT polystability, an idea first investigated in [26, 206] in the analytic

context. Suppose that X is a smooth K-polystable Fano variety of dimension

n, and set d = (−KX )
n. Let us briefly recall the setup of deformation theory;

proofs and details can be found in [192, 153].

The infinitesimal deformation functor of the Fano variety X is denoted DefX ;

recall that for an Artinian local C-algebra A with residue field C, DefX (A)

consists of isomorphism classes of commutative diagrams:

X

��

�

�

// XS

��

{0}=Spec(C)
�

�

// S=Spec(A)

An element {XS → S} ∈ DefX (A) is a deformation family of X over S. The

tangent space of the deformation functor DefX is T1
X
= E xt1(ΩX,OX ) and

T2
X
= E xt2(ΩX,OX ) is an obstruction space for DefX . As X is a smooth Fano,

T1
X
= H1

(
X,TX

)
and T2

X
= 0 (deformations of X are unobstructed).
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